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Abstract: Today’s giant-sized image databases require content-based techniques to
handle the exploration of image content on a large scale. A special part of image
content retrieval is the domain of landmark recognition in images as it constitutes a
basis for a lot of interesting applications on web images, personal image collections
and mobile devices. We build an automatic landmark recognition system for images
using the Bag-of-Words model in combination with the Hierarchical K-Means index
structure. Our experiments on a test set of landmark and non-landmark images with
a recognition engine supporting 900 landmarks show that large visual dictionaries of
size about 1M achieve the best recognition results.

1 Introduction

Today’s giant-sized image databases on the World Wide Web, in personal households and

on mobile devices pose great challenges for the user: to manage and use these images in a

meaningful way it is necessary to know the images’ contents. The contents of web images

embedded in web pages can be exploited somehow by analysing the surrounding web text,

however images captured by digital cameras or other mobile devices usually include only

technical metadata which do not reveal the contents of the image (except GPS data). In

these cases the user has to annotate the images with meaningful concepts. Manual content

exploration is time-consuming, in such large-scale scenarios even intractable, therefore

automatic content-based solutions are required. We focus on the exploration of personal

image collections and assume that images have no metadata available. A large amount of

the personal collections’ images are photos shot in the photographer’s vacations and trips

showing (prominent) places and landmarks. We address the domain of landmark recog-

nition in images as this topic offers several advantages regarding applications in personal

image collections, as well as in the field of the World Wide Web and on mobile devices:

the annotation is a basis for a search or can be used as a suggestion for a photo description

to the user, the identification of locations by the recognition of landmarks can be used to

summarize personal image collections by offering an overview of places the photographer

visited. The application of mobile landmark recognition enables tourists to look up sights

in real-time to obtain information on them.
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Several systems for automatic landmark recognition have been proposed [GBQG09, AKTS10,

ZZS+09, PZ08, CBHK09]. Each work addresses different aspects of landmark recog-

nition, the creation of the landmark database, the general problem definition, the initial

situation referring metadata (for example if the GPS data of test images is used) and the

techniques used, however all of them offer a content-based approach for recognition. We

outline these related work with focus on the image representation (features and visual dic-

tionary size in case of Bag-of-Words model or index structures), recognition technique

(classifier and/or index structure), dataset (esp. number of landmarks supported) and

specifics used. [CBHK09] recognizes images using a Bayesian and a SVM classifier on

SIFT-based Bag-of-Words image representation (created with K-Means clustering) with

the vocabulary size 1K. The dataset contains 33M self-downloaded Flickr photos and the

number of landmarks supported in the evaluation is 10, 25 and 50. [AKTS10] also creates

a dataset from Flickr images and then derives scene maps of landmarks which are retrieved

with a kd-tree index. The image representation bases on SURF features and a visual dic-

tionary of size 75K. The authors of [GBQG09] create a database from geo-tagged Flickr

photos and Wikipedia. The recognition is performed on object-level and with the aid of an

approximate K-Means index on SIFT features which constitutes a dictionary of size 500K.

[PZ08] uses SIFT features and a Bag-of-Words approach with a dictionary size of 1M. For

the dictionary again approximate K-Means index structure is used. The evaluation is per-

formed on The Oxford Buildings Dataset1 (11 landmarks). [ZZS+09] creates the database

by crawling travel guide websites (5312 landmarks) and then builds a matching graph out

of the feature matches of the images. Images are represented using 118-dim Gabor wavelet

texture features with PCA. For retrieval a kd-tree is used, however the size of the underly-

ing dictionary remains unknown. Allmost all presented systems use SIFT features (or the

like) with a Bag-of-Words image representation (based on flat K-Means) or a feature index

structure like the kd-tree or approximate K-Means. Unfortunately each proposed system

is evaluated on different datasets (with different number of landmarks) and different dic-

tionary sizes are used, thus the comparison between methods is difficult. There exists

some public databases for landmark recognition, however they are not always suitable for

the own problem definition. For example the public datasets The Paris Dataset2 and The

Oxford Buildings Dataset contain a low number of landmarks (about 12 and 17), which

can not be used when developing a landmark engine which has to support thousands of

landmarks. Our own experiments [RC14] on different classifiers, dictionary sizes (from

500 to 8K, derived from flat K-Means clustering) and different number of landmarks (45,

300, 600, 900) show that the kNN classifier outperforms the other ones (like SVM) in a

large-scale scenario, when the number of landmarks supported increases. Furthermore in-

creasing the dictionary sizes increases the performance. Large (flat) K-Means dictionaries

however lead to inefficient recognition times, thus the access to the features/visual words

have to be supported by efficient quantizer/index structures. [PJA10] analyses some struc-

tured and unstructured quantizer, the families of Locality Sensitive Hashing (LSH) func-

tions as well as the K-Means and the Hierarchical K-Means on SIFT descriptors extracted

from a subset of the INRIA Holidays dataset3. These experiments show that unstructured

1http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
2http://www.robots.ox.ac.uk/∼vgg/data/parisbuildings/
3http://lear.inrialpes.fr/people/jegou/data.php
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quantizer like the K-Means and the Hierarchical K-Means outperform LSH functions, as

they adapt better to the distribution of the features. We develop an automatic content-based

image landmark recognition system with a SIFT-based Bag-of-Words image representa-

tion in combination with the Hierarchical K-Means (HKM)[NS06] tree index structure and

evaluate our system on a large-scale dataset which supports 900 landmarks. Our contribu-

tion is to analyse in how far an increasing dictionary up to 3M can improve the recognition

performance and whether the HKM tree parameters branching factor and height or only the

resulting number of leaf nodes (dictionary size) have an impact on the recognition. Fur-

thermore we analyse the kNN voting distribution of landmark and non-landmark images

and based on this we propose a simple and efficient verification filter to decide whether

an image contains a landmark or not. In literature this verification is usually done with

expensive model fitting algorithms like RANSAC. The remainder of this paper is orga-

nized as follows: section 2 introduces into the landmark recognition problem and presents

our implemented landmark recognition system with its steps. In section 3 we evaluate our

system comparing it to a baseline approach. Finally (section 4) we summarize our results

and discuss future work.

2 Automatic Landmark Recognition System

The Landmark Recognition Problem A landmark is a physical object, created by man

or by nature, with a high recognition value. Usually a landmark is of remarkable size and

it is located on a fixed position of the earth. Examples of landmarks are buildings, monu-

ments, statues, parks, mountains and other structures and places. Due to their recognition

value, landmarks often serve as geographical points for navigation and localisation. A

landmark recognition system has to conduct the following task automatically:

Definition 1 (Landmark Recognition Task). Given a set of L landmarks L = {l1, ..., lL}
and an image i which contains the landmarks Gi ⊆ L. The task for a landmark recognition

system is to assign a set of landmarks Pi ⊆ L to the image i in such a way that Pi = Gi.

Gi is the groundtruth set and Pi the prediction set of the (test) image i. Please note that

Gi = ∅ and Pi = ∅ are possible. The landmark recognition task is a multi-label classifica-

tion problem including a decision refusal.

The Design of the Landmark Recognition System Our automatic landmark recogni-

tion engine bases on a single-label classification approach with the Bag-of-Words image

representation and the Hierarchical K-Means tree index structure. This single-label classi-

fication approach can be extended to multi-label one (as defined in the Landmark Recogni-

tion Task) by applying a postprocessing step which analyses if locally adjacent (ref. city)

landmarks (of the classified landmark) are available in the image. This step is not object of

this work. Our system consists of two stages: the training stage, in which the recognition

engine is learned, and a recognition stage, in which the landmarks in the (test) image are

recognized. Figure 1 shows the overall design of our system. The training phase (red path

in the figure) begins with the feature extraction step, in which for each training image SIFT

features are extracted. Next the HKM tree is created. For this purpose we select a subset
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of all SIFT descriptors from the training set and based on this subset we create the HKM

tree. The created HKM tree bases only on the SIFT descriptors, still uncoupled from the

corresponding training images. For later classification purposes we have to feed the HKM

tree with information on the training images. Before the tree feeding step we determine

the image representation using the created HKM tree. In the next step the HKM tree is

fed with the training images using the information from the training image representation.

The resulting HKM tree is ready to use for the recognition phase. In the recognition stage

(green path) the test image has to pass the same steps of feature extraction and image rep-

resentation as the training images. Then the test image is classified to one landmark. In the

verification step the classification result is verified, i.e. we check whether the recognized

landmark is really available in the image. In this step an assignment of a landmark label

to a non-landmark test image should be rejected. The following subsections present each

step of the system in detail.
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Figure 1: The design of the landmark recognition system

Feature-Extraction We describe images with the local features Scale Invariant Feature

Transform (SIFT) [Low04]. To extract these features the SIFT algorithm detects stable

points in the image and then describes the (small) surrounding area around each point by

a histogram of gradients. Finally the SIFT representation of an image i is a set of local

SIFT points p: SIFT(i) = {p1, ..., pP | p = (x, y, s, d)} with x, y are the coordinates of

the stable point p in the image, s is the scale influencing the size of the surrounding area

and d is the 128-dimensional descriptor which is the histogram of gradients.

Image Representation For the image representation we use the Bag-of-Words (BoW)

approach. The idea behind BoW is to aggregate local features to one global descriptor and

thus to avoid the expensive comparison of images by matching local descriptors against

each other. The BoW descriptor bases on a dictionary of visual words which usually is

obtained by partitioning the descriptor-space. Then each partition is represented by an in-

stance of this partition, usually the center of the partition, which is called the visual word.

A simple and most used method to partition is the use of the K-Means clustering algo-
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rithm. However flat K-Means do not scale well with an increasing dictionary size: already

dictionary sizes of 10K lead to long recognition times. Applying the HKM tree enables us

to use large-sized dictionaries with over 1M words. To create the image representation of

a training or test image each SIFT descriptor of the image is looked up in the tree to get the

leaf as a visual word. Then the relative frequency of each leaf/visual word in the image is

determined. The final image representation is a set of visual words with the corresponding

relative frequency.

HKM Tree General Information The HKM tree is a tree-based index structure intro-

duced by [NS06]. We use this index structure to maintain the large 128-dimensional SIFT

descriptor data of the training images with references to the corresponding training im-

ages. The use of an index structure enables fast look-ups of SIFT descriptors and thus an

efficient classification of test images at the recognition stage. The HKM tree is created

by recursively dividing the data space into disjoint regions using the clustering algorithm

K-Means.

Tree Creation For HKM tree creation we take a large-sized and representative subset of all

SIFT descriptors of the underlying training set as the root data. For a fixed value K we

cluster the root data with K-Means into K clusters. For each resulting cluster consisting

of the data part belonging to this cluster we again cluster this data into K clusters. This

step is repeated until the data to be clustered reaches a size of ≤ 2K data points. This

procedure automatically builds a tree of a fixed branching factor K (for each level of the

tree) and a tree height hc (c stands for created) determined by the longest clustering path.

Each node in the tree corresponds to a data cluster which is representated by a centroid.

The tree leaves correspond to the final data partitions.

Tree Feeding In the tree feeding step the relation between the SIFT descriptors and the cor-

responding training images is established by registering the training images in the leaves

of the created HKM tree. To register a training image we take its image representation

which is a set of visual words (leaves) with their relative frequencies in this image. The

training image is registered in all occurring visual words/leaves of the tree with its relative

frequency. Finally each leaf of the HKM tree contains a list of all training images which

contain this leaf. To influence the number of leaves of the HKM tree, thus the size of the

visual dictionary, we set a height parameter hf (f stands for fed) for the tree which cuts

the original created tree and limits its height.

Classification After the test image passed the feature extraction and the image represen-

tation step, it is classified to a landmark. For each visited leaf/visual word in the image

representation step the training images registered in these leaves are taken for similarity

calculation. The similarity between the test image and a training image is determined by

the histogram intersection of the relative frequency values of the common leaves. The kNN

classifier considers the k nearest training images of the test image. Each of the k nearest

training images votes for the landmark it belongs to. Thus we can have a maximum of k

candidate landmarks for the classification, whereas each candidate landmark can be voted

by a maximum of k training images. The number of training images which vote for the

finally classified landmark is the voting score v. In this work the kNN parameter k is set

to 5 as a result of preliminary experiments. We choose a kNN classifier instead of other
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well-known classifiers because the kNN has shown classification superiority in large-scale

scenarios referring a large number of classes [DBLL10, RC14].

Verification To decide whether a test image contains the classified landmark, we apply

the following simple filter based on the kNN classifier:

Definition 2 (Simple kNN Filter). Given the test image i which has been classified to

landmark Pi = {l} with a kNN voting score of v. The classification result of image i is

reliable if the voting score v is equal to or exceeds a threshold value t ∈ {1, ..., k}, i.e.

i →

{

∅ if v < t

Pi if v ≥ t
(1)

3 Evaluation

Evaluation Dataset For the evaluation we use a self-provided dataset, as there are no

public datasets for landmark recognition available which support large number of land-

marks. We gathered 900 landmark terms (from 449 cities and 228 countries) from sev-

eral websites which list landmarks from all over the world, including the website of

[ZZS+09]4. To get images for the training and test sets, we queried the Google image

search engine with each landmark term (specified by its region - city or country) and then

downloaded the results from the original source. From the downloaded image set we de-

rived three training sets (A, B, C) and a test set. Each training set supports (the same)

900 landmark terms. The test set supports only a subset of the 900 landmark terms: 45

landmark terms (well- and lesser-known landmarks from Europe) with always 20 images

per landmark, resulting in 900 landmark images. We have choosen the test images man-

ually to ensure their correctness of containing the corresponding landmark and to create

a challenging test set: the test images show the landmark in their canonical views, under

different perspective changes, distortions and lighting conditions (also at night) as well as

indoor shootings and parts of the landmark. To simulate a realistic test set we extended the

test set with non-landmark images, i.e. images which do not contain any landmark. For

this we took a subset of the Flickr 100k dataset5. All test images have been proofed to be

(visually) disjoint from the images of the training sets.

Evaluation Measures To evaluate the performance of the system we use example-based

measures which judge the recognition quality for one test image and then we report the

average over all test images. In the general problem of multi-label classification we apply

example-based Precision and Recall which for an image i with its groundtruth set Gi and

prediction set Pi are defined as follows:

Precision(i) =
|Gi ∩ Pi|

|Pi|
Recall(i) =

|Gi ∩ Pi|

|Gi|
(2)

The special cases of Precision and Recall for Gi = ∅ and/or Pi = ∅ are defined in figure 2.

For the restriction to single-label classification, i.e. |Gi| = |Pi| = 1 Recall and Precision

4http://mingzhao.name/landmark/landmark html/demo files/1000 landmarks.html
5http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/flickr100k.html
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have the same value, thus we report only one of them (Recall). Then the average Recall

over all test images reports the amount of test images classified correctly, i.e. a landmark

image is classified to the correct landmark, a non-landmark image is detected correctly as

non-landmark image.

Experiments on the Baseline System In the first experiment we present the results of

our baseline approach described in [RC14]. The baseline is a single-label classification

approach which uses SIFT features and the Bag-of-Words image representation on a visual

dictionary created by (flat) K-Means clustering. For the classifier used, we tested on the

5NN and on an SVM. For the 5NN the baseline system can be seen as a specific case

of the HKM tree-based system, in which the HKM tree is obtained by one clustering

process resulting in a tree of height 2 (root data level and clustered data level). The Bag-

of-Words model has one parameter which is the visual dictionary size. We examine this

approach on the following five visual dictionary sizes: 500, 1K, 2K, 4K and 8K. Here

larger dictionaries are not considered due to long recognition times using the (flat) K-

Means algorithm. Figure 3 shows the recognition results (Recall) of the landmark images

(non-landmark images of the test set are not considered) for the classifier 5NN and SVM,

before applying the verification step, and depending on the visual dictionary size. Values

reported are averages over the three training sets A,B,C. The results reveal that the larger

a visual dictionary the better are the classification results. From a dictionary size of 4K

on, the 5NN outperforms the SVM and the behaviour of both plots indicate that this can

still hold for larger dictionaries. The best recognition result with a Recall value of 0.43 is

achieved with a dictionary size of 8K. The trend suggests, that for even larger dictionaries

(larger than 8K) the Recall value furthermore grows. This assumption is examined in the

next experiment.

K 20 25 15 20 25 15 30 25 30 20 15

hf 4 4 5 5 5 6 5 6 6 7 8

max 160K 390K 759K 3,2M 9,7M 11M 24M 244M 729M 1,2B 2,5B

real 8T 15T 50T 160T 390T 757T 809T 1M 828T 2,5M 1,4M

Table 1: Maximum (max = K(hf )) and real number of leaves/dictionary sizes of the

created HKM trees depending on the branching factor K and the height hf

Experiments on the HKM Tree-based System This experiment evaluates the HKM

tree-based approach on small up to very large dictionaries. To create the HKM tree we take

a (representative) subset of 10M SIFT descriptors from the corresponding training set and

create trees for the following branching factors K: 15, 20, 25, 30. Then we learn trees (tree

feeding step) for different height values, for the height hc (original created tree) and for

smaller heights hf (tree cuts). Table 1 shows the maximum and the real number of leaves

of the trees created depending on the branching factor K and the tree height hf . Figure 4

shows the recognition results of the test set depending on the parameter visual dictionary

size/real number of leaves (x-axis) and the threshold t of the verification step (plots, one

color for a fixed threshold). The Recall values reported are averages over the three training

sets A,B,C. The diagram on the left of figure 4 shows the ’global’ recognition value which

is the average over all test images (landmark and non-landmark images). The diagram on
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Figure 4: Recognition results of the HKM tree-based approach. Left diagram: on all test

images. Right diagram: on landmark (li) and non-landmark images (nli) separately.

the right shows the recognition value for landmark and non-landmark images separately

(as averages over all landmark images and all non-landmark images, respectively). The

results confirm the assumption derived from the baseline system that larger dictionaries

achieve better recognition quality. Up to a dictionary size of 390K the Recall values rise

continuously when enlarging the visual dictionary. From a dictionary size of 390K on

the recognition value for all test images (left diagram) and for all landmark images (right

diagram) levels out and reach the best Recall value of 0.7 and 0.6 on dictionaries of size

800K to 1M for a threshold t = 2 and t = 1, respectively. Comparing the Recall value

of 0.6 (t = 1) on landmark images with the best result of the baseline system, we achieve

a recognition improvement of 17% by enlarging the dictionary. We can also see that the

Recall value for the landmark images, thus for all test images, begins to fall slightly from

a dictionary size of 1,4M. However the Recall value of the non-landmark images rises

uninterrupted with an increasing dictionary size (for t > 1). Please note that for t = 1
(equals to no verification step), all test images are assigned to one landmark, thus all non-
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Figure 5: Distribution of the voting score v for

v ∈ {1, 2, 3, 4, 5} on landmark (li) and non-

landmark images (nli).
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landmark images are recognized incorrectly and get a Recall value of 0. Due to this fact,

the recognition for t = 1 on all test images results in a low Recall value. Figure 5 shows

the distribution of the voting score v among the whole test set, represented for landmark

and non-landmark images separately. The largest amount of test images (concerns both,

landmark as non-landmark images) has a voting score v = 1. For non-landmark images

this amount grows with an increasing dictionary size and is a good indicator for the pre-

diction of non-landmark images. Landmark images are stronger represented with voting

scores of v ≥ 2 than non-landmark images, unfortunately about half of the landmark im-

ages still have a voting score of 1. The best trade-off between landmark and non-landmark

images according to the global Recall value (left diagram of figure 4) is achieved with

t = 2. Figure 6 presents the amount of correct, incorrect and as non-landmark recognized

landmark images for a dictionary of size 828K depending on the threshold t. The highest

rate of correct recognition as well as incorrect recognition is achieved with t = 1. Despite

the lower amount of correctly recognized landmark images at threshold t = 2, this result

can be more satisfying for a user than the one at t = 1 because the amount of landmark

images assigned to the wrong landmark is radically smaller, although simultaneously the

amount of landmark images which are predicted as non-landmark is high, too. In a user’s

perception an incorrect classification (wrong landmark assignment) can be worse than the

non-detection (non-landmark prediction) of landmark images. To answer the question on

the influence of the branching factor K and the tree height, in figure 4 we can see that

the recognition results depend on the real visual dictionary size than on the parameters

branching factor and tree height on their own.
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4 Summary and Future Work

We developed a CBIR system which bases on the Bag-of-Words approach combined with

the HKM tree. Our experiments on different dictionary sizes show that a visual dictionary

with a size of about 1M achieves the best recognition results with a Recall value of 0.6

on landmark images and 0.7 on all test images. This improves the baseline approach

(dictionary size 8K) by almost 17%. For future work it is interesting to compare other

well-known index structures like the kd-tree and the approximate K-Means to see which

index structure is most appropriate for the problem of large-scale landmark recognition.
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