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Abstract: Common image features have too poor information for identification of
forensic images of fingerprints, where only a small area of the finger is imaged and
hence a small amount of key points are available. Noise, nonlinear deformation, and
unknown rotation are additional issues that complicate identification of forensic fin-
gerprints.

We propose a feature extraction method which describes image information around
key points: Symmetry Assessment by Finite Expansion (SAFE). The feature set has
built-in quality estimates as well as a rotation invariance property. The theory is devel-
oped for continuous space, allowing compensation for features directly in the feature
space when images undergo such rotation without actually rotating them. Experiments
supporting that use of these features improves identification of forensic fingerprint im-
ages of the public NIST SD27 database are presented. Performance of matching ori-
entation information in a neighborhood of core points has an EER of 24% with these
features alone, without using minutiae constellations, in contrast to 36% when using
minutiae alone. Rank-20 CMC is 58%, which is lower than 67% when using notably
more manually collected minutiae information.

1 Introduction

Fingerprint images collected at crime scenes are called fingermarks (in USA, latents).

These images have poor image quality, preventing the use of automatic extraction of im-

age information. By contrast, if they exist, the mates of fingermarks, called tenprints, are

processed automatically to a large extent since they usually have good image quality. Fin-

germarks have a small amount of descriptive key points, making matching based on only

geometry of key point constellation unreliable, and demanding manual augmentation of

the descriptive power by information from the image content around key points.

Matching fingerprint images can generally be divided into two categories. The first is

based on matching geometric constellations of key points (minutiae, core, etc.) of the fin-

gerprint images and is called minutiae-based. Such methods (e.g. [CCG05], [CCHW97],

[RBPV00], [CFM10], [CCG05], [JY00]) are usually fast and reliable on good quality

images, but their performance is reduced when image quality or number of key points de-
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crease [FAMSAFOG05]. Ordinary image descriptors such as those mentioned above, are

not used because the quality of images is too poor to obtain gradient directions reliably.

The second category of methods is used in the case of small fingerprint areas or poor

quality images. Here image information around key points, in addition to location of

key points and their directions, is utilized. Examples of this include manual ridge counts

between key points or correlation combined with rotation as for example, in [BVG+00].

We use the structure tensor (ST) [Big87] in combination with frequency and scale estima-

tion to obtain the orientation image, Sec. 2.1. We model orientation maps in ring-shaped

concentric regions around key points and represent them by a complex feature vector, Sec.

2.2. The feature vector is low dimensional and has built-in quality estimates of each of its

dimensions via magnitudes, Sec. 3. These quality measures can be directly incorporated

into matching metrics of feature vectors using tight inequalities, inequalities that always

reach the equality boundary for ideal inputs. Unlike other methods, the suggested fea-

ture vector stems from mathematically tractable continuous coordinate transformations in

neighborhoods of key points; we think this is well suited for describing low quality images

undergoing continuous nonlinear geometric distortions, for example, rotation, skewing,

and stretching simultaneously. Section 4 describes the matching metrics used in experi-

ments, which are then presented in Sec. 5.

2 Feature extraction

We start feature extraction with preprocessing the original image by applying a Linear

Symmetry Tensor (LST)1 [Big87], [BBN04], a complex and fully equivalent version of the

ordinary structure tensor, Fig. 1, with the purpose of obtaining a reliable dense orientation

map of the fingermark. Standard scale parameters for building the orientation image that

work for good quality images fail for fingermarks, however. Therefore, a new way of

establishing these parameters has been recently proposed [pam14] and was made available

to us. The procedure and LST will be summarized in Sec. 2.1.

After the dense orientation image has been obtained, we project ring-shaped areas around

key points (in the orientation image) onto the space of harmonic functions, Sec. 2.2. Since

few bases and rings are involved, extracted features become low dimensional, and yet the

spatial interrelations of direction information are preserved. Findings allow the design

ring-shaped complex filters which are rotation invariant, as detailed in Sec. 2.3.

2.1 Preprocessing and Linear Symmetry Tensor

To cope with noisy image information, the Linear Symmetry Tensor is applied iteratively

to original images and in combination with the phase of Gabor filters which are adapted to

orientation information extracted by LST. LST is used here for modelling and extracting

1The term ”linear” refers to parallel line structures the tensor is designed to detect.
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Figure 1: Steps of feature extraction for one torus.

orientation [BBN04], [Big88a] and is preferred to ST (real 2 × 2 matrix) because of its

ability to generalize for extracting orientation in curvilinear coordinates easily. In this

representation, LST becomes the simplest version of the Generalized Structure Tensor

(GST) [BBN04] which is used in the steps that follow further below, detailed in Sections

2.2 - 2.3.

LST is a pair of scalars (at each pixel) embodying second-order (complex) moments of the

local power spectrum in Cartesian coordinates

LST = (I
(0)
20 , I

(0)
11 )T = (Γ{0,σ2

out
} ∗ (Γ{1,σ2

in
} ∗ f)2, |Γ{0,σ2
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2

2σ2 einϕ (2)

is the nth symmetry derivative2 of a Gaussian, evaluating to an ordinary Gaussian function

when n = 0. The function f is the image. The variance σ2
out fixates the size of the

neighborhood in which the LST is extracted. The variance σ2
in fixates the inner scale or

frequency characteristics of the nonlinear filter which I20
(0) constitutes with respect to the

original image.

Here σ2
L,out and σ2

in are iteratively adjusted by first computing the LST for fixed values

of them. This allows an initial dense (and simultaneous) estimation of frequency and

orientation, yielding (dense) and adaptive Gabor filter constructions producing local phase

responses, which in turn produce an enhanced original. The procedure is reapplied to the

enhanced original until orientation, LST, and spatial frequency maps converge [pam14].

Because of being fully automatic, the resulting orientation map (Fig. 2) is still imperfect

in some areas (usually where two orientations cross, such as a non-fingermark pattern in

the background with the fingermark, for example). However, due to the slow variation

of orientations in most of the fingermark region (hue in Fig. 2), corresponding to ridge

flow, changes direction slowly, it is realistic to assume that a human expert will prefer to

2This is defined as the operator (Dx + iDy)n
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verify the orientation map and correct erroneously estimated orientation regions rather than

tracing the ridges in the original gray images to improve orientation maps. However, we

used the computed orientation images as is, in other words, without manual interventions,

to quantify their discriminative power in fully automatic orientation estimation scenarios

when comparing to minutiae matching techniques (where minutiae are extracted manually

for fingermarks).

In the LST of the preprocessing step, a Gaussian filter defines the outer scale. The spatial

support can be seen as a small circular neighborhood as highlighted and marked by the

arrow in Fig. 2, Left with radius of circle equal to σ2
L,out. This radius is significantly

smaller than the radii of rings on which the orientation will be modelled in the next section,

σ2
k,out, Fig. 2, Right.

Figure 2: Original fingermark image and its corresponding linear symmetry image.

The processing results in one complex valued image, I
(0)
20 , and one positive real image,

I
(0)
11 , representing the enhanced orientation densely. Complex pixel values of the I

(0)
20

image/matrix represent the orientation map depicting (twice) the direction of ridges in

the fingermarks in pixel arguments, and the difference of costs between worst and best

direction fit within the region determined by σ2
L,out where statistics of I

(0)
20 have been

aggregated. Values of I
(0)
11 measure the strength of the image signal within the same region.

We use the I
(0)
11 image to (pointwise) normalize complex values of I

(0)
20

IL20 =
I
(0)
20

I
(0)
11

, where |IL20| ≤ 1 (3)

It can be shown that the inequality holds with equality if and only if the orientation fit is

error free [BBN04]. Fig. 2, Right shows IL20 with hue/color representing orientation and

value/intensity representing the quality of orientation map |IL20|.

90



2.2 Feature extraction as projection on harmonic functions and GST

Any complex analytic function g can be represented via two real harmonic functions ξ, η
[Big88b]:

g(z) = ξ(x, y) + iη(x, y), where z = x+ iy. (4)

Such harmonic function pairs ξ, η are locally orthogonal and their linear combinations,

aξ + bη = const, generate curve families with well-defined directions with respect to

ξ, η, fixed by a, b. In particular, for any 1D function s(t), one can generate ”oriented” and

symmetric curve families patterns, for example fixing s as a sine function and choosing g
as g(z) = log(z) produces the family of spirals with different angles of twist, determined

by a, b, representing orientation as shown in Fig. 3. Other examples of function g(z) with

s being a sinusoid are also shown.

Geometric transformations defined by harmonic pairs allow generalization of LST to de-

tect symmetries beyond parallel line patterns. The generalization is a tensor representing

curvilinear orientation, ∠(a + ib), called a Generalized Structure Tensor (GST), and is

defined as follows:

GST = (I
(n)
20 , I

(n)
11 )T = (Γ{n,σ2

out
} ∗ (Γ{1,σ2

in
} ∗ f)2, |Γ{n,σ2

out
}| ∗ |Γ{1,σ2

in
} ∗ f |2)T , (5)

where Γ{n,σ2} is defined by (2). By changing n in the equation, in other words using

different complex filters in the last convolution, it is possible to detect the presence of any

harmonic curves, for example those in Fig. 3, and their respective orientation expressed as

2∠(a+bi). The result is a pair of images, (I
(n)
20 , I

(n)
11 ) representing the pattern (orientation

and certainty of presence), wherein orientation is determined by 2∠(a+ bi).

Figure 3: Set of harmonic functions with corresponding representation of structure tensor

Further, we choose the spatial supports of the filters, |Γn,σ2

|, radially and independent of

the symmetry index, n, to model more regions around a key point in the hope to afford

more unique identity for the point.

Accordingly, the local orientation image can be confined to a multiple tori. In a torus, the

orientation content around an h(x, y) key point can be expanded in a basis:

h(x, y) =
∑

k

hk(x, y), where hk(x, y) =
∑

n

cknψkn, (6)

with

ψkn = rµke
− r

2

2σ2

k e−inϕ/κk and ckn =< ψkn, hk > . (7)
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Here the image hk is the confined orientation image defined as

hk = |ψkn| · I
L
20 = |ψkn|

∑

n

ckne
−inϕ, (8)

in which ψkn is identical to Γ{n,σk}, except that ‖ψn‖ = 1 is assured via the normalization

constant κk and that the constant n of the symmetry order is independent of the exponent,

which is now represented by µk. The decoupling of n and µk is a necessity urged by

the wish to define arbitrary tori, in which we want to describe the (image) orientation

complexity at arbitrary symmetry level. Parameter σ2
k,out = σ2

k determines the radius of

the kth ring.

The advantage of this representation is that we can tune the outer scale filters used by GST

to be of desired radius/size and width/compactness as in Fig. 2 Right, such that we can

(mathematically) complete the description of orientation arbitrarily fine. In other words,

we can change the peak radius, ring thickness, as well as the symmetry order µk as desired,

to model the orientation information for different needs. The details on the relationship of

µk, σk with radii and width of the filter are omitted due to space limitations.

The result of scalar products of harmonic filters ψkn with an orientation image neighbor-

hood around a key point approximates the amount of presence of curve families, Fig. 3, in

rings around the key point.

The feature vector is populated by using formula (7), where hk is the normalized linear

symmetry image IL20 confined to a ring. The feature vector will be based on ckn

ckn =< ψkn, |ψkn| · I
L
20 >=< |ψkn|

2e−inϕ, IL20 >, (9)

where σ2
k are determined by rk, radius of k − th torus and n.

Likewise, an additional set of coefficients ek corresponding to energy in rings (IL11 of Eq.

(5)) can be obtained:

ek =< |ψkn|
2, |hk| > . (10)

It is straight forward to show that ek is constant when n changes. Hence it needs to be

calculated only once per ring.

The extracted ckn is normalized by ek, resulting in a complex feature array SAFE with

elements:

SAFEkn =
ckn
ek

∈ C, (11)

which is the suggested feature. By construction, |SAFEkn| ≤ 1 holds with equality if and

only if a member of a single curve family (the one determined by n) describes hk without

error.

The dimension of the feature vector describing a key point is fixed by the number of rings

and the size of projection base Nh inside each torus; in our case it equals to Nf × Nh,

since Nh is chosen to be the same for each torus.
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With rmin, rmax being the smallest and largest radii, we sampled other radii equidistantly

in exponential scale between [rmin, rmax] to determine all tori peak positions once m is

fixed as detailed next.

The fact that filter values are normalized via κk, such that ‖ψkn‖ = 1 makes feature

vectors from the larger rings to have the same importance as those from smaller rings (see

Fig. 4 for filter shapes and positions in the current application).

Figure 4: Left: Sample set of filters used for feature extraction in cores. Position of peaks,

width of filters, and area of intersection are fixed.

2.3 Rotation invariance of the features

An important property of the suggested features is their rotation invariance in the sense that

the features of a rotated image can be deduced from the features of the unrotated image if

the rotation angle is known. A feature can then be made rotation invariant if the associated

key point has an intrinsic orientation by aligning feature vector components to the intrin-

sic orientation. In our case, the core angle has been used as intrinsic orientation because

we will extract a SAFE for cores to illustrate its potential usefulness for recognition at

the level of core identities. Since Equations (6) and (9) constitute a Fourier basis recon-

struction of the torus orientation f̃k, our features can be shown to be rotation invariant as

follows:

SAFE′
kn = e2i(n+2)ϕ′

SAFEkn, (12)

where ϕ′ = ∠SAFEk,−1 represents the automatically computed parabolic symmetry

orientation, modeling the estimated core orientation. The SAFE′
kn features will then be

rotation invariant allowing the rotation compensation procedure to be implemented by a

simple multiplication at low cost (without image rotation).

Note that for n=-2 symmetry, log-spirals, there is no rotation compensation, which is also

not necessary since the angles of these are (absolutely) rotation invariant by themselves.
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3 Quality descriptors: data sufficiency and good model fit

The Structure Tensor operates in the complex space. Therefore, at every step we obtain

complex valued results such as IL20 in preprocessing stage, and SAFEkn in feature extrac-

tion step. The SAFEkn features differ from the commonly obtained real-valued feature

vectors since the complex number magnitudes always represent quality measurements.

As was described in Sec. 2.1, the structure tensor at an image point comprises the orienta-

tion vector I
(0)
20 and the signal strength I

(0)
11 . The complex scalar I

(0)
20 represents the direc-

tional dominance within its outer scale or the direction of major eigenvector, which follows

from the following eigenvalue, eigenvector direction representation of LST , [Big87]:

I
(0)
20 = (λmax − λmin)e

2iϕmax

I
(0)
11 = λmax + λmin.

(13)

Let us consider the case λmin = 0 and λmax F 0, which stems from a local image with

well-defined direction of isocurves being perfectly parallel. From Eq. (13) it follows that

|I
(0)
20 | = I

(0)
11 for the ideal case of perfect linear symmetry (see Fig. 3). Accordingly,

the vectorial summation magnitude |I
(0)
20 | would be strictly less than I

(0)
11 if the isocurves

would not be perfectly parallel. Thereby, normalization of the complex valued I
(0)
20 by I

(0)
11

yields a local quality measure, the statistics of which have been used to estimate the global

quality of a fingerprint [TW05], [FKB06].

In other words, |IL20| automatically demonstrates the amount of agreement between the

model and the (noisy) data. It is also bounded to be within a [0, 1] interval.

Further, by using f̃k = IL20 · |ψkn|, which is independent of n and is the orientation map

multiplied with torus, we make sure that image information inside Nf rings is ”marked”

for lack of data. This is needed to properly summarize the quality inside every ring so

that quality measures from different rings share the same ”quality scale”. Therefore, if an

extraction ring will miss some part of an image (for example, if a key point is close to

the boundary of the image, the ring will cover non-image areas), the quality metric will

reflect that in I
(0)
11 . For instance, since the image is set to zero outside of its boundaries, the

feature vector components will be less than 1, in their magnitudes. This is because it can

be shown that all harmonic wave families fulfill (via Schwarz inequality) the following:

|ckn| = |〈ψkn, f̃k〉| = |〈ψkn, |ψkn| · I
L
20〉| ≤ 〈|ψkn|, |ψkn| · |I

L
20|〉 = ek ≤ 1. (14)

The first inequality is because IL20 ≤ 1, Eq. (3) and ‖ψkn‖ = 1. Hence both |ckn|, ek, and

ckn/ek, are bounded by 1. If and only if there is sufficient data (|IL20|) in the entire ring,

will ek reach the value 1, and only if the model fits perfectly well will |ckn| reach ek. Thus

|SAFEkn| measures both data sufficiency and the goodness of model fit.
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4 Matching

For every key point, we have introduced an Nf×Nh complex feature vector. Our matching

score comprising the distance between reference (r ∈ C) and test (t ∈ C) features is based

(again) on the tight inequality between the scalar products:

MS =
< SAFE

r,SAFE
t >

< |SAFE
r|, |SAFE

t| >
∈ C. (15)

For the introduced matching metric, we obtain the complex matching score MS = a+ bi,
where ∠(a+ bi) measures the angle between two arrays with Nf ×Nh complex elements

each, and |a+ bi| shows the confidence in the measured global angle.

However, for a true pair of feature arrays, the matching score should yield a real and

positive number 1, in other words ∠(a + bi) = 0. Generally, the argument angles are

within [0, 2π], and the confidence measure is in an [0, 1] interval.

To fuse both confidence and the angle into a matching score, we therefore take the real

part of MS:

M̂S = Re(MS) = |MS|cos(∠MS) ∈ [−1, 1], (16)

where MS = −1 means maximal mismatch and MS = 1 means perfect match.

5 Experiments

5.1 Database

For testing SAFE descriptors, we have employed the only publicly available forensic fin-

gerprint database, that of the NIST SD27 [Gar]. It includes 258 pairs of (mated) fingermark

and fingerprint images. We selected images having either cores or loops (two cores) with a

total 263 core pairs in 201 mated fingerprint pairs. Cores (as well as minutiae) have well-

defined directions, while for other fingerprint patterns the intrinsic angle may not exist

(e.g., perfect whorls) or not be unique (e.g., perfect deltas). The suggested feature vector

can model key points having strong orientation variation in its surrounding area.

The more complex the orientation variation the more unique identity can be given by the

feature vector to the key point. This has motivated the use of core points as our test bed.

Additionally, core points allow examination of rotation invariance of the features conve-

niently. However, even neighborhoods of minutiae and other key points can be described

by SAFE features, if some strong intrinsic orientation exists in any ring.
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5.2 Performance

We have sampled the [2, 97] interval into 9 exponentially growing radii representing peaks

of tori and selected empirically the largest three tori; in other words, we chose Nf = 3 with

radii r = [27, 41, 63], respectively reflecting the fact that the fingermarks have bad quality

in rings close to core points. For the SD27 fingermark database, our feature vector is a 3×9
array. More than 3 radii can be set fixed in tenprints and the expert can include/exclude the

rings of a fingermark in a real scenario to match the newly constructed feature vector of a

key point in the fingermark with pre-calculated features of the tenprint database. However,

we have refrained from this (manual interference) in our experiments.

We performed client and impostor tests on 262 core points (corresponding to 33, 092 im-

postor verification tests) and observed an EER of 24%, Fig. 5, Left. It is worth noting

that verification is at core level, and due to the low quality of the fingermarks and the high

number of impostor tests, SAFE descriptors must equip each core with sufficiently unique

identity power. Thus, equal error rate demonstrates the amount of erroneously recognized

cores in the presence of massive core impostors. This is a good performance level with

only orientation image information around single key point because more key points and

minutiae can be used to recognized a fingermark.

It is problematic to relate the present features to other methods because the few published

studies use incomparably more manual interference (manually extracted minutiae) or suf-

ficiently more key points (minutiae constellations), but less image information in combi-

nation with matching software that are either proprietary or closed. The observed EER

using a publicly available (source code) minutiae-only matcher shows 36% EER [MB12]

performance on an ideal set (and 6% on a matched set - which is an unrealistic scenario),

which is significantly poorer than the achievement of the suggested method. The number

of images that is used differs in comparison with the protocol, but the goal of the paper is

to present the new concept of feature extraction. Further experiments on multiple minutiae

are required for benchmarking present work.

At the same time, forensic applications use rank-k identification rate, Fig. 5, Right. In

[PFJ13], a (manually matched) minutiae constellation together with extended minutiae-

based information are used to achieve rank-20 67% identification of fingermark, while we

are (currently) using a single point, but more image information to identify cores, resulting

in rank-20 58%. Most interestingly, our study concerns novel image-based features which

can be complementary to minutiae information.

Power of the feature is the ability to provide additional automatically extracted information

on images of poor quality; therefore, experiments are performed on forensic fingerprints

only, with ground truth information known.

In this paper we provide experiments for a core of the image to demonstrate the power of

a single point with increased orientation information. Suggested feature extracted around

the core can serve as a source of additional information for low quality noisy images if a

core was detected. Future work will include experiments on extending traditional features

of minutiae with the SAFE feature.

The feature predictably failed for the images where the automatic orientation map failed,
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Figure 5: EER and CMC curves of matching core points for the SD27 database

in other words, for smudged images, or images with an intersecting background of similar

frequency.

6 Conclusions and future work

We have proposed a novel feature extraction method that shows good discrimination abil-

ity of key points on bad quality images (of SD27 forensic fingerprint database). The SAFE

descriptors go beyond matching point locations and orientations alone, and utilize char-

acteristics of the image’s surrounding points. The proposed features have built-in quality

estimates as well as rotation invariance.

Results of matching forensic fingerprints indicate that similar features can be constructed

for other applications, such as for small contact area fingerprint sensors, irises, faces and

shoeprints, for example.

The current version of the algorithm can automatically extract image information without

manual intervention. Future work will include increasing the amount of key points to more

than one in order to improve the performance; as well as experiments on extending features

of minutiae, angle, and position, with the suggested feature. We also plan to investigate the

effect of the feature when applying it to other types of images, such as irises, for example.
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