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ABSTRACT

Albeit being introduced decades ago, C and C++ are still the most
commonly used programming languages for operating systems.
These languages have no reliable mechanisms to deal with mem-
ory safety issues, such as use-after-free or data race conditions,
that are a leading cause for security bugs in operating systems
and other critical software. Tools such as Valgrind have been de-
veloped to identify errors, but the errors must occur during the
analysis, as they are not found otherwise. Several modern program-
ming languages such as Rust, Go and Swift have emerged aiming
to solve some of the issues by providing memory safety guaran-
tees at compile or run time. However, these languages introduce
new limitations, especially concerning software development for
performance-critical or resource-constrained systems. In this paper,
we introduce a new approach to automatic memory management
that manages the lifetime of object groups instead of individual ob-
jects. We show that group-based memory management can remove
some of the restrictions of modern programming languages while
satisfying important memory safety constraints. Furthermore, we
show how group-based memory management is implemented in
our new systems programming language Fyr.
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1 INTRODUCTION

System software and software for embedded systems is still domi-
nantly developed in C/C++ and a large fraction of programming
errors in these languages can be attributed to incorrect memory
management. This is expressed in findings like the fact that mem-
ory safety issues contribute to 70% of all security bugs in Google
Chrome [9]. A reason for this is the flexibility of pointers in C/C++,
which can refer to arbitrary memory locations, without any built-in
mechanisms enforcing proper allocation and initialization of these
memory regions. The most prominent sources of errors are use
after free, memory leaks and race-conditions. These errors can either
cause crashes, nondeterministic behaviour or drain the available
memory due to a failure to free allocated memory.
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Tools like Valgrind can be used to detect such errors. However,
these tools augment the software and are thus difficult to use for
system software or embedded systems, which are very resource-
constrained. Furthermore, tools like Valgrind can only detect errors
that have happened, such as in test cases. If the test coverage is low,
tools like these are of little help.

The other approach is the use of a memory-safe language. Here
the safety is derived from compile time checking instead of test time
checking. Several modern languages such as Rust, Swift and Go have
been positioned as replacements for C. However, except for Rust,
these languages are not commonly used for (productive) embedded
or operating system development. Rust is currently considered to
be used inside the Linux Kernel, is one of the languages that are
approved throughout the Fuchsia OS Platform Source Tree, and is
supporting many embedded targets through the LLVM backend
[3-5]. In a simple benchmark suite comparing different languages
across multiple algorithms, we can observe that Swift achieves
execution times comparable to C in some cases, but has usually
much higher memory consumption [6].

In this paper, we discuss the shortcomings of these languages
when applied to (embedded) system software development, and
propose a new memory management scheme to overcome some of
these weaknesses. Our approach can be classified as an extension
of the principle memory management concept used in Rust.

A major inconvenience in Rust is the strict management of life-
times for individual, possibly connected, objects. Objects in Rust are
deallocated at the earliest possible point in time. If two objects with
different lifetimes are added into one data structure, the lifetime
of the entire data structure is bound by the shortest lifetime of all
objects involved.

We propose to manage the lifetime of groups of objects instead
of tracking the lifetime of each individual object. This approach is
less restrictive than the borrow checker used by Rust and it can
potentially reduce the overhead of memory management. If we
have a data structure of objects with different lifetimes that usually
would be deallocated at different stages, these objects are now in a
group as of our proposal and will be deallocated when the complete
group can be freed.

This highlights another optimization goal besides safety and
efficiency: expressiveness. A language can be memory-safe and at
the same time not allow for data structures such as graphs. For
example, the borrow checker used in Rust is essentially only able
to check tree-like data structures. It is possible to create graph-
like data structures, but the nature of these structures requires
more complex solutions that rely on run time reference counting
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and explicitly unsafe code. A memory-safe replacement for C/C++
should thus cause as little overhead as possible and at the same
time give the developer the freedom to express his algorithms and
data structures with a minimum of language-imposed constraints
and without sacrificing the safety guarantees.

In this paper, we show how group-based memory management
can provide advances in this direction. Also, we show how the
idea has been implemented in a new systems programming lan-
guage called Fyr. A new language is necessary because group-based
memory management is not a drop-in replacement for other mem-
ory management techniques. Instead, it requires special language
constructs.

2 MEMORY MANAGEMENT

In this section, we show how important it is to study how compre-
hensive the language-based safety guarantees are.

Memory management of programming languages can gener-
ally be divided into manual and automatic memory management.
However, the lines between both are blurry and there are various
approaches to automatic memory management.

Most system programming languages offer a mix of manual and
automatic memory management. For example, C++ offers manual
memory management, but the use of smart pointers can give devel-
opers the feeling that automatic memory management is in place
because smart pointers control the lifetime of the objects they point
to. However, the compiler does not enforce that smart pointers are
used everywhere, which means that there are no safety guarantees
provided by the compiler. Furthermore, smart pointers add a small
performance penalty due to reference counting or the passing of
ownership. Additionally, it is always possible to cast smart pointers
to raw pointers and thus invalidate all safeguards provided by these
constructs.

Languages with automatic memory management by default usu-
ally feature a mode to interoperate with C code or to bypass lan-
guage restrictions for the sake of maximum performance. To do
this, languages such as Go, Swift, and Rust introduce the notion of
manual memory management or an unsafe mode.

Consequently, it is important to evaluate which parts of system
software can actually benefit from automatic memory management
and which cannot.

2.1 C Modifications

Solutions that modify C/C++ to achieve memory safety have exhaus-
tively been researched. Several projects extended C with a combina-
tion of compile-time and run time checks such as Cyclone [15, 16],
CCured [18] or Microsofts CheckedC [20]. Although this paper
does not focus on thread safety, it is worth noting that CheckedC,
CCured and Cyclone do not offer solutions for thread safety. In
contrast, Fyr is thread-safe, because it avoids that one group of
objects is concurrently modified by two threads.

SAFE-C [1] is a C dialect that uses run time checks to gain
memory safety, but this incurs a performance penalty.

Furthermore, several linters have been developed such as LCLint [14],

Metal [12, 13], SLAM [7], PREfix [8], and CQual [19]. Linters are
useful helpers to detect common pitfalls, but they cannot prove the
absence of a certain error class.
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Microsoft VCC [10] (a verifier for concurrent C) is essentially
annotated C as well. The annotation used by VCC can come in the
form of pre/postconditions and invariants. The correctness is then
determined using an automated SMT solver. While VCC is very
powerful and was used to verify Hyper-V, its use requires expertise
in constraint languages, and sometimes the verifier will diverge,
which requires a rethinking of the pre/postconditions. Hence, it
is only viable in very critical pieces of software that are already
written in C.

2.2 Automatic Memory Management

Modern systems programming languages dominantly employ auto-
matic memory management. The most prominent mechanism for
automatic memory management is garbage collection, but it is prob-
lematic for time-critical system software and embedded systems.
The performance of garbage collectors (GC) is constantly improving,
as can be seen by the progress made on the Go GC [17]. However,
the timing of the garbage collection runs is non-deterministic. This
may not be a problem for typical server software but can have no-
ticeable impacts on interactive applications and high-performance
networking software [11]. The second problem is that garbage col-
lection requires more RAM as it slows down under memory pressure
due to frequent runs of the garbage collector. On embedded systems
with constrained resources, RAM is often limited, which means
that GC is no suitable approach.

Another mechanism for automatic memory management is au-
tomatic reference counting (ARC) as used by Swift. With ARC in-
dividual objects are subject to reference counting. The compiler
automatically generates code that performs the required reference
counting. While the effect is similar to the use of smart pointers in
C++, ARC guarantees that reference counting is performed correctly.
However, reference counting can lead to circular references, i.e. ob-
jects pointing to each other in a circle. In such a case use after free
errors are avoided, but memory leaks are still possible. This means
that Swift had to introduce notions of strong and weak references,
to circumvent this problem. Furthermore, multi-threading requires
the use of atomic reference counting, which can have detrimental
effects on performance when multiple cores perform atomic refer-
ence counting on the same cache line concurrently. Thus, reference
counting comes with some run time overhead.

The memory management used by Rust promises zero overheads
and focuses on the concept of ownership. In essence, the compiler
ensures that an object can only be owned by one pointer, which
determines the lifetime of the object. As soon as the variable goes
out of scope, the value that is owned by it is dropped. But ownership
alone is too restrictive, as objects would have to be moved back
and forth whenever they are passed as arguments to a function.
Therefore, Rust introduced the concept of borrowing an object,
which is comparable to pointers in C and references to an object in
C++. Borrows are bound by very specific rules: there can only ever
be one mutable reference or any number of read-only references at
the same time. This way the compiler can track when an object has
been borrowed and when control of the object returns to its owner.
Another rule dictates that a borrow shall never outlive the owner,
thus it can be statically proven that references always point to live
data and that no data races can possibly exist.
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The appealing idea of this approach is that it does not inflict any
run time overhead, because borrowing and passing of ownership is
only analyzed at compile time and no additional run time actions
are required. Hence, the performance of Rust should potentially
reach that of C.

Since Rust’s memory management is built on ownership and
temporary borrowing, only tree-shaped data structures are allowed.
This restriction is required, because borrowing is bound to program
flow, e.g. a scope or a function call. Borrowed pointers cannot be
stored on the heap and outlive the control flow that caused the
borrowing. Even a dynamic doubly-linked list cannot be easily
represented in Rust for this reason.

One way to bypass this restriction is the use of C++-like smart
pointers, which use unsafe Rust internally. Building a doubly linked
list this way is possible, but in this case Rust uses reference counting
similar to Swift and ensures at run time that use after free is avoided.

If data structures in Rust contain references to other objects,
they must have a lifetime associated to it, to prohibit invalid access
to references. Graph-like data structures can contain references
to values on the stack or the heap and thus the complete graph is
bound to the shortest lifetime. If we instead elevate these short-
lived objects to match the lifetime of the rest of the group, we can
have memory safety and expressiveness.

2.3 Group-based Memory Management

The automatic memory management mechanisms discussed previ-
ously try to accomplish the same task as manual memory manage-
ment, e.g. to free individual objects that are no longer required.

This does not take into consideration that many data structures
are built incrementally, but are later freed together. For example,
consider an object that represents an HTTP request on the server.
During processing the request object grows continuously by attach-
ing more objects for URI, user credentials, tokens, header fields, and
response body. When the request finishes, all the aforementioned
objects become useless and will be freed.

When the previously discussed mechanisms are in place, the
programmer must explicitly tell the compiler that the pointers
connecting these objects are alive, i.e. that they do not point to
memory that has since been freed. This may even require useless
reference counting to ensure the lifetime of said objects is long
enough.

The idea of group-based memory management is to exploit the
fact that groups of objects grow and are released together. In this
case, the compiler (and therefore the programmer) does not have
to worry about pointers between these objects since they belong to
the same group and therefore the objects are released all at once
instead of individually.

To the best of our knowledge, our publication of Fyr was the
first to introduce the notion of group-based memory management
in programming languages [21]. Later, Microsoft released a new
programming language called Verona!. Verona uses the term region
instead of group but the fundamental idea is similar.

!https://github.com/microsoft/verona/blob/master/docs/explore.md
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One fundamental difference between Verona and Fyr is the em-
bedding in the programming language. Verona requires the pro-
grammer to inform the compiler about groups while Fyr mostly
automates the process.

The Verona documentation shows how to allocate two objects
in the same region (or group):

var x = new Node;
var y = new Node in x;

This shows how the Verona programmer indicates explicitly that
y should be allocated in the same group as x.

Fyr uses a more convenient approach to determine which ob-
jects belong to the same group. The compiler infers groupings by
analyzing program flow.

var x = new Node
var y = new Node
x.next =y

y.prev = x

aoe W o e

return x

Using the small section of Fyr code in listing 1 as an example, the
process is as follows: In lines 1 and 2 the compiler believes that x
and y are two pointers to individual Node objects on the heap, thus
each of these belongs to its own group. In line 3 the compiler sees
that the object pointed to by x now includes a pointer to the object
pointed to by y. This implies that both must belong to the same
group, even though the programmer did not declare this manually.

This analysis happens at compile time. Consequently, the com-
piler generates code for lines 1 and 2 with the knowledge that both
objects belong to the same group and thus have the same lifetime.
This allows saving a call tomalloc (), because the compiler can
allocate the memory for both objects in a single call tomalloc ().
When pointers x and y go out of scope, the Fyr compiler sees that
no pointers to this group remain on the stack frame and frees the
memory. This illustrates how group-based memory management
can lead to more efficient code by allocating and freeing objects in
a group simultaneously.

In line 4 of the example above, the y-object is set to point to
the x-object, creating circular references. This is not be allowed in
Rust, as ownership cannot be determined since the objects point
towards each other. In contrast to this, Fyr understands that the
x- and y-objects are already in the same group and they can have
arbitrary pointers to each other. This illustrates that group-based
memory management can offer more freedom to the programmer
to shape data structures as he wishes.

However, not everything can be determined automatically. Each
function in Fyr must declare how its parameters are grouped. For
example in

func f(a *Node, b xNode) { }

the function f assures that a and b are pointers and the objects
they point to may belong to different groups. Therefore, the function
must not force them into one group by connecting the objects in
any way. The following lines do therefore cause a compiler error
in line 2:
func f(a *Node, b xNode) {

a.next = Db

}
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Expanding the function signature fixes this issue:

func f(a g *Node, b g *Node) {
a.next = b

}

The compiler is instructed that arguments to £ must be of the
same group by annotating both parameters with the same group-
specifier “g. This is the only case in Fyr where the programmer
has to explicitly declare groupings. Everything else is automatically
inferred by the compiler.

When calling this function f, the compiler uses the function
signature to reason about the grouping. In the following example,
the compiler infers that x and y point to objects in the same group,
because the signature of £ demands it.

var x = new Node
var y = new Node
£(x, y)

If more complex control flow is used, the group analysis becomes
significantly more challenging. The code in listing 2 shows a case
where the control flow cannot be determined statically.

1 var x = new Node
2 var y = new Node
3 if luck() {
4 £(x, y)
5}

6 return x

In this case, the two objects belong to the same group if and
only if the if-clause is executed. However, this is only known at
run time. Due to this, the compiler allocates the x-object and the
y-object individually on the heap and assumes that they form two
independent groups. If the if-clause is executed, it merges both
groups together during run time. Since releasing of memory is
done per group, after line 6, the y-object will be freed if and only
if the if-clause did not run. While merging groups at run time, the
memory allocation system maintains a single linear list per group.
This incurs a small run time overhead but simplifies the process of
releasing memory.

While a full explanation of Fyr is beyond this paper, we also
want to mention that Fyr supports the concept of foreign group
pointers. These pointers point to objects in other groups and allow
the creation of dynamic data structures that can grow and shrink
dynamically. Foreign group pointers denote ownership of the other
group. In this case, Fyr manages groups with ownership and bor-
rowing somewhat similar to how Rust manages individual objects,
while still keeping its flexibility for data structures inside one group.

The language implementation is open-source and still under
development. It can be retrieved from the Fyr Git repository [2].

3 FYR COMPILER INTERNALS

The process of detecting these groupings consists of two distinct
steps and is the most complex part of the compiler: Group analysis
is the phase of determining which objects belong to the same group
and group checking ensures that the program does not try to merge
groups that must not be merged.

Analyzing grouping based on the abstract syntax tree (AST) of
the source code directly is far too complex. Instead, we first compile
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the Fyr code into single-static assignment form (SSA), where each
variable is assigned only once. This simplifies the task of tracking
groupings significantly and is a common step in modern compilers.

In the code shown in listing 2, SSA turns y into a phi-variable.
A phi-variable is assigned only once and its value depends on the
control flow. In Fyr, vy is associated with a phi-grouping. That means
the compiler generates a pointer that tracks at run time to which
group y does belong, which allows for modification of the group at
run time. This is required because — without any analysis of the £
function — the actual group can only be known at run time. This
way the compiler provides an automated framework allowing for
safe memory usage in scenarios where the exact compositions of
objects cannot be determined at compile time.

While this does generally introduce execution overhead at run
time, there is huge potential to eliminate run time group merges
using more extensive compile time analysis. In Listing 3 no run time
costs are inflicted, because the compiler can determine at compile
time that y is not used outside the if-clause.

1 var x = new Node

2 if luck() {

3 var y = new Node
4 x.next =y

5}

6 return

If y is ever assigned an object, it belongs to the same group as x.
This also means that the compiler does not need to generate any
code to free the y-object explicitly because it is freed together with
the x-object in line 6 when x goes out of scope. Since y has already
left its scope and x is the only active object left in the group, the
compiler can automatically free all elements in the group at once.

As a compiler backend, Fyr currently produces C99 code that is
then compiled with gcc or clang. The advantage of this approach is
that we can use the normal tooling to generate code for embedded
use cases. At the time of writing, Fyr can produce code for Intel
x86-64 and Atmega328 (i.e. Arduino boards). Other build targets
should be easy to add since existing C-compilers can be used and
the configuration backend to integrate them is flexible.

4 CONCLUSIONS AND OUTLOOK

We have shown that group-based memory management can im-
prove on current mechanisms for automatic memory management
by checking the lifetime of groups of objects instead of checking
the lifetime of each object individually. This approach can support
a broader range of data structures without incurring significant run
time overhead.

We presented the embedding of our memory management scheme
in the Fyr programming language. As the implementation of Fyr
matures, usage of the language will provide feedback on the suit-
ability of group-based memory management in real-world system
software. Furthermore, we will try to leverage more of the per-
formance optimizations that become possible with group-based
memory management.

With respect to backends, an LLVM backend is a desirable next
step to improve the speed of compilation. Work on an experimental
Vulkan backend has already started.
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Group-based memory management could be utilized to address
further systems programming challenges. For example, our ap-
proach could be used to target non-homogeneous memory architec-
tures by attaching groups to different memory types such as RAM,
Flash, or shared memory region.
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