
Freedom from Interference forAUTOSAR-based ECUs:
a partitioned AUTOSAR stack

David Haworth, Tobias Jordan, Alexander Mattausch, Alexander Much

Elektrobit Automotive GmbH, Am Wolfsmantel 46, 91058 Erlangen, GERMANY

Abstract: AUTOSAR1 is a standard for the development of software for
embedded devices, primarily created for the automotive domain. It specifies a
software architecture with more than 80 software modules that provide services to
one or more software components.

With the trend towards integrating safety-relevant systems into embedded
devices, conformance with standards such as ISO 26262 [ISO11] or ISO/IEC
61508 [IEC10] becomes increasingly important.

This article presents an approach to providing freedom from interference between
software components by using the MPU2 available on many modern
microcontrollers. Each software component gets its own dedicated memory area,
a so-called memory partition. This concept is well known in other industries like
the aerospace industry, where the IMA3 architecture is now well established.

The memory partitioning mechanism is implemented by a microkernel, which
integrates seamlessly into the architecture specified by AUTOSAR. The
development has been performed as SEooC4 as described in ISO 26262, which is
a new development approach. We describe the procedure for developing an
SEooC.

1AUTOSAR: AUTomotive Open System ARchitecture, see [ASR12].
2MPU: Memory Protection Unit.
3 IMA: Integrated Modular Avionics, see [RTCA11].
4 SEooC: Safety Element out of Context, see [ISO11].

85



Introduction

The complexity of the functions that the software of an embedded device performs in a
car increases significantly with every new car generation. AUTOSAR is an approach to
manage the complexity by providing a standardized software architecture.

A further trend is the integration of several different functions on a single device, which
has been simplified significantly by the AUTOSAR concept, as it defines a standard
configuration and runtime environment for all suppliers of software components. It
defines XML-based data exchange formats that the various suppliers can use to
exchange their software components and data.

In this scenario, several software components are provided by different parties involved
in the development. During integration, it is necessary to ensure that the different
components do not interfere with each other. Interference between software components
is not only a problem during development; it can also have legal consequences. This
problem becomes especially important when software components with different
criticality need to be integrated, for example with different safety integrity levels
(SIL5/ASIL6). These highly integrated embedded devices are often referred to as domain
controller – a central device that is responsible for all computation of a certain car
domain.

We present an approach that integrates seamlessly into the AUTOSAR software
architecture and provides freedom from interference in the spatial domain based on the
highest (A)SIL levels.

5 SIL: Safety Integrity Level, see [IEC10].
6 ASIL: Automotive Safety Integrity Level, see [ISO11].

86



The AUTOSAR architecture

The AUTOSAR environment is a layered software architecture with about 80 separate
modules. The general architecture is shown in Figure 1. The lowest layer contains the
hardware-dependent modules, the microcontroller abstraction layer (MCAL) together
with the operating system (OS). The basic software (BSW) modules are placed on top of
the MCAL and are hardware-independent. The interface to the application layer is
provided by the runtime environment (RTE).

The application layer is comprised of several independent entities, the software
components (SWC). The SWCs themselves contain the tasks and ISRs that provide the
functionality of the ECU. The communication between SWCs and with the underlying
BSW is handled by the RTE, providing a complete abstraction from the drivers and the
hardware and allowing completely hardware-independent application development. The
protection measures for safety-relevant functionality, for which a certain safety integrity
level is required, are in general also contained within the application.

However, although the SWCs are decoupled and independent of each other, the standard
AUTOSAR architecture assumes that the entire basic software, including OS and RTE,
runs within a single privileged context. Thus, although the safety mechanism of the
device may reside within a single SWC, this SWC depends on the correct execution of
the entire AUTOSAR stack. Freedom from interference is therefore not guaranteed, and
as a consequence not only the entire OS but also the entire AUTOSAR stack inherits the
highest integrity level.

Figure 1: The AUTOSAR software architecture (Release 4.0)

87



A solution to this dilemma would be to establish freedom from interference between the
SWCs and the BSW using the OS. The following sections describe such an approach.

A partitioned AUTOSAR stack
A common approach to separating software components from each other is partitioning.
The software components run in isolated areas and any interference is inhibited by a
memory protection mechanism. In safety-critical environments, partitioning allows the
integration of software components of different (A)SIL levels on a single system.

The partitioning mechanism is best placed in the operating system, which will be
described in further detail in Section 0. However, from the application’s point of view,
the operating system is the entire AUTOSAR stack, comprising all modules including
and below the AUTOSAR runtime environment (RTE). The AUTOSAR stack is very
complex software with several thousand configuration parameters and functionality that
exceeds by far the typical necessities for the safety mechanism that is implemented in the
system. It is thus neither technically nor commercially feasible to develop the entire
AUTOSAR basic software (BSW) according to the highest safety integrity level which is
required for the entire system.

Instead, we extend the partitioning approach to the AUTOSAR stack itself. The stack is
split into two parts:

 The operating system, which is assumed to provide the context-specific
memory protection and to have been developed according to the highest
integrity level

 The AUTOSAR BSW, which is encapsulated in a separate memory partition
with limited rights and cannot interfere with the remaining parts of the system.

cmp Rte View

Hardware (MCU)

OS Autosar BSW

Autosar Rte

SWC1 SWC2 SWC3

CDD

Privileged Mode

Non-privileged Mode

Mode depends on application

Legend

Figure 2: Architectural overview of AUTOSAR modules and software components88



This approach allows the assignment of only a few safety-related requirements onto the
operating system, namely the provision of safe task and interrupt scheduling and a safe
memory protection mechanism, while for all other components usually no safety
requirements apply. Therefore, these modules can be developed with usual QM
approaches.

Timing and communication mechanisms are not part of the partitioning concept. If the
safety concept requires time and control flow monitoring or protection of the
communication, they must be part of the application. This can be achieved with standard
modules provided by the AUTOSAR stack: the watchdog manager interface provides
mechanisms for time and control flow monitoring in conjunction with an external
watchdog, while the end-to-end protection library protects the communication channels.

The architecture of such a partitioned AUTOSAR stack is shown in Figure 2. In contrast
to Figure 1, the entire basic software including the MCAL is contained in the component
Autosar BSW. In this scenario, only the operating system runs in the privileged mode,
while all other components run in the non-privileged user-mode or have at least the
possibility to do so. In addition to three software components, Figure 2 shows also a
complex device driver (CDD). All these components can run in the non-privileged mode,
although this is the decision taken in the software architecture.

Figure 3: Safety architecture for an AUTOSAR ECU

89



The approach of putting the AUTOSAR BSW into a separate partition running with
reduced rights has the advantage of drastically reducing the code that has to be
developed, analyzed and verified according to the highest safety integrity level. Freedom
from interference on the data level between the software components and the
AUTOSAR BSW is provided by the memory protection which is implemented in the
operating system.

Two prerequisites are necessary for this setup:

 Since the MCAL is placed in the AUTOSAR BSW component, which runs in
the non-privileged mode, the CPU must grant access to the peripherals in this
mode. However, modern CPUs for safety applications have considered this and
allow such an operation. Otherwise, the MCAL would have to be adapted to
request the elevated rights from the operating system before accessing the
peripherals.

 Timing protection and control flow monitoring are still part of the application.
The interface to an intelligent watchdog driver can be used by the application.

An exemplary safety architecture detailing a partitioned AUTOSAR ECU including a
partitioned RTE, time and execution protection and end-to-end communication
protection is shown in Figure 3.

The microkernel concept

A full implementation of the AUTOSAR Os module would provide memory protection
for tasks and interrupt service routines (ISR) to the standards required for safety-critical
software. However, the OS module is a very large piece of software that would be costly
and time-consuming to implement to the high standards required for safety-critical
software.

An alternative solution of using a standard OS with additional protection measures has
been proposed. The protection features required to ensure freedom-from-interference
between tasks and ISRs are listed in Table 1, along with the external protection measures
that would be necessary when using a standard OS.

However, it has already been observed [Ha11] that in the presence of an operating
system it is not sufficient merely to program the MPU to permit access to the critical
data during the computation that uses it. This is because any software that executes while
the access is permitted, including interrupt service routines and tasks of higher priority,
could modify the critical data without detection.

The design of the standard AUTOSAR Os specifies re-entrant functions and allows the
execution of ISR routines while the MPU is programmed. The Safety Os however
doesn’t allow any interruptions or parallel execution while access to the MPU is allowed,
leading to the differences listed in Table 1.

90



Furthermore, there are failure modes in an operating system that can have very subtle
effects on the integrity of the tasks that it controls. These effects would be extremely
difficult or impossible to detect using the proposed measures. Even the provision of a
high-integrity memory protection driver, loosely coupled to a standard operating system,
would not provide sufficient protection. This is because during the critical computation
the data is not confined to memory but can reside in the processor's registers, which are
fully under the control of the operating system.

When other factors such as the integrity of the stack and the critical section control are
taken into account, it rapidly becomes clear that the operating system itself must provide
the protection.

Table 1: Safety properties of the standard AUTOSAR Os and the Safety OS

AUTOSAR Os Safety OS

Setting the MPU Yes Yes

Correctly setting the MPU No, requires additional
measures, e.g. regular value
checks

Yes

Safe handling of critical
registers (PC, SP, µP mode)

No, requires additional
measures, e.g. control flow
monitoring

Yes

Safe handling of critical
memory regions (stacks,
context safe areas, Os
states)

No, requires additional
measures, e.g. control flow
monitoring

Yes

Safe task switch, pre-
emption and resume

No, requires additional
measures, e.g. control flow
monitoring

Yes

Safe interrupt/exception
handling

No Yes

Correct task/interrupt
priority based scheduling

No Yes

Safe deactivation of faulty
subsystems

Yes, reset into error mode Yes, reset into
error mode

Safe resource management No Yes

Safe event management No Yes

91



Fortunately, the OS has many features that could easily be separated from the core of the
operating system using the same mechanism that provides the freedom from interference
between tasks and ISRs. The minimum core of the OS that must be developed to the
high standards for safety critical software is called a microkernel.

In principle, the microkernel should be the only software that runs in the privileged
mode of the processor, and is therefore the only software that can modify the contents of
the MPU. The main functionality of the ECU, including communication and I/O, along
with OS features that provide time-triggered activation, run at a lower privilege level
("user mode") in which access to the MPU is forbidden by the processor. This software
need not be developed to the same standards as the microkernel.7

The defining feature of the microkernel is that it uses a hardware feature called a system
call, which is typically a vectored exception, to control transitions between tasks and
ISRs and the microkernel. In addition to the system call, all other transitions into
privileged mode, such as interrupts and processor exceptions, are handled by the
microkernel in a similar way. Using this mechanism, it is not possible to switch from
user-mode into privileged mode without simultaneously transferring control to the
microkernel.

The microkernel manages all the executable objects in the system. The set of executable
objects contains:

 Tasks

7In practice, there may be other minor functionality that is only possible in the privileged mode,
but this can be restricted to small tasks with narrowly-defined requirements that run in privileged
mode.

sd OS Invocation

«thread»
Thread A

«thread»
Thread B

Microkernel

alt Thread Switch
[new thread == old thread]

[new thread != old thread]

Automatic CPU mode switch.
A trap is either a system call,
an interrupt or an exception.

Privileged Mode

Non-privileged Mode

Mode depends on application

Legend

Trap()

Entry()

Action()

Dispatch()

Exit()

Trap_Return()

Trap_Return()

Figure 4: Control flow upon microkernel activation

92



 ISRs

 Hook functions

 Time-triggering services provided by the standard OS

 Idle loops

 Startup: the main() function.
These objects are all managed using a mechanism called a thread.

By means of the system call mechanism, it can be demonstrated that the behavior of a
user-mode thread with respect to the data of another thread is not merely "acceptably
safe", or that interference is "unlikely" or "improbable"; rather, it can be demonstrated
that interference cannot occur.

The control flow through the microkernel is depicted in

Figure 4. The kernel function that is called depends on the type of interrupt or exception,
and may result in a different thread becoming more eligible to use the CPU than the
current thread. The change of thread is performed by the dispatcher, and includes
reprogramming the MPU to the correct settings for the incoming thread.

This simplified control flow means that the microkernel can be made non-reentrant, thus
further simplifying the design of the microkernel and thus the assurance of correctness.

This also means that the microkernel is only concerned with the execution of thread
switches and programming the MCU. All other functions of a standard AUTOSAR Os
are outside of the scope of the microkernel and considered QM functions.

Partitioning with an AUTOSAR operating system

From an AUTOSAR operating system point of view, SWCs are just applications using
the OS interface, since the RTE mainly encapsulates the OS and BSW APIs within its
own layer. For the OS, the SWCs are mapped to so-called OS Applications, as shown in
Figure 5.

OS Applications are a container for tasks, ISRs and any other OS controlled objects that
belong to a certain application. They are also the boundary for the memory partitioning:
all objects belonging to the same OS Application can share common data.

Consequently, Figure 5 shows seven different memory partitions: three SWCs, a CDD,
the AUTOSAR BSW, the QM part of the operating system and the microkernel itself
(although running in the privileged mode, the kernel grants access only to its own data).

The configuration of the OS Application also decides on the CPU mode in which its
tasks and ISRs are executed. Depending on an application-specific configuration

93



parameter, all application objects either use the CPU’s privileged mode or the non-
privileged mode.

Running components in the non-privileged mode gives the highest protection against any
kind of error: the MPU providing the foundations of the partitioning mechanism is
protected against any change, only the microkernel is allowed to reconfigure the memory
protection. The microkernel itself is only entered via defined access points – namely the
interrupt and exception interface.

An important goal for the design of the Safety Os was to integrate it seamlessly and
directly into the AUTOSAR architecture. Given AUTOSAR as a fixed standard this
means that all requirements specified by AUTOSAR still need to be fulfilled. This could
be achieved and starting with a standard AUTOSAR architecture the Safety Os can be
added to an AUTOSAR Os without affecting any AUTOSAR requirement apart from the
operating system itself.

cmp Os View

OS Application

Hardware (MCU)

Microkernel QM-OS

SWC1 SWC2 SWC3

Autosar BSW CDD

Privileged Mode

Non-privileged Mode

Mode depends on application

Legend

Figure 5: AUTOSAR stack configuration as seen from the OS module

94



The partitioning via software components (SWC) and their OS Application counterpart
is a well-established technique in safety-related development. Similar approaches are
known in aviation as the IMA architecture [RTCA05].

Implications for the development process

The development of a safety-related operating system introduces challenges into the
development process. From the start, the development process was based strongly on
Automotive SPICE in the HIS [HIS12] scope. The challenge was to extend the existing
processes to cope with the additional requirements arising from safety-related
development according to ISO 26262 and IEC 61508.

Since the projects are regularly assessed in project audits, it was decided to extend these
audits by introducing essential safety aspects.

Two main lessons have been learnt during the development:

 The HIS scope of SPICE is not sufficient to support safety development

 Internal SPICE assessments have been updated with additional checklists in
order to check method definitions and their usage. Such assessments can then
be used as functional safety audits according to ISO 26262.

In order to support safety development the process scope has been extended from the
HIS scope to cover more processes. In the following, we describe the development of the
OS as a safety element out of context and focus then on process extensions which have
been implemented to fulfil safety requirements.

Safety Element out of Context (SEooC)
The increasing complexity of modern software projects encourages the use of reusable
software components (RSC) with clearly specified functionality. In avionics, the concept
is well-established and part of DO-178C [RTCA11]. In ISO 26262, it is referred to as a
Safety Element out of Context (SEooC). The key element of a SEooC is the set of
assumptions that are applied during the development. The approach is shown in Figure
6.

The most important aspect is a clear description of the context in which the SEooC is
used and the assumptions that are made. These assumptions define the scope of the
SEooC and have impact on its requirements and its design.

Two simple rules have proved to be useful during the development of the OS
component:

 The fewer assumptions exist, the clearer is the focus of the component.

 The more precise the assumptions are, the simpler is the implementation.

95



These rules lead to a small but flexible product which can be used in many different
environments. A small set of assumptions also simplifies the usage of the component in
the final device. Since the scope of the SEooC is much clearer than with a large
assumption set, the safety argument for the entire device becomes much more concise. In
addition, this concept allows the re-use of existing safety mechanisms including any
certifications that may already be available.

Extended Tracing
In SPICE conformant development processes, the tracing between requirements and
their associated test cases is a well-established technique. In a safety-related
development, further work products are created. A wide-spread technique to ensure
consistency between the content of the various work products is to extend the
dependencies between work products to tracing between the content of work products.

For example, to ensure that the correct functionality has been implemented, bi-lateral
tracing from requirements through the software architecture and the software unit
designs to the source code is already part of Automotive SPICE.

In safety-relevant projects, the number of documents that is required to fully specify and
document the implementation as well as its verification can increase significantly: for
example, a safety-case providing the safety argument, a hardware-software interface
specification and a safety manual that details the correct and safe use of the software
product are the most prominent work products.

The foundation of the content of these documents is the software safety requirements
specification and each of these documents can contain the fulfilment of a requirement:

 Safety case: by an argument, e.g. a result of a safety analysis

 Hardware-software specification: e.g. does the hardware behave as
documented?

Figure 6: Relationship between assumptions and the development of a SEooC

96



 Safety manual: e.g. are all assumptions being taken into account by the software
configuration?

As these documents can become an end-point for software safety requirements, from a
tracing point of view they need to be treated just like a software unit design or the
implementation itself. The tracing does not have to be bi-lateral as for example a safety
manual also contains information that is not directly motivated by a software safety
requirement.

The tracing model of Automotive SPICE needs to be extended to include such safety
work products in order to construct an argument for the completeness of the fulfilment of
software safety requirements. See

Figure 7 for an example of a tracing model.

The extension of the tracing model to include safety work products is especially
important in SEooC development wherever the final context in which the software is
expected to be used is assumed and documented.

Summary and Outlook

In this paper we presented a microkernel based approach for a partitioned AUTOSAR
system. In this concept, only the microkernel runs in the CPU’s privileged mode,
providing freedom from interference in the spatial domain between the AUTOSAR basic
software, the integrated software components and complex device drivers.

In order to reduce the size and complexity of the code running in the privileged mode

Documentation

Testing

testsrc

testcasespec
hw_testcasespec

testspec

Implementation

Design

Processor
documentation

Requirements

ext_reqspec

reqspec

ext_autosarspechw_featurespec

hw_extdesignspec

designspec

hw_designspec

srcsafetymandoc

doctype

B A
B is derived from A
B is permitted to link to A
B is derived from A
B is permitted to link to A

LegendLegend

Figure 7: Tracing model of the Safety OS

97



even further, the operating system has been split into a safety-relevant part providing the
basic scheduling features and the memory protection, and a part containing the non-
safety relevant functionality which runs in its own non-privileged partition. This reduces
to a minimum the size and complexity of the software that needs to be developed
according to the highest safety integrity level.

In addition, the development processes of the standard product development have been
extended to support the creation and the tracing of the additional work products as
required by ISO 26262. They are executed for the development of the OS as a Safety
Element out of Context (SEooC), allowing for the reuse of the component in various
different environments and systems.The development of the Safety Os including all
safety related tasks is already finished and it is now going through a certification process
with an external party to have a certification according to ISO 26262 (up to ASIL-D) and
to IEC 61508 (up to SIL-3).

With the emergence of more and more powerful multi-core CPUs, partitioning will
become even more relevant in the future. The additional computational power will be
used to integrate software from various different suppliers often with different quality
levels, requiring strict supervision and encapsulation of the supplied components. In
addition, domain controllers combining several different functions of an entire car
domain are currently being introduced. These devices integrate a multitude of software
components, where partitioning is a key concept to ensure the non-interference between
the modules. With the development of highly integrated many-core devices this trend
will accelerate further.

Bibliography

[ASR12] AUTOSAR, http://www.autosar.org.

[ASPICE10] Automotive SPICE® Process Assessment Model v2.5, May 2010.

[ISO11] ISO 26262, Road vehicles - Functional safety, ISO copyright office, 2011-11-15.

[IEC10] ISO/IEC 61508, Functional safety of electrical/electronic/programmable electronic
safety-related Systems, IEC central office, 2010.

[MIRA04] MIRA Ltd., MISRA-C:2004 - Guidelines for the use of the C language in critical
systems, ISBN 0952415623, October 2004.

[RTCA11] DO-178C, Software Considerations in Airborne Systems and Equipment
Certification, RTCA Inc., 2011-12-13.

[RTCA05] DO-297, Integrated Modular Avionics (IMA) Development Guidance and
Certification Considerations, RTCA Inc., 2005-08-11.

[Ha11] Haworth, David: An Autosar-compatible microkernel. In Herausforderungen durch
Echtzeitbetrieb. Berlin: Springer-Verlag, November 2011

[HIS12] Hersteller-Initiative Software, http://www.automotive-his.de/

98


