
Agile Software Engineering Techniques: The Missing Link
in Large Scale Lean Product Development

Scheerer, Alexander; Schmidt, Christoph T.; Heinzl, Armin; Hildenbrand, Tobias*;
Voelz, Dirk*

Institute for Enterprise Systems
University Mannheim

Schloss
68131 Mannheim, Germany
{scheerer, christoph.schmidt,
heinzl}@uni-mannheim.de

*SAP AG
Dietmar-Hopp-Allee 16,

69190 Walldorf, Germany
{tobias.hildenbrand,

dirk.voelz}@sap.com

Abstract: Many software development companies have fundamentally changed
the way they organize and run their development organizations in the course of the
last decade. Lean and agile software development became more and more
common. Lean focuses on continuous value generation based on a framework of
principles known from manufacturing. But how do software developers actually
implement these principles in their daily work? Based on insights from several
software development teams at a large-scale enterprise software company in
Germany, we show that agile software engineering techniques seamlessly integrate
into lean product development principles. This paper shows empirical insights on
how to implement these principles in a professional context and every-day work.

1. Introduction

For many years, large software firms have managed their development organization in a
waterfall-like and plan-driven manner to overcome scaling and complexity issues.
However, this often resulted in manifold issues such as an ever-growing complexity in
the technology stack and an unnecessary level of bureaucratic overhead. Companies
realized that a fundamental change was necessary to cope with these scaling problems
after it became inevitable that the traditional approach was especially insufficient in
large-scale organizations. Lean software development with its underlying principles,
which are derived from lean manufacturing [WJ03], promised a solution for many
companies. The approach focuses on value and value creation addressing the central
identity of the software industry where margins come from innovation and economies of
scope, instead of economies of scale [HM12].

The fundamental transition from a traditional plan-driven to a lightweight development
approach poses a significant challenge for large companies whose employees have been
using the former approach for years. We follow Conboy’s [Co09] definitions and
consider lean as a framework of principles aiming at the “contribution to perceived

customer value through economy, quality, and simplicity”. Lean pursues a similar set of

319



objectives as the concept of information systems development (ISD) agility. Agile ISD
methods build on “the continual readiness […] to rapidly or inherently create change,

proactively or reactively embrace change, […] while contributing to perceived customer

value” [Co09].

As Scrum has become a quasi-standard agile method used by many software companies
of different sizes, most large-scale lean implementations also started their transition to
lean on the team level with this method. However, empirical evidence on both lean and
agile methodologies is scarce [PP03], [WCC12], especially when it comes to the
adoption by large software vendors. The transition towards lean and agile development
remains more a "leap of faith" than a concise engineering effort since too little is known
about the idiosyncrasies and pitfalls associated with it.

Are lean principles combined with Scrum really enough to meet the needs of large-scale
software development companies? Despite combining lean with agile concepts on the
team level by implementing Scrum as process framework, many developers perceive
both lean product development and agile software development to be on a yet too
general and abstract level for their daily work (see [Re09] and [HM12], for instance).
Following the lean idea, its implementation should focus on software products and target
those levels where value is created: the development teams, their code, and each
individual developer. This is where Agile Software Engineering Techniques (ASET)
come into play (cf. Figure 1). We argue in this paper that agile techniques are the
missing link to effectively implement and sustain lean product development principles in
large scale software companies and finally make them valuable for software developers’
daily work.

Specific agile

techniques [Be01]
Pair programming, test-driven

development, continuous

integration, refactoring

Agile method

as process framework

[SB01]

Teams with Scrummaster,

product owner, developers and

an associated manager for

people development

Lean principles [PP03]

Eliminate waste, build quality

in, learn constantly, deliver fast,

engage everyone, keep getting

better

Figure 1 Overview of underlying key concepts in our case study

320



Previous studies already identified agile development techniques as a major success
factor in agile software projects, e.g. [Be01]. Hence, we assume a positive outcome of
adopting ASET in itself. Based on that, we discuss how agile techniques are adopted in
combination with Scrum as process framework and Lean software development with
results from an empirical study we carried out at a large enterprise software company in
Germany that implements Lean. In order to guarantee the teams exposure to agile
techniques we focused on pair programming (PP), test-driven development (TDD),
continuous integration (CI), and refactoring (REF) [SS11] which had been introduced to
the developers via an intensive team course prior to our investigation.

2. The Research Process

We conducted our study on PP, TDD, CI, and REF during summer and fall of 2011. It
comprised twenty one-hour-long interviews with members from four development
teams. A questionnaire survey covering the same teams complemented the interviews.
All interviewees had attended a one-week training on agile development techniques
followed by a three-week coaching phase. To get an in-depth understanding of the
techniques and their application in practice, the research team attended the training
program as well. This setup ensured that every developer could draw from at least three
months of practical and solid theoretical knowledge. The teams had all attended a lean
training course within the last two years and were embedded in a lean organization with
a focus on continuous value generation. The interviews were transcribed and the data
carefully analyzed with statistical and qualitative software packages.

All teams were co-located, had implemented Scrum as a process framework [SS11],
[SB01] for at least one year and had several months of ASET experience in a productive
setting after the training (cf. Table 1). We interviewed representatives of all Scrum roles
(Product owner, Scrum master, and development team member) as well as the teams’
line managers and supplemented our analysis with relevant documents concerning the
underlying development framework and training materials.

Team Context

Scrum

Experience
[months]

ASET

Experience
[months]

Team

continuity
[months]

Team 1 24 7 24

Team 2 12 3 24

Team 3 48 5 24

Team 4 18 8 12

Table 1 Team contexts

321



3. The Teams’ Attitude towards ASET

The entire training sessions were solely teaching agile techniques with the intention to
support software engineers in their daily development work, i.e. having a substantial
effect on the development time and gains in the software quality as previously stated by
different studies [DB11], [Na08], [MW03], [CW01], [Dy07], [MT04].

Our study results clearly demonstrate that most study participants shared these upfront
expectations. A great majority of the respondents generally confirmed (or strongly
confirmed) that they enjoyed the taught practices in the first place. If asked whether
developers considered ASET beneficial, the overall agreement was even higher than the
enjoyment rate (cf. Figure 2). One respondent described the trainings as “finally
something tangibly helpful for my daily work after Scrum and lean”. In a hypothetical
own company, a great majority would adopt these techniques. Overall, no group of strict
opponents could be found.

Strongly

disagree

Disagree Mixed Agree Strongly

agree

Strongly

disagree

Disagree Mixed Agree Strongly

agree

Strongly

disagree

Disagree Mixed Agree Strongly

agree

0%

10%

20%

30%

40%

50%

60%

70%

Strongly

disagree

Disagree Mixed Agree Strongly

agree

R
e
sp
o
n
d
e
n
ts

Test-driven development Pair programming Continuous integration Refactoring

Do you enjoy the following agile techniques? Do you consider the following agile techniques beneficial?

Figure 2 Respondents’ enjoyment and conviction of the studied agile techniques

4. Heterogeneous Adoption Patterns

Despite the high level of agreement regarding the benefits and enjoyment of agile
techniques, our analysis revealed various unexpected patterns which indicated variations
in the degree of the adoption of each agile technique. In particular and contrary to our
expectations, our survey results clearly indicate considerable variations among teams
intensity adopting pair programming or test-driven development. Table 2 demonstrates
these variations with team-based average values for the PP-related question “How much
of your development time do you program in a pair?” and “What percentage of code do

you write in a test-first manner?” The varying adoption intensity patterns are somewhat
surprising, since all teams had participated in the same training program after which they
were free to adopt the learned techniques.

322



PP REF CI

Interview

result

Average

development time

used for PP

Interview

result

Average of new

code written in a

test-driven mode

Average

development time

used for REF

Average time

between code

checkins [days]

Team 1 Low 18% Low 23% 18% <2

Team 2 Low 36% Varying 58% 26% <1

Team 3 High 60% High 71% 36% <1

Team 4 High 76% High 62% 36% <2

Adoption intensity

TDD

Table 2 Teams' intensity of adopting PP, TDD, REF, and CI

In-depth insights from our interviews corroborate our survey findings on the
heterogeneous adoption patterns among different teams (cf. qualitative indications In
Table 2). Moreover, our interview results reveal formerly unknown team-specific factors
which help to explain and understand the varying adoption patterns. These factors
accentuate respective advantages and disadvantages of the individual techniques and
uncover additional contingency factors which hinder or diminish the expected adoption.
These will be discussed in the following sections.

4.1. Variations in Pair Programming Adoption Intensity

While programming in a pair, two developers of a team work at one computer, sharing a
single keyboard and a mouse for their development work. The partners frequently
alternate their active driver and passive navigator roles. Two of the four studied teams
applied pair programming to a high degree of their development time with a partner
(high adoption intensity), while the remaining teams used the technique occasionally for
specific aspects of their work only (low adoption intensity).

According to this pattern, Team 1 (cf. Table 2) is categorized as a team with low
adoption intensity. Team members paired if “the work gets more complex or if we see it
as helpful to share knowledge”. The technique was described as beneficial for security
relevant tasks to mitigate the risk of defective code modifications. The pronounced use
of a code review system explains the low intensity. Every code change was reviewed in
order to achieve a 100% review level. The team regarded code reviewing as superior to
pair programming, as knowledge and ideas discussed in a PP session remained mostly
within that pair, but not documented. However, pair programming was considered a
complementary technique rather than a substitute as the low adoption intensity might
suggest. Developers acknowledged their partners’ fast feedback and the possibility to

jointly solve a coding task, which reportedly increased the team cohesion. The team
mentioned several impediments for coding in pairs: potential programming partners from
the open-source community worked at different locations and time-zones. Secondly, the
team considered the required synchronization within team-internal pairs as a burden for
its productivity. This was perceived as particularly unpleasant, since some team
members preferred flexible work hours.

323



For some developers of Team 2, PP was the default mode, but most members only used
it parsimoniously (see Table 2). The team attributed the creation of a broader knowledge
base among individuals to pair programming which led to higher project flexibility. In
particular, the reduction of the “vacation problem” was regarded as valuable, i.e. the

team was still productive if individuals were absent. Despite these respected benefits,
reported disadvantages out-weighed the advantages for the team in particular situations
explaining the variation in this adoption pattern. One developer said he felt stifled in his
work flow leading to more stress for him than working alone. Unequivocally, the team
shared the opinion to have delivered less features per Scrum sprint.

For Team 3, pair programming was the default work mode. In the planning session, the
team decided which tasks to develop in pairs, with coding of new functionality always
being developed by two programmers. Still a few disadvantages of pair programming
were mentioned as it “can cause conflicts in the team; but the team has to learn how to

deal with that”. One developer reported to sometimes be “overambitious and to forget to

take breaks” which can be more stressful than working alone, since you are busy all the

time. Generally, advantages clearly out-weighed the disadvantages for this team.
Members emphasized a stimulated discussion culture leading to common quality
awareness, and the immediate avoidance of trivial errors as the main benefits.

Team 4’s intensity of paired programming was the highest. Almost every coding task

was developed by a pair and even non-coding tasks, such as configurations of productive
systems, were realized in teams of two: “we try to develop everything possible with a

partner”. Developers mentioned that they have more fun at work and a better team spirit.

The technique was appreciated because of its good fit into the adopted Scrum framework
due to its positive effects on teamwork and a common code responsibility. Finally, pair
programming reportedly fostered the intra-team discussion culture.

In summary, several impeding factors were discussed which helped to explain low
adoption intensity rates. Pair programming is only possible if teams are co-located, if
teams share work tasks similar in terms of content, if developers are willing to
synchronize their work hours, and for pairing partners who bring the potential and
willingness to reach consensus.

Coding with a partner entails three major benefits: a broader common knowledge base
leading to increased team flexibility, prevention of trivial errors from the very beginning
of coding due to the immediate feedback and increased quality awareness, and finally a
closer collaboration among team members fostering team spirit. On the other hand, pair
programming was reported to potentially lead to inter-personal conflicts, to be more
stressful than working alone, and to interrupt a free flow of thoughts. Some developers
reported to perceive a lower development speed of the team due to pairing, e.g.
measured as delivered features per Scrum sprint. In general it can be said that through
pair programming, the aspect of continuous value generation can be brought to the teams
and their daily work.

324



4.2. Variations in Test-driven Development Adoption Intensity

Test-driven development implies alternate writing of production code and corresponding
tests to cover its functionality. In the strict sense, tests are written before the code exists.
Consequently, tests fail until the software functionality is implemented consistently.
Hence, productive software and its test framework evolve simultaneously.

Among the two low adopting teams of TDD, Team 2’s usage can be described as

varying due to different subgroups resulting from the team’s three technology stacks. In
both teams, developers mentioned that “we do not apply TDD consistently; perhaps we

use it more in the lower levels of the software stack, parts which have a library
character”. The TDD process felt unnatural, as stated by one interviewee, “these micro-
increments do not come naturally for the seasoned developer. It feels very strange”. In

general, the consensus on the decisive factor was the focus on tests which resulted in
high code coverage.

The benefit of TDD was recognizable “when implementing logic in code which is not
straight forward”. As Team 1 worked on many user interface development tasks, they

described the technique as “not making any sense” since the effort was felt to be
disproportionately higher compared to writing a test after the code had stabilized. “Test

code can get very complex” as one developer mentioned, “we have had test code which

was far more complex than the actual productive code”. Nevertheless, in areas where the
team decided to use TDD, the increased modularity in the design of the code was
evident. Furthermore, the technique increased developers’ focus on their current task at

hand, as the test suite gave developers more self-confidence and “trust in my own work
that lets me sleep well at night”. TDD was also viewed as a possible cause of slower

development speeds which needed to be factored in at the planning stage. Some
programmers felt that “it disturbs the flow of thinking; it is too much back and forth”.

For others the increasingly small increments between test and productive code writing
“are annoying” especially “if I know exactly what needs to be done, then I have to force

myself to use TDD”.

More senior developers noted the painful transition to TDD, as this programming style
required a major change in the thinking process. One impediment in the beginning was
the high feature pressure from outside the team which “increased stress on the team

members”, so that they “couldn’t use TDD in a reasonable manner”. The technique had

been impaired by the large legacy code base the team had to deal with, “it basically has
no code coverage and was not written to be easily testable”.

In the group of high adopters, TDD was used as “often as possible” with development

tasks, although many items were non-coding activities. However, TDD was often not
used in the strict sense of minimal steps between writing a test and implementing the
productive code, but in a test first fashion. Essentially the steps were enlarged so that
fewer context switches between testing and coding were necessary. This can be
illustrated by one respondent's answer, “I don’t develop tests line by line; that is too

strict for me”.

325



A strong advantage of TDD was the confidence brought about by the test-suite. Through
this “tightly-knit security net, you can program in a very relaxed manner. One has to
keep less open ends in mind”. Many interviewees had a high conviction towards agile

techniques and their quality of work, with several developers mentioning that “features
take more time to implement, but we want to deliver it in high quality”. Developers

stated that they “can only implement new functionality in existing code, if it is somewhat

structured”, but this structuredness can only be acquired if they are given “enough time”.
Moreover, TDD was also regarded as introducing structure into the idea creation process
and it was reportedly motivating to develop against the red light of a non-passing test.

One major advantage of test-driven development was recognized in the large test
framework produced. This high code coverage let developers “reach easily into existing

code and completely refactor certain areas while still being sure that the functionality is
implemented correctly”. The long term maintainability of the software code was a

critical aspect mentioned, “I’m not afraid to touch three year old code, make a change

and let the test-suite run to tell me if everything is still working as before”.

4.3. Homogeneous Adoption Pattern regarding Continuous Integration and
Refactoring

All studied teams continuously integrated new or modified code into their existing code
base, as proposed by the literature. CI was described as not helpful on its own, but
particularly beneficial in combination with a high test coverage of the code or TDD. One
developer said that “continuous integration helps you to permanently get feedback on

your code due to the automatic checks against the existing tests every time you integrate
[...] we know after each check-in, if the product is shippable, thus we are theoretically
ready to release at any time”. Another developer expressed his positive attitude as

follows: “from continuous integration, I do not see any disadvantages at all”. Still
another illustrated that “developing software without CI is like flying blind without

instruments [...] you just do not know what you are doing, where you are and how much
time it will cost to repair something [...] there is no feedback and no transparency”.
These quotes perfectly represent the teams’ unrestrained positive attitude towards the

technique.

Refactoring is “the process of changing a software system in such a way that it does not

alter the external behavior of the code yet improves its internal structure” [FB99]. Our
survey results reveal that more than 80% of the respondents spent between 20 and 40%
of their time refactoring existing code. Nevertheless, members of all teams finished up to
29% of their coding backlog items without refactoring. Team 1, which used the code
review tool systematically, reported always paying “attention to make the code design

right from the beginning” since messy code would not be accepted in the review
anyways.

326



5. Combining ASET in a Lean and Scrum context to its full benefits

Developers who consider lean principles and Scrum as too abstract find agile techniques
to be well suited to transfer and apply the lean concepts into their daily work. Hence, we
consider agile techniques as the key to successfully develop software in such a context
since they are anything but abstract. We found that ASET were the “missing link” to
bring lean to the value stream (cp. also [CC08]).

Building upon a firm base of lean principles, the combination of the studied agile
techniques revealed interesting interdependencies between the techniques applied. For
instance, developers recognized their PP partner as their personified “bad conscience”.

Consequently, they felt encouraged to integrate their software more often, to refactor
more intensively, and to adhere to the test-driven work mode, even though it was
described as time-consuming and costly in the short-term, but admittedly beneficial in
the long-run. In particular, combining TDD and CI was considered more advantageous
since test-driven development naturally leads to an extensive test-suite making
continuous code integrations more attractive.

Our interview results clearly indicate that these agile techniques breathe life into many
abstract lean principles and Scrum basics. One developer mentioned that “PP fits

perfectly to Scrum and its focus on team empowerment”. As discussed before,

continuous integration in combination with an extensive test suite enables developers to
release their software at any time. Moreover, it increases transparency and allows all
team members to be up to date on the current status of their software product. Striking
similarities can be seen when compared to [PP03], as both aspects are directly related to
the lean principle of “optimizing the whole”. Furthermore, developers recognized lean’s
focus on the “elimination of waste” by adopting continuous refactoring in their daily

work. Due to the paired work mode, developers stated to “build quality in” by avoiding

trivial errors right from the beginning and to raise a common quality awareness in the
team. Moreover, pairing invites developers to “learn constantly” while “engaging

everyone” in the team.

Several benefits from adopting agile techniques help development teams to cope with
issues prominently found in large scale software development organizations. In such
environments, many people work simultaneously on a common code base which can
accumulate over several years or decades. Hence, developers face an ever growing
technology complexity. The combined adoption of TDD, CI and REF was regarded as
one way to tackle this problem; developers attributed a higher modularization of their
code to TDD, continuous refactoring helped reinforce coding conventions and thus
structuredness and legibility. Consequently, developers can more easily modify the
existing code base even if it was previously written by somebody else.

Large scale software development often leads to a certain customer disconnect because
of complex organizational setups. TDD and CI introduce fast feedback cycles through a
continuous alignment with customer requirements ideally embodied in the test
framework. Thus, it fosters a close customer focus which is the prerequisite for
delivering value despite an increasing systems complexity.

327



We conclude that the introduction of agile techniques into a large-scale lean software
organization helps developers translate this new mindset into their daily work. For
developers, lean and agile is no longer an abstract initiative from management, but a
tangible asset which clearly changes the work of every software developer.

6. Recommendations for Large-Scale Lean Implementations

As previous studies have shown, PP, TDD, CI, and REF help developers deliver better
software quality. But, there is no free lunch: the improved software quality is clearly
traded for a prolonged short-term development time. However, we recommend not to
one-sidedly assess gains in software quality in proportion to longer development time,
but to equally consider composite effects brought about by applying agile techniques in
lean and Scrum contexts. Benefits, such as developers’ closer intra-team collaboration,
increased common quality awareness or their intensified knowledge transfer, are
particularly beneficial in long-term oriented, quality-conscious software development
organizations rather than in feature quantity focused ones. For the future, we recommend
to balance these trade-offs more consciously according to the requirements of each
individual project.

While introducing agile techniques in development teams, you need to take certain
contingency factors into account. Developers’ personal convictions of the studied
techniques predicted their actual adoption the best. Do not expect developers to naturally
see long-term benefits, since short-term efforts and change issues can initially seem
insurmountable.

If teams can deliberately decide whether and how to adopt agile techniques, as managers
among our interviewees recommend, then management should focus on encouraging
developers to jointly aspire towards organizational long-term goals, thereby motivating
ASET. Training sessions alone are not self-sufficient. Organizations which want to
implement lean including ASET need to take the substantial effort for designing
technology-specific trainings as well as hands-on coaching into account.

We conclude that sustainable competitive advantage of modern software companies does
indeed not only depend on the ability to continuously innovate new products, but also
requires the capability to establish organizations and processes to develop, extend and
maintain these products at competitive quality, cost and time. Combining lean, Scrum,
and ASET helps software companies accomplish exactly that goal.

We are convinced that lean software development in combination with agile techniques
offers a major step into the future of software engineering as it enables software
companies to adapt quickly to changing environments while focusing on value creation
and quality. Future studies should focus around the question of what makes software
development teams successful in an agile and lean environment. Furthermore, the
investigation of driving factors behind software development process flow across several
development teams and organizational levels seem particularly promising. Current trends
in the software industry also revolve around the question on how to combine innovative

328



product design and lean development, i.e. how inspiration and innovative ideas for new
software products and features happen in an lean and agile development environment
(see [HM12] for a first case study).

Bibliography

[Be01] Beck, K.: Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 2001.

[CC08] Chow, T.; Cao, D.-B.: A survey study of critical success factors in agile
software projects. In: Journal of Systems and Software, Vol. 81, Issue 6,
pp. 961-971

[Co09] Conboy, K.: Agility from First Principles: Reconstructing the Concept of
Agility in Information Systems Development. In Information Systems
Research, 2009, 20; pp. 329–354.

[CW01] Cockburn, A.; Williams, L.: The costs and benefits of pair programming.
In Extreme programming examined, 2001; pp. 223–248.

[DB11] Dogša, T.; Batič, D.: The effectiveness of test-driven development: an
industrial case study. In Software Quality Journal, 2011; pp. 1–19.

[Dy07] Dybå, T. et al.: Are Two Heads Better than One? On the Effectiveness of
Pair Programming. In Software, IEEE, 2007, 24; pp. 12–15.

[FB99] Fowler, M.; Beck, K.: Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[HM12] Hildenbrand, T.; Meyer, J.: Intertwining Lean and Design Thinking –
Software Product Development from Empathy to Shipment. In: Software
for People – Fundamentals, Trends and Best Practices, 2012, pp. 217-237,
Springer, Heidelberg

[MT04] Mens, T.; Tourwé, T.: A survey of software refactoring. In Software
Engineering, IEEE Transactions on, 2004, 30; pp. 126–139.

[MW03] Maximilien, E.M.; Williams, L. Eds.: Assessing test-driven development
at IBM, 2003.

[Na08] Nagappan, N. et al.: Realizing quality improvement through test driven
development: results and experiences of four industrial teams. In
Empirical Software Engineering, 2008, 13; pp. 289–302.

[PP03] Poppendieck, M.; Poppendieck, T.: Lean software development: an agile
toolkit. Addison-Wesley Professional, 2003.

[Re09] Reinertsen, D.: The Principles of Product Development Flow - Second
Generation Lean Product Development, 2009, Celeritas Publishing.

329



[SB01] Schwaber, K.; Beedle, M.: Agile Software Development with Scrum.
Prentice Hall, 2001.

[SS11] Schwaber, K.; Sutherland, J.: The Scrum Guide, 2011.

[WCC12] Wang, X.; Conboy, K.; Cawley, O.: “Leagile” software development. An
experience report analysis of the application of lean approaches in agile
software development. In The Journal of Systems & Software, 2012, 85;
pp. 1287–1299.

[WJ03] Womack, J. P.; Jones, D. T.: Lean thinking: banish waste and create
wealth in your corporation. Simon and Schuster, 2003.

330


