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Abstract: Motivation. Computational methods to predict protein—protein interactions
are of great need. They can help to formulate hypotheses, guide experimental re-
search and serve as additional measures to assess the quality of data obtained in
high-throughput interaction experiments. Here, we describe a fully automated three-
step procedure to predict and confirm protein—protein interactions. By maximising
the information from text mining of the biomedical literature, data from interaction
databases, and from available protein structures, we aim at generating a comprehen-
sive picture of known and novel potential interactions between a given set of proteins.
Results. A recent proteomics assay to identify the protein machinery involved in vesic-
ular trafficking between the biosynthetic and the endosomal compartments revealed 35
proteins that were found as part of membrane coats on liposomes. When applying our
method to this data set, we are able to reconstruct most of the interactions known to the
molecular biologist. In addition, we predict novel interactions, among these potential
linkers of the AP-1 and the Arp2/3 complex to membrane-bound proteins as well as
a potential GTPase—GTPase effector interaction. Conclusions. Our method allows for
a comprehensive network reconstruction that can assist the molecular biologist. Pre-
dicted interactions are backed up by structural or experimental evidence and can be
inferred at varying levels of confidence. Our method pinpoints existing key interac-
tions and can facilitate the generation of hypotheses.

Keywords: Protein interaction, text mining, protein structure, interaction predic-
tion, membrane traffic.

Introduction

Protein interactions. Protein—protein interactions are fundamental to almost all cellu-
lar processes. In addition, nearly every major process in a cell is believed to be carried
out by assemblies of ten or more protein molecules [1]. Identification of putative bind-
ing partners of a protein is therefore a desirable ambition. It can contribute to understand
how such complex molecular machines are organised and how their parts work together.
While much effort has been put in large-scale experiments to identify protein—protein in-
teractions in yeast, worm, fly, and human on a genome-wide extent [2-9], the false pos-
itive rates of such approaches are estimated to be as high as 50% [10, 11]. Moreover,
the intersection of large-scale interaction data sets with those derived from the literature
is surprisingly small [8]. By predicting and assessing protein interactions, computational
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approaches can help in separating false positive from true positive ones. Sequence-based
methods for the prediction of protein—protein interactions include gene context conserva-
tion [12], synthetic lethality [13], phylogenetic profiling [14, 15] or co-evolution of gene
expression [16]. Structural approaches have focused on the study of protein complexes of
known structure [17]. Various databases of binding sites and interfaces between proteins
and their domains exist [18—20]. The modelling of interactions using structural templates
of sufficient similarity was employed by Aloy and colleagues to successfully model the
yeast exosome and some 100 yeast complexes [21,22].

Additionally, much knowledge on interactions is stored in abstracts that are publicly avail-
able in literature databases such as PubMed. While the expert normally is aware of the rel-
evant literature concerning his field, this knowledge remains hidden to the non-specialist
who just encounters a couple of genes, for example as a result of a microarray experi-
ment. Text mining can provide access to theoretically all protein interactions hidden in the
biomedical literature [23].

We will apply the above methods and others to reconstruct networks relevant for vesicu-
lar trafficking. While several recent studies made use of homologous interactions in other
species to assess and predict protein interactions [24—27], no study has so far used se-
quence similarity to literature interactions obtained from text mining to our knowledge.

Vesicle coats and adaptor proteins. Vesicles are small, membrane-enclosed containers
that mediate transport between cellular compartments. The formation of vesicles and the
selective incorporation of cargo molecules are both mediated by protein coats, which are
recruited onto the cytosolic side of the forming vesicle. In the case of clathrin-coated vesi-
cles, the cargo transmembrane proteins are linked via adaptor proteins (APs) with struc-
tural coats such as clathrin [28]. AP-1 mediates the transport of selected transmembrane
proteins that cycle between the trans-Golgi network, endosomes and the plasma mem-
brane. How APs interact with other molecular components of the complex coat machinery
remains largely unclear.

Materials and Methods

As resources, we combine protein—protein interactions derived from text mining of the
biomedical literature, available protein interaction databases, and structural domain inter-
actions. Aim of our method is to obtain all known interactions between a given set of
proteins, and to further predict new interactions that are likely to be present within this
set. The overall approach is a procedure of three steps. It is summarised in Figure 1 and
described in detail below.

Collection of literature-based interactions. In the first step, we start collecting known
interactions from the literature. We use NetPro, an expert curated and annotated database
containing ~ 100,000 protein—protein interactions [29]. These were extracted from PubMed
abstracts by a semi-automated method and then cross-checked by human experts. For every
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Figure 1. A three-step approach to gather all knowledge about protein—protein interactions. a. First,
text mining is used to collect interactions from the literature. Sequences of the involved proteins
are stored in a database. In a similar manner, available interaction databases are integrated and their
protein sequences stored. b. Second, for a given protein pair A and B, a search for homologous
interactions is performed using orthologue information and BLAST. Thus, interactions between ho-
mologous proteins in other species or similar proteins can serve as templates to predict an interaction
between the original proteins A and B. c. Third, similarity to structural templates of interacting do-
mains is used to predict interactions. To this end, we employ both sequence similarity (BLAST) and
structural similarity (Threading) measures.

interaction, NetPro lists the two involved gene identifiers, species, the abstract sentences
documenting the interaction, an interaction verb and an interaction nature. The interaction
nature can be direct or indirect, where interactions verbs such as binds to classify an inter-
action as direct, verbs such as colocalises with as indirect. For every protein in NetPro, we
collect its sequence from the NCBI Protein Database (Figure 1a).

Collection of interactions from interaction databases. We complement our collected
literature-derived interactions with data from various interaction databases. Protein—protein
interaction sets are obtained from HPRD [30], DIP [31], BIND [32], MINT [33], MIPS
[34], and IntAct [35]. Again, sequences of the interacting proteins are collected and stored
(Figure 1a). We are aware of potential false positives introduced by high-throughput in-
teractions screens [10]. Since our approach aims at maximum sensitivity, we do not apply
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any filter, but rather record the experimental origin of an interaction finding as confidence
criterion.

Identification of interactions for a given data set. To identify known interaction in a
given data set, we simply query our databases of collected interactions. The result is a
protein—protein interaction network where an interaction either was described in the lit-
erature or stored in an interaction database. In a second step, we expand this network.
Orthologues, i.e. homologues in other species, of proteins in our given data set are identi-
fied using the NCBI HomoloGene Database (Release 46.1). Our collected interactions are
again checked for the orthologues. Following the idea of interologs described in [36], we
predict a putative interaction between two proteins if they have interacting homologues in
another species. We further extend this idea of homologous interactions by performing a
BLAST search with our data set against the collected interaction sequences. Thereby, we
are able to find a template protein pair A’ and B’ known to interact, where A’ and B’ are
similar to two proteins A and B from our data set (Figure 1b). If the similarity (e.g. mea-
sured in sequence identity) is sufficient, we infer a putative interaction between A and B.
In order to obtain a score reflecting the reliability of the prediction, we calculate the joint
percentage identity. For a protein pair (A, B), this score is defined as min(I4, I5) where
14, Ip are the sequence percentage identities between the protein pair and the template. In
this study, we require a joint percentage identity of at least 40%.

Structure-based interaction prediction. The third step of our approach is shown in
Figure 1c. To predict interactions on the basis of known structures, we use SCOPPI [18], a
database of domain—domain interactions and their interfaces derived from all multi-domain
proteins in the Protein Data Bank [37]. Domains are defined by SCOP, the Structural Clas-
sification of Proteins. Domain residues within a distance of 5 A to another domain are
considered interacting, thus being in accord to other interface definitions [38]. As struc-
tural interaction templates for our predictions, we use a subset of SCOPPI obeying the
following filter criteria: 1) interacting domains are required to be on different polypeptide
chains, 2) interface size (defined as change in accessible surface area, AASA, calculated
with Naccess) > 600 A? to filter out unspecific interfaces, 3) exclusion of homo-dimers to
avoid false positive predictions between highly similar proteins. Two proteins are predicted
to potentially interact if they contain domains that are known to interact structurally, ac-
cording to the SCOPPI subset described above. To assign these domains to a given protein
sequence, we employ both sequence similarity and structure prediction methods: First,
we perform a BLAST search against a database containing the defined SCOPPI subset.
By using a sequence identity cut-off at 40%, we ensure that the assigned domains have a
similar structure to our structural interaction templates. Second, all protein sequences are
threaded with GenTHREADER [39], considering hits with p-values < 0.001 only. This
procedure assigns probable SCOP domains being part of GenTHREADER'’s fold library
to each protein sequence. As above, we assign a score of min(I4, Ig) for the sequence
identities between the protein pair and the template, and max(pa, pp) where pa, pp are
the threading p-values, respectively.
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Figure 2. Theoretical model of the adaptor protein 1 (AP-1) related machinery. Several small GTP-
ases along with their GAP and GEF effectors are involved. Some of the depicted interactions are
known, while others are still presumptions [41].

Data set origin: Experimental identification of coat proteins. The data set of proteins
used in our study was previously obtained by a collaborating group [40]. Aim of this study
was to identify cytosolic proteins that are involved in the adaptor protein 1 (AP-1) coat
assembly. The result comprises 35 murine proteins that could be selectively recruited onto
liposomes that exhibit cytoplasmic domains of AP-1 cargo molecules. Among these, the
AP-1 complex, clathrin, several GTPases and their effectors as well as an actin nucleation
machinery was found. Table 1 shows the 35 proteins identified by mass spectrometry.
How these proteins spatially arrange on liposome membranes is still speculative. Here,
our method can help to suggest possible interactions and thus aid to formulate hypotheses
concerning the recruited molecular machinery.

Results and discussion

Construction of an interaction network for proteins from clathrin-coated vesicles.
As a use case for our method, we choose the data set described above. It contains 35
proteins shown in Table 1. Figure 2 shows the putative spatial arrangement of a subset
drawn by the collaborating expert biologist.

Figure 3 shows the resulting network after taking the steps described in detail in Materials
and Methods. Interactions that could be found from the literature or interaction databases
are shown in red. Homologous interactions in close species (human, rat) are also red.
Predicted interactions, inferred by orthology in remote species or by sequence similarity,
are depicted in yellow. In addition, indirect literature interactions are dashed, whereas
direct ones are solid lines. Blue lines indicate predictions based on structural templates.
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Figure 3. Constructed interaction network for the AP-1 complex. Interactions known by literature
or interaction database are depicted in red, predictions based on these are yellow, and blue lines
represent predictions based on 3D structural templates. Numbers indicate the sequence identity in
percent that the predicted interaction shares with the template. The higher this number, the more
reliable the prediction. For the sake of clarity, the cut-off is set at 50% here, except for the discussed
example of the AP-1-Clatrhin example.

In case of yellow and blue lines, numbers specify the joint sequence identity percentage
score of the prediction. The result allows for the generation of several new hypotheses
about the molecular machinery around AP-1. In the following, three predicted examples
will be discussed in detail.

Literature- and interaction databases approach. The ability to blast against a mul-
titude of literature interactions represents a quite powerful tool. First, it allows for the
detection of seamless grades of similarity. Second, it deals with the problem of synonyms
in a very elegant way. Once text mining matched a protein name to a protein entity, we
do not further rely on synonyms but on the sequence which—in combination with the
species—unambigously described the protein entity.

PAK3 is a potential interactor of the Arp2/3 complex subunit 1A. The literature-
derived search predicts, for example, the interaction between murine p21-activated kinase
3 (PAK3) and the Actin-related protein 2/3 complex subunit 1A. Basis of this prediction
is a literature-documented interaction between human p21-activated kinase 1 (PAK1) and
human Arp2/3 subunit 1B, reported in [42]. Overall sequence identity is 69% between the
kinases, and 83% between the Arp2/3 subunits. We cannot be not sure if this interaction
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is indeed true, but our method provides evidence that an interaction is likely. This would
suggest that PAK3 functions in the given data set of mouse proteins in a similar manner as
PAK1, namely by phosphorylating the Arp2/3 complex, thus influencing vesicle motility.
Further inspection of this example reveals additional support for the prediction. In the
abstract of [42], we learn that PAK1 phosphorylates p41-Arc (another name for the Arp2/3
subunit) on threonine 21. As we check the alignment, we find threonine 21 present in a
well-conserved region in both proteins.

Text mining challenges: Clathrin should be linked to the AP-1 complex subunit beta.
General problems of text mining still affect our approach. If interactions are not extracted
in the first place, we lack this information and hence cannot infer any similar predictions.
In our study, this occurs in case of the AP-1—Clathrin interaction. It is has long been
known that Clathrin is associated with adaptor proteins on clathrin-coated vesicles that
mediate traffic of between intracellular compartments. The physical interaction between
Clathrin and the beta 1 and beta 2 subunits of the AP complexes was first described 1993
in [43]. However, neither the incorporated interaction databases, nor the literature-based
NetPro database contain this particular interaction. For NetPro, the reason seems obvious.
The relevant sentence in the abstract of [43] states: “It was found that, in the absence of
all the other AP subunits, beta 1 and beta 2 interact with clathrin.”. The fact that the in-
teraction partners are just described as “betal” and “beta2” makes it extremely hard for an
algorithm to reason that these two are actually AP subunits. As we are lacking this interac-
tion, and since no such interaction could be inferred from structural templates, we cannot
connect Clathrin with the AP-1 complex in the interaction network. There is, however, a
homologous interaction our method detects: According to interaction database DIP [31],
yeast beta-adaptin homolog APL2 interacts with yeast clathrin heavy chain 1 [44]. The
BLAST search of our method picks up the similarity between the yeast and mouse ortho-
logues of AP-1 beta subunit (40 % identities, 62 % positives) and Clathrin heavy chain
(49 % identities, 70 % positives). On this basis, our approach predicts a potential interac-
tion between the two murine proteins. In this case, it turns out that the prediction is correct,
with the known, but missing interaction validating our prediction.

Structural template-based approach. Structures are available for a considerable num-
ber of the AP1-related proteins (Table 1). The first stage easily detects these templates by
sequence identity search via BLAST. If at 40% sequence identity cut-off no domain struc-
tures are found, we employ threading to assign domains. For every protein pair, we check
if the SCOPPI database lists any of the assigned domains as interacting. If so, we mark
these two proteins as potentially interacting (for details, see Materials and Methods).

Since crystal structures are available for the AP-1 and the Arp2/3 complex, the structural
templates-based approach connects the subunits according to their contacts (blue lines in
Figure 3). One interesting candidate is the predicted connection between the Rho GTPase
CDC42 and Arfaptin, an effector of the Arf GTPase.
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Figure 4. Structural modelling of the CDC42—Arfaptin 1 interaction. Left: The known complex
structure p21Racl (blue) interacting with Arfaptin 1 (grey) serves as a template. CDC42 (red) and
Racl (blue) structurally align reasonably well (RMSD 0.8). Bottom: Residues contributing to the
binding site in the complex. Interacting residues are marked yellow, mismatching interacting residues
are marked with a star. Right: Interface mismatches (Ala/Thr, Asn/Thr, Trp/Phe) after structural
superposition of CDC42 and Rac1. Although being different amino acids, their structural side chain
arrangement is similar.

The small Rho GTPase CDC42 is a potential interactor of Arfaptin 1. The small
GTPases Rho, Rac and CDC42 are regulators of actin structures, cell adhesion and motil-
ity. Here, we predict the interaction between CDC42 and Arfaptin 1. As template, we use
the crystal structure of RAC1-GDP in complex with Arfaptin (PDB ID 1i4l, [45]). Fig-
ure 4 shows the superposition of CDC42 and Racl with an RMSD of 0.8. The interfacial
residues of both GTPases, as defined to be within 5 Angstrom distance to the Arfaptin, are
aligned and highlighted in yellow. Closer examination of the three mismatches (Ala/Thr,
Asn/Thr, and Trp/Phe) in the interface reveals that all three residues align reasonably well
in the superposition of CDC42 and Racl. We therefore have reason to believe that at least
from a steric point of view the interaction is feasible.

Reliability scores and evidence. Our approach generates reliability scores as well as
supporting evidence for the protein—protein interactions predicted. For structure-based pre-
dictions, we provide a structural template as well as confidence scores. These are sequence
identity percentages and/or threading p-values. For literature-derived predictions, we pro-
vide statements from PubMed articles which explicitly document details of the interaction.
In addition, joint sequence identity scores are available for every predicted interaction.
These are 100% for known interactions described in the literature and lower for decreas-
ing degrees of potential homology. An introduction of various cut-off levels could account
for the different interaction nature of proteins, e.g. a stricter level for GTPases, and a more
relaxed level for unspecific protein interactions. If the binding site is known, the matches
of interfacial residues serve as additional parameters for the quality of the predicted inter-
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action. The more conserved the interface, the more likely the interaction.

Limitations of method. Our method shares the common limitations of interaction pre-
diction methods. Technical false positives (i.e. those due to the method) are likely, espe-
cially for predictions with low joint sequence percentage. Biological false positives (i.e.
interactions that could be observed in vitro, but have no biological relevance, because the
two proteins are not expressed in the same tissues or compartments, or not at the same
time) can at least in this study be ruled out due to the experimental setup used to produce
the data set. It ensures that the tested proteins are within close proximity, thus displaying
a considerable potential to form interactions.

Another problem is that of the specificity of our predictions. Small GTPases and their ef-
fectors (such as GTPase activating and guanine nucleotide exchanging proteins) are good
examples for forming specific interactions [46]. The problem can be addressed by a rigor-
ous sequence identity threshold, as suggested above.

Although a considerable number of proteins in our study are known by structure, and al-
though our method has access to ~25,000 different domain interaction templates, we are
not able to link the AP-1 or the Arp2/3 complex to any other protein in the data set by
merely using structural information. This points at the problem that there are still com-
paratively few multi-domain structures available that can serve as modelling templates for
interactions. As a positive outlook, we observe a supra-linear growth of these templates.

Evaluation of method. It is difficult to assess predicted interactions by other means than
the biological experiment. The main problem is estimation of a false positive rate. How
can one be sure that two proteins do not interact? Simple absence of the interaction in
reliable data sources is not sufficient—the interaction might just not have been discovered
yet. The closed-world assumption, i.e. interactions not known are also not true, does not
hold for biology. Our predicted interactions are currently being tested by our collaborating
group. The result of these experiments will allow for a thorough evaluation of our method.

Summary

We propose a fully automated method for the retrieval and prediction of protein—protein
interactions. By merging information from literature abstracts stored in PubMed, interac-
tion databases, and structures in the Protein Data Bank PDB we obtain a comprehensive
picture on documented interactions. On the basis of this knowledge, we can construct an
interaction network for any given data set, and further extend it predicted interactions at
various confidence levels based on sequence or structural similarity to known interaction
templates.

Applied to a data set of proteins that form coat complexes on vesicle membranes, our
method identifies almost all relevant interactions. Further interactions are predicted, among
them potential linkers for the AP1- and the Arp2/3 complex. Therewith, we provide po-
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tential interaction candidates for further experimental testing. By incorporating the whole
spectrum of text mining interactions described in the biomedical literature, data stored in
interaction databases, and all structurally known domain—domain interactions, our method
ensures a comprehensive network reconstruction that can assist the molecular biologist.
Applying it on a genome-wide scale, we can further scale up this network to a systems
biology level that provides a view on a whole interactome, thus providing a valuable tool
for the life sciences.

Acknowledgements. Funding by EFRE project CODI no. 4212/04-07 is kindly acknowl-
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