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Abstract: Many software development organizations today aim at reducing their
development effort, while improving the quality and diversity of their products by
building more reusable software, for example using the product line approach. A
product line infrastructure is set up for deriving the similar products, but this
infrastructure degenerates over time, making reuse increasingly hard. As a
countermeasure, we developed a practical method for guiding product line
developers in evolving product line code so that its decay caused by reuse is
avoided. This paper gives an overview of some of our findings.

Because product line code differs from single systems code only in its genericity,
expressed by variability mechanisms, we analyzed to what degree the selection of
certain mechanisms affect the code’s reuse complexity. Using the Goal-Question-
Metric (GQM) approach, we developed a quality model that lead to an extensible
product line complexity metrics suite.

A case study compared the evolution qualities of different product line
implementations, with the following results: Cloning, the simplest mechanism,
leads to similar short-term complexities than more advanced ones, making its
interim usage appropriate. In the longer term, any other mechanism has a clearly
lower complexity trend, especially if it is selected according to the variability
management task at hand. A mix of Conditional Compilation and Frame
Technology provides the best long-term evolution potential.

1 Introduction

Many software development organizations today aim at reducing their development
effort, while at the same time improving the quality and diversity of their software
products by building more reusable software. Due to the diversity of similar software
products, it is often insufficient to provide reusable software as fixed building blocks
only. Truly reusable software requires adaptation possibilities in order to be reused
effectively in different situations. This means that although it contains common parts, it
must also provide some means to variation. More recently, more and more reusable
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software of larger scale is developed in a conscious organization-specific engineering
effort alongside the software that reuses it. In these approaches, a set of similar software
systems is developed together in a cost-effective way. In these product line engineering
approaches, the reusable assets consist of common and variable artifacts, plus
descriptions of variability interdependencies, across all stages of the software
engineering life cycle, such as requirements, architecture, design or source code.
Together they form the organization’s product line infrastructure [Mut02].

Once a product line infrastructure has been initiated, individual software products can be
derived from it, and if the infrastructure is well-designed initially, it should be easy to
derive products from it for some time. However, development in general and product
line development in particular do not end with initial construction, but successful
development is accompanied by continuous evolution ([Par94], [Som04], [LF06]). In a
product line setting, continuous evolution means that gradually, new products are added
to the product line and existing common and variable features are changed which were
only partially predicted, or which were not predicted at all.
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Figure 1: The product line code evolution problem

Figure 1 shows our observations in practice: Within the product line engineering life
cycle, it becomes increasingly difficult to derive products from the product line code
over time. The reason for this phenomenon is product line aging, analogous to single
systems software aging [Par94]. Code degenerates for two reasons: First, because it is
not changed according to the changing scope, so that both drift apart. Second, it ages
when it is changed inappropriately [Kru07], for example because the developers are
ignorant of product line implementation technology or because they adopt it
overambitiously. Our method focuses on the latter issue. It analyzes practical
possibilities for implementing variabilities in source code and instantiates a sustainable
coding process.

As shown in Figure 2, existing product line code and new product line specifications are
the input to our approach, targeting the developer. Other inputs are variability
mechanisms (possibilities to realize the new variability-related specifications in the code;
Chapter 3) and product line evolution scenarios (elementary ways in which variabilities
may evolve). The output of the iterative and incremental approach is new product line
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code with just enough complexity to be easily evolvable. The iteration consists of
selection, modification (refactoring) and quality assurance phases. Quality assurance
consists of product line testing and measurement (Chapter 4) sub-activities which ensure
that all product line members can be constructed and executed as required, and that the
applied variability mechanisms are simple enough for sustainable evolution.
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Figure 2: Product line coding approach

The method was developed and applied in a case study (Chapter 5), in which product
lines of wireless sensor node software have been developed. Chapter 6 gives a summary
and presents open issues and further work.

2 Related Work

Our approach for combines and extends theories and concepts from several different
areas, such as software evolution, product line implementation, practical reuse methods,
complex systems description and sustainable evolution of complex systems.

Observing the long-term evolution of large single systems used in practice, 8 evolution
rules have been proposed [LF06], including the phenomenon of software aging [Par94],
and a number of complexity measurements been proposed ([AD07], [Kel06]).
Collections of product line implementation mechanisms ([AGO01], [SVBO05], [CE00],
[JGJ97]) have mostly had a theoretical scope, sometimes biased towards a particular
solution, but not regarding long-term effects. More practical methods have been
proposed ([MP03], [Bas97], [Kru07], [Cop98]), which only partially address sustainable
evolution. Work on complex systems description ([Sim62], [Ley01], [CZ03]) suggested
that such systems should be described by actions leading to symmetries, rather than just
describing the shape of end products. Whereas these are only analytical, work on
sustainable evolution of such systems [Ale02] suggests a generic recipe for actively
creating well-behaved complex systems, involving certain steps in a particular order. We
developed our method as an instance of that approach.
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3 Variability Mechanisms

As mentioned in Chapter 1, the additional complexities in product line code evolution
compared to single systems code evolution have to do with variability and how
variability is managed in the code. A developer may select from a number of different
variability mechanisms to realize and configure a new product instance that reuses a
given product line infrastructure. In practice, variability mechanisms are often used ad-
hoc or in monocultures, which leads to overly complex code. In order to guide the
developer in selecting appropriate mechanisms, we have developed a pattern language of
variability mechanisms [Pat08], summarized in this chapter. The selected mechanisms
include Cloning, Conditional Execution, Polymorphism, Partial Binding, Conditional
Compilation, Aspect-Orientation and Frame Technology. We believe that our pattern
language captures the major possibilities for organizing variable code for two reasons.
First, because each chosen mechanism is frequently used for variability management in
practice or has shown new and unique variability management possibilities in practical
research. Second, because from a developer’s perspective, the mechanism set covers all
major variability management situations, as illustrated in Figure 3.
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Figure 3: Variability management decisions resulting in variability mechanisms

When a new product must extend existing infrastructure code, the simplest approach is
Cloning, i.e. to duplicate the existing code and to modify the new copy. Cloning is
simple because at the moment when it is applied it achieves just what is required in the
most direct way: the new product is based on existing code, and existing products are not
affected. However, the approach is least sustainable, because it leads to maximum
duplication of common code, which must be co-evolved consistently throughout the
product line’s future lifetime, which is most of the time the code spends its life. This
way, Cloning it is most detrimental for long-term product line code evolution.
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The only sustainable alternative is to sacrifice direct duplication, so that at least some
common code is kept in one place, while the new variability is introduced otherwise. A
straightforward way for differentiating a variable code part from previously
undifferentiated code is to enclose it by a conditional statement. The new variability is
added as a new branch of the conditional statement. The resulting variability is bound at
execution time, which is why the mechanism is called Conditional Execution. A
disadvantage of this approach is that common and variable code parts reside and evolve
in a single module, because the parameter of variation is closed [Bas97]. This problem is
solved in many programming languages by using an indirect rather than a direct
conditional statement for differentiating the variable parts, for example through function
pointers, Template Methods, or generic types [CE00]; that is, by Polymorphism.

If the variation points can be identified as unique procedures in the common code, a non-
traditional way is to extract the variable parts into aspects, using Aspect-Orientation. A
more traditional alternative is to store all variable procedural code parts in a single
module, different from the common code. We call this mechanism Partial Binding,
because the parameters of variation are partially bound: their calling sites do not specify
completely which functions they call. For example, they only provide a forward
declaration, and the missing function definition is completed by stating the variable
module at preprocessing- or link-time.

Except for Cloning, the above mechanisms are programming language-dependent.
Conditional Execution and (runtime) Polymorphism are especially problematic in the
larger context of product line implementation because they result in runtime binding,
which leads to a single bloated system that contains all variable features, rather than a
proper product line, a set of similar systems evolved together. Runtime conditionals are
also inherent parts of software code, and if they are also used for variability
management, “normal” code and variability managing code become deeply entangled.
However, it is not necessary to express the condition with programming language code.
An alternative is the preprocessor conditional, such as the #ifdef statement of the C and
C++ preprocessor, binding the parameters of variation at preprocessing time, in
Conditional Compilation. This way, variable parts may cover arbitrary code sections,
independent of their semantics. Conditional Compilation facilitates reuse in a broader
sense, where the preprocessor serves as a construction interpreter [Bas97]; like
Conditional Execution it is a closed-parameter mechanism. At least one open-parameter
construction-time mechanism exists: Frame Technology [Bas97], which uses an
advanced preprocessor, such as the FP frame processor developed by the author of this
paper [PMO3], for assembling construction modules. These may contain source code
text, whose default variable parts are annotated and can be overridden.

4 Product Line Complexity Measurement
As mentioned in Chapter 1, one sub-activity of the quality assurance phase of our
method is concerned with measurement in the resulting product line code (cf. Fig. 2),

more precisely with complexity measurement. Until recently, there had been no such
research for product lines [KnaO4]; this situation is currently changing ([ADO7],
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[LTO8]). However, none of these consider the measurement purpose. We developed a
quality model for evolving product line code that motivates which product line-specific
quality attributes must be addressed in the measurement phase. It is customizable to an
organization’s product line development needs. The quality model has been developed
using the Goal-Question-Metric (GQM) approach [S++02], the most popular mechanism
for goal-oriented software measurement. GQM depends on the formulation of the
following elements: Goals, questions and metrics. First, goals are formulated, which
define what shall be achieved. The goals are often decomposed using a goal hierarchy of
main goals and corresponding sub-goals. Each goal is refined by questions, whose
answers indicate to what extent the goal has been reached. Finally, metrics are given for
each question, which makes the questions quantifiable. Figure 4 shows the goals and

sub-goals needed in our method.
1. Sustainable PL
Code Evolution

2. PL Code
Complexity
Adaptation

3. Size 4. Shape 5. Variability 7~ 6. VarMgt 7. Reuse
Reduction Alignment Emphasis Consistency Efficiency

Figure 4: Goal hierarchy of the product line code quality model

The main goal addressed is sustainable evolution of product line code (G1), which aims
at making the product line code evolvable over longer periods of time, possibly open-
ended. In order to achieve the main goal, product line complexity adaptation is proposed
as a sub-goal (G2), which denotes that product line code complexity is reduced, but only
as far as necessary in the particular development context. For example, product line code
complexity is too high if a module contains more parameters of variation than necessary.
There are five mostly orthogonal sub-goals for achieving complexity adaptation. The
first is size reduction (G3), which means that the product line code is constrained in size,
as required for the variability management purposes at hand. The second sub-goal, code
shape alignment (G4), denotes that the shape of common and variable code parts
corresponds to the required variability management tasks. For example, closed-
parameter mechanisms are usually sufficient for expressing optional variabilities; open-
parameter mechanisms would introduce gratuitous complexity. The third sub-goal is
concerned with emphasizing variable parts (G5), so that developers can easily see and
control those parts of product line code which are different across space or time, while at
the same time the common parts are more subdued [Bas97]. Another sub-goal addresses
variability management consistency (G6), because inconsistent code is more complex to
evolve than necessary, and the last sub-goal is reuse efficiency (G7), which means, for
example, that an excess of reusable modules may become as harmful for long-term reuse
as a shortage of reusable modules.
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According to the GQM method, each goal is refined by questions, and these are then
refined by concrete metrics. Table 1 gives an example for the size reduction goal G3.
This way, we established a metrics suite of 21 metrics.

Analyze the code of software product lines
for the purpose of reducing

with respect to size

from the viewpoint of the | software developer

Q7: How large is the code? (Which code size is necessary?)

Q8: How much product line code has changed over time? (How much was necessary?
Q9: How many modules have been used? (How many are necessary?)

Q10: How many variation points are used in the code? (How many are necessary?)

G | Q | Metric name | Description
3 Size reduction
7 | LOC Lines of code for entire product line code
8 | Viock Temporal code churn ((HMO00], [ADO7]) in lines of code
9 | NOM Number of modules
10 | NVP Number of variation points

Table 1: Metrics for goal G3: Product line code size reduction

5 Case Study

In order to compare the quality of sustainable code evolution in various product line
development contexts, we conducted a case study that monitored and evaluated the
evolution of software product lines of small and highly resource-constrained embedded
systems. The product line implementations were co-evolved by using each of the
mechanisms presented in Chapter 3, applying the overall method shown in Figure 2. In
particular, the quality of the results was measured using our quality model (Chapter 4).
In this context, four main hypotheses have been investigated, summarized in Table 2.

No Hypothesis

1 | Except in the short term, code obtained by Cloning is harder to evolve than code with any
other variability mechanism.

2 | In the long term, a monoculture of a variability mechanism is harmful for product line
code quality.

3 | Runtime variability mechanisms unnecessarily increase product line code complexity.

4 | As avariability mechanism, Aspect-Orientation is obsolete.

Table 2: Overview of investigated hypotheses

The single systems case, when no variability management is applied, corresponds to the
situation when Cloning is used throughout. This results in the first hypothesis, which
claims that Cloning has a comparable complexity than the other mechanisms only in
initial product line development phases, while it has a more than linear complexity trend
compared to other mechanisms in the mid- and long term. The other hypotheses are
concerned with groups of mechanisms, except for Cloning. Hypothesis two states that, in
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the long term, a monoculture of one variability mechanism, for example only
Conditional Compilation, as observed in practice, leads to less sustainable code than a
context-specific mix of mechanisms. The third hypothesis states that in most cases,
runtime variability mechanisms make the code unnecessarily complex, so that the dual
construction time mechanisms should be used instead. The fourth hypothesis claims that
Aspect-Orientation is obsolete for variability management, as other mechanisms lead to
the same result with less effort and complexity.

The subject of the case study is code for small embedded systems - battery-powered
wireless sensor nodes which are part of a rapid prototyping platform for Ubiquitous and
Pervasive Computing environments [TeCo]. The sensor nodes are able to communicate
with internet gateways or with each other, forming an ad-hoc wireless sensor network.
They are equipped with various types of actuators and sensors. The case study simulates
the evolution of a product line in six steps, as shown in the feature diagram in Figure 5.

[0  feature

o optional

A alternative
o evolved items

Figure 5: Feature diagram snapshots of the evolving sensor node product line

Initially, the product line consists of the sensor node (SN) and the three alternative
features tilt detector (TD), drop detector (DD) and noise detector (ND). In step 1, a new
alternative movement detector (MD) is added, step 2 adds an optional time transmission
(TT), step 3 a raw data detector (RD), and step 4 a voltage detector (VD). In step 5, most
existing alternatives are simplified, and in step 6 a clock adjustment feature (CA) is
added.

[Pt} [Pt}

Figure 6 depicts the evolution trace of the product line code. The sequences “a” to “g

have each been coded using a monoculture of the seven variability mechanisms
discussed in Chapter 3. The respective implementations at t=t, serve as a temporal
baseline, to evaluate how complexity changed over time. Sequence “i” represents the
“ideal” implementation at each point in time, serving as a spatial baseline, to evaluate
how much more complex each implementation is than required. It contains the same C
code as in the other implementations, enriched with variability management pseudocode.
The pseudocode expresses what activities a human developer or an automated
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construction interpreter must at least perform in order to assemble all required product
instances from the C code parts, e.g. by changing the text at certain lines. It separates
what must be performed for “good enough” variability management from how to achieve
these tasks. The remaining sequence “h” uses a mix of the available variability

17331}

mechanisms, staying as close as possible to the baseline “i”.
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Figure 6: Evolution trace for product line code, with baselines (grayed)

Figure 7: Trends for temporal code size delta (left), and excerpt (right)

While keeping all product line implementations consistent (invariant goal G6), trends for
the 17 metrics of all remaining goals were captured, partially automated. As an example,
Figure 7 shows the trends for temporal code churn, corresponding to question QS8 in
Table 1. The values were then normalized against the worst figures except for Cloning,
because its metrics often exceeded the others’ considerably. The values ranged between
zero for the ideal implementation “i”, and one for the worst case. The corresponding
values are listed in Table 3. Thereafter, average values were computed for the
corresponding goal categories. The same process was repeated for all seven evolution
scenarios. Figure 8 summarizes the results.
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Table 3: Normalized metrics for all mechanisms after evolution step 6
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Figure 8: Total complexity trends, compared to ideal implementation

The case study shows that after few product line evolution scenarios, Cloning leads to a
considerable excess of complexity, supporting hypothesis 1. The three conventional
variability mechanisms Conditional Execution, Polymorphism and Partial Binding result
in comparable levels of complexity, with weaknesses in different dimensions. The
runtime mechanism Conditional Execution results in 42% higher average complexity
than its construction time dual Conditional Compilation, especially due to lack of
variability emphasis. This clearly supports part of hypothesis 3. On the other hand, the
second runtime mechanism, Polymorphism, only performs 4% worse than its dual,
Partial Binding, which does not support hypothesis 3. Conditional Compilation leads to
some variability management complexity, mainly due to missing optimization
possibilities, but scores best among the closed-parameter mechanisms. Aspect-
Orientation performs better, but makes defaults and variation points hard to see. Frame
Technology, even in the restricted dialect used in the case study that only supports open
parameters of variation, clearly outperforms Aspect-Orientation in almost any category.
For that reason, Aspect-Orientation is obsolete when both mechanisms are available,
supporting hypothesis 4. Frame Technology performs best among the mechanism
monocultures, with a 24% deviation from the ideal implementation after the final
evolution step. However, it over-emphasizes variable parts in some cases and leads to a
lack of open construction time complexity, due to limitations of the applied frame
processor. All monocultures lead to complexity excess, which supports hypothesis 2.
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The approach has the following threats to validity: First, the case study has deliberately
been kept small, and it can be argued if the found results scale to larger product line
code. However, practical experience in various projects indicates that the given
hypotheses are useful heuristics for a majority of product line development projects.
Second, it may be argued that the chosen scenarios in the case study are non-
representative for typical product line implementation problems, for example because
they are too few, too simple, too orthogonal, or because they leave out numeric
variabilities. While variabilities of the numeric type occur occasionally, they typically do
not pose a serious coding problem, and especially, they do not rely on the presence of
most discussed variability mechanisms, which is why they have not been covered in the
case study. Another threat of validity is that the chosen reference system is biased
towards certain mechanisms or mechanism combinations, and that the underlying
heuristics for representing alternative and optional variabilities do not hold. While it is
true that representation of variabilities in code is situation-dependent, the heuristics
acknowledge this fact. On the other hand, if considering complexity in terms of necessity
and arbitrariness, there is strong evidence that many optionals do not require as open
parameters of variation as alternatives do, which is why open-parameter mechanisms
have been used in the reference implementation for the former, while the latter have
preferred closed-parameter mechanisms. A final threat to validity is if an appropriate set
of goals and metrics has been used, and if the smaller measured differences among many
mechanisms beyond Cloning could rather mean that any mechanism may be applied on
equal terms. While there are indicators in single systems development that many metrics
strongly correlate with code size, lines of code cannot be the only indicator for product
line code quality, because not all variability management and evolution problems are
solved by just maximally collapsing the code. There must be other factors for
distinguishing more suitable variability mechanisms from less suitable ones, because
otherwise, for example, it would not make a difference if Conditional Execution or
Conditional Compilation is used, which often differ hardly in terms of code size. Here,
the differences are more in code shape, or in the visibility of variable parts, which help
or prevent the developer from keeping product line code reusable.

6 Summary and Outlook

This paper presented an overview of our approach for keeping product line code reusable
in practice. Because product line code becomes more complex than single systems code
due to its additional variability, we analyzed the impact of major variability mechanisms
on evolvability. A product line quality model was developed according to the GQM
approach, and the proposed metrics were applied in a case study. The results show that
Cloning can be appropriate in the short term, while a mix of Conditional Compilation
and Frame Technology yield the best long-term results.

Further work will extend the approach to single systems development, evaluating which
semantic source code elements are essential and which cause arbitrary complexities in
specific contexts, in order to deliberately omit the latter elements when there is no reason
to use them. A second extension is to broaden approach from coding activities to other
software development activities, for example architecting, so that all product line

199



infrastructure artifacts are systematically simplified and become more evolvable. Third,
the scalability of the approach will be evaluated by using large-scale code. Fourth,
synergies will be evaluated with other product line implementation technologies,
especially configuration management.
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