
Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

42 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst,
Patrick Delfmann, Jörg Becker

Developing Graphical Model Editors
for Meta-Modelling Tools

Requirements, Conceptualisation, and Implementation

Meta-modelling tools have been proposed to facilitate the development and adoption of domain-specific
modelling languages (DSMLs). These languages specify a set of domain-specific concepts and assign
diagrammatic representations to them. A considerable amount of work has been done to develop meta-
modelling tools ensuring syntactical correctness of models created with DSMLs. However, little has been
published about the challenges of developing a graphical model editor for meta-modelling tools. Specifying how
conceptual elements of a DSML are to be represented graphically is often cumbersome. Moreover, tools are
sometimes too inflexible to handle advanced features beyond displaying static icons. Furthermore, graphical
representations must be kept consistent in case of reuse in multiple, potentially integrated DSMLs. This paper’s
aim is to carve out a set of requirements for graphical model editors as used in meta-modelling tools. We
present a conceptual model considering these requirements. Furthermore, we discuss an exemplary software
implementation of a model editor.

1 Motivation

Conceptual models are omnipresent in today’s
enterprises. In business process documentation
or reengineering projects, business process mod-
elling languages are the primary means to ac-
complish the project’s goals (Aguilar-Savén 2004).
Designing databases, either small-scale storages or
full-fledged data warehouses, is another important
application area of conceptual modelling (Teorey
1999). Yet another one is software engineering,
where conceptual models are an indispensable
tool to plan and organize development projects
(Larman 2004).

For whatever purpose conceptual modelling is
leveraged, there likely exists a standardised mod-
elling language. For instance, business processes
can be represented using the Business Process
Model and Notation (BPMN) (White 2004), data
models are often created with the Entity Relation-
ship (ER) Notation (Chen 1976), and software is
modelled using the Unified Modelling Language

(UML) (O. M. Group 2012b). As they are designed
to support as many application scenarios as pos-
sible, such languages are very expressive. Yet
this expressiveness comes at the cost of complex-
ity (Erickson and Siau 2007; Muehlen et al. 2007).
Furthermore, particularities of a specific applica-
tion scenario might require customization, for
instance, if an important feature is missing. Do-
main specific modelling languages (DSMLs) can
be a remedy to such problems, as they allow for
developing a fully customised modelling language
tailored towards a specific, concrete application
scenario (Frank 2011; Schmidt 2006).

There are numerous reasons why developing a
DSML could be advantageous compared to a stand-
ard language. Most importantly, domain specific
concepts can be represented directly within the
language, which emphasises their importance. In
a standard language, these concepts could either
be obfuscated or not representable at all. Tailoring
languages to the needs of an application scenario

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 43

also helps getting rid of unnecessary complexity.
Standard process modelling languages are some-
times criticised to be overly complex (Muehlen
et al. 2007). The same holds true for UML (Erick-
son and Siau 2007). It could also be advantageous
to customise the graphical representation of a
modelling language. For instance, activities of
business processes can be accompanied by vari-
ous icons to ease understanding (Mendling et al.
2010). Empirical studies substantiate the claim
that using DSMLs may increase performance
when working with models, for example, in a
software engineering context (Kosar et al. 2012).

Of course, there are not only benefits but also
costs associated with the decision of using a
DSML (Deursen et al. 2000). Most importantly,
the concepts to be incorporated into the language
have to be defined. Obviously, this task can be
arbitrarily complex depending on the domain
under consideration. The effort could be reduced
partially if existing DSMLs were available, in
which case they could be used right away or
modified if needed. Moreover, training employees
in using a DSML further increases costs. Finally,
actually implementing a conceptual language
specification within modelling software is another
cost driver in DSML applications. Thus, deciding
whether or not to use a DSML requires careful
consideration of the costs and benefits associated
with either choice. With our work, we strive
towards simplifying DSML implementations in
order to shift the trade-off between cost and
benefit to the advantage of DSMLs.

The main methodology for defining DSMLs is
meta-modelling. Meta-models describe the syntax
of DSMLs, that is, the modelling elements a lan-
guage consists of and how these elements can be
combined with each other. Numerous software
tools exist to support meta-model-based DSML
development. Examples are the Eclipse Graphical
Modeling Framework (GMF) or the Visual Studio
DSL Tools (Cook et al. 2007).

State of the art meta-modelling tools are applied
in challenging scenarios. Domain as well as mod-
elling experts collaboratively create a DSML prior

to a project. In case of changing requirements,
they may also have to change some aspects of
the DSML during the execution of the project.
Maintaining consistency of models created before
and after changes were made to the language
or its representation can be challenging. This is
particularly true for distributed modelling scen-
arios, which are common for large-scale projects.
Keeping a central, consistent version of the DSML
specification and distributing it to all modelling
clients is necessary.

Creating a meta-model is only one part of design-
ing a DSML. The other is defining how models
created with the language should be visualised.
This includes not only simple representational
decisions such as which icon should be used to
visualise a certain modelling element or which
type of arrow specifies a relation between two of
them. Rather, it must also describe more complex
aspects such as the behaviour of icons (e.g., a
UML class should increase in size when methods
are added to it), or implicit relationships between
elements (e.g., BPMN activities contained in pools
or swimlanes). Looking at existing DSML devel-
opment tools, we see a shortage of tools that offer
both sophisticated possibilities of designing mod-
elling languages at modelling tool runtime and
functionality to support distributed modelling.

The paper works out a list of requirements for
graphical model editors used in a DSML and
distributed modelling context. It provides a con-
ceptualisation of these requirements and discusses
an exemplary implementation of an editor within
a meta-modelling tool. In this context, distrib-
uted modelling refers to a modelling scenario
where the involved people are spatially dispersed.
Models as well as modelling languages are shared
among users (yet models are edited by one user
at a time). The model editor we present exhibits
a combination of distinctive features. It allows
for flexibly adapting languages and their repres-
entation not only prior to but during active tool
usage, which accounts for the fact that not all
requirements of a conceptual modelling project
may be known upfront. It ensures all users are

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

44 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

working on the most recent version of a language
specification. Furthermore, it allows for complex
behaviour in modelling element representation
but does not fall short in user-friendliness (i.e.,
does not require programming skills to define this
behaviour). Practitioners as well as researchers
benefit from this paper as it demonstrates how
to develop a graphical model editor for meta-
modelling tools with advanced representational
capabilities while maintaining opportunities for
flexible modelling language deployment at model-
ling tool runtime as well as ease of use.

While we believe our results are most useful
in the field of domain specific modelling, the
concepts are more general than that. Any other
graphical modelling language, including standard
notations, can be implemented as well. This could
be particularly useful if sticking to some standard
notation is required, yet subtle modifications are
still desired.

The remainder of the paper is organised as fol-
lows. In Section 2, we define capabilities for a
graphical model editor supporting distributed
modelling. We conduct a literature review and
survey existing software tools with respect to
these capabilities. In Section 3, we introduce a
conceptual model of a meta-modelling tool to
provide the background necessary to understand
subsequent sections of this paper. Section 4 de-
scribes requirements for a graphical model editor,
which are then conceptualised in Section 5. An
exemplary implementation following this con-
ceptualisation is provided in Section 6. Section 7
illustrates an application example for specifying
and using a modelling language. We conclude
the paper in Section 8 by summarizing our main
contributions, elaborating on limitations of our
approach, and providing an outlook to future
research.

2 Modelling Tool Capabilities

2.1 Capability Definition

Graphical modelling is done for numerous differ-
ent reasons. There is an abundance of business

process modelling languages such as BPMN, Petri
Nets, Event-driven process chains, and many
more. Surveys of these languages can be found
in Aguilar-Savén (2004) and Mili et al. (2010).
More generally, there are several other languages
for modelling Information Systems. These include
Data Flow Diagrams (DFD), ER Diagrams, the In-
tegrated Definition of Function Modelling (IDEF),
UML, and others. See Giaglis (2001) or Shen et al.
(2004) for surveys in this area. Additionally, there
are popular enterprise modelling frameworks
like the Multi-Perspective Enterprise Modelling
(MEMO) framework (Frank 2002), the Zachman
framework (Zachman 1987), the Architecture of
Integrated Information Systems (ARIS) (Scheer
2000), or Archimate (T. O. Group 2009), which all
provide a number of modelling languages. Below,
we synthetize generic capabilities a graphical
modelling editor should have in order to allow
for defining arbitrary languages, in style similar
to those mentioned above. They stem partly from
these modelling languages, but also from the
fact that a distributed (meta-) modelling scenario
should be supported.

In defining the capabilities, we restrict ourselves
to representational aspects of graphical modelling
languages used within the domain of enterprise
modelling. The capabilities thus reflect the set
of features a model editor has to offer to allow
for flexibly and conveniently drawing a model
graph and providing these graphs to users. Other
capabilities exist, yet are out of the scope of this
paper.

First, modelling editors can differ with respect
to support for specification of modelling lan-
guages at runtime (Capability C1: specification
at run-time). This means that the user of the
meta-modelling tool is able to specify her own
modelling language at tool runtime as opposed to
being forced to recompile the editor. This is usu-
ally achieved by providing a meta-meta language
that allows for creating the meta-model of the
newly created language (cf. Section 3 for more
details). Such a capability can be important since
without it, distributing updates of conceptual

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 45

and representational specifications of languages
requires recompiling (parts of) the modelling
tool’s code and thus distributing updates among
all clients.

Another aspect is whether the model editor sup-
ports multiple different languages instead of only
a single DSML (Capability C2: multiple languages).
Lack of this functionality means distributing a sep-
arate model editor among users for each language
and may hamper language integration.

To allow for domain- or user-specific representa-
tions of a language’s elements, tools must offer
functionality to design these representations,
meaning the concrete syntax. Offering an ed-
itor dedicated to designing representations of
languages can be important to facilitate rapid
language development even if the designer is not
particularly technically skilled (Capability C3:
editor for representations).

Regarding the functionality in terms of beha-
viour and appearance of model representations,
several capabilities can be identified. First and
foremost, graphical languages are typically rep-
resented using symbols. This is why selecting
and customizing these symbols is an essential
task of language design. The flexibility of a model
editor with respect to defining symbols largely de-
termines its usefulness, but also ease of use is an
important factor (Capability C4: customizability
of symbols).

To express relationships between the symbols,
edges must be supported as well. For those, the
same as for the symbols applies. They have to
be customisable to meet the requirements of the
language that shall be supported. For instance,
a choice between using solid lines for one type
of edge and dashed lines for another could be
made (Capability C5: customizability of edges).
Edges can also be combined with symbols to
even customise the edge’s start and end points
(Criterion C6: customizability of edge symbols).

Not all relationships have to be represented by
edges. Some may arise simply from the relat-
ive positioning of two symbols, or by definition

of the language itself. While at first sight, no
visualisation appears to be a model editor func-
tionality that is straightforward to implement,
documenting these relationships is in fact an im-
portant feature. In case that any reports should be
made based on models, having access to implicit
relationships is vital to access necessary informa-
tion (Capability C7: implicit relationships). The
importance of the distinction between relating
symbols through visible edges attached to speci-
fied connection points and relating them through
relative positioning is further emphasised by the
fact that frameworks for classifying visual lan-
guages use it as one of the main dimensions to
distinguish languages (Costagliola et al. 2002).

The final capability is supporting distributed
modelling via shared repositories of models and
DSMLs (Capability C8: shared repositories). Hav-
ing a centralised, consolidated repository of mod-
els instead of, for example, distributed flat-file stor-
age facilitates distributed modelling and makes it
easier to maintain a consistent state.

2.2 Search Strategy

In this section, we describe the search strategy
we employed to search for relevant tools. We
conducted a literature review to identify schol-
arly research in the field of graphical modelling
editors. Our review consists of two parts. First,
we conducted a structured keyword search us-
ing Google-Scholar to ensure a certain breath
necessary to cover this highly multidisciplinary
field. Second, we also conducted an unstructured
literature review based on the body of knowledge
we knew from prior experience.

As for the scope of this literature review, it is
important to emphasize that we were interested
in meta-modelling tools that provide visual lan-
guages designed to support enterprise modelling
scenarios (process modelling, data modelling, etc.).
In particular, we were interested in the graphical
model editors of such tools. Consequently, any
graphical modelling research related to different
fields, let it be cellular biology, machine learning,
or image processing, has not been analysed.

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

46 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker Enterprise Modelling and Information Systems Architectures

 Vol. X, No. X, Month 200X

4 Anonymised

Capability

Product [Source]

C1:

Spec. at

run-time

C2:

Multiple

languages

C3:

Editor for

rep.

C4:

Cust. of

symbols

C5:

Cust. of

edges

C6:

Cust. of

edge sym.

C7:

Implicit

rel.

C8:

Shared

repository

ADONIS (Junginger et al.

2000)

— X — B B B — X

ARIS (Davis 2008; Scheer

2000)

(X) X X B B B — X

AToM3 (Lara and

Vangheluwe 2002, 2004)

— X — B B B — X

DIAGEN (Minas 2002) — — — A A A — —

DIAMETA (Minas 2006) — — — A A A — —

DOME (Engstrom and

Krueger 2000)

— — — B B B — —

EuGENia (Kolovos et al.

2009)

— — — A A A X —

GEMS (J. White et al. 2007) — — (X) C B B — —

GenEd (Haarslev and Wessel

1996)

— X — B B B X X

GenGed (Bardohl 2002;

Bardohl and Ehrig 2000)

— X X B B B — X

GME (Ledeczi et al. 2001) X X — A A A — —

GMF (The Eclipse Graphical

Modeling Framework (GMF)

2012)

— — — A A A X —

GraMMI (Sapia et al. 2000) X X — A A A — X

JComposer (J. C. Grundy et

al. 1998)

— — — B B B — —

Marama (J. Grundy,

Hosking, Huh, et al. 2008;

J. Grundy, Hosking, Zhu, et

al. 2006)

X X X B B B X —

MetaEdit+ Ver. 4 (Tolvanen

and Rossi 2003)

X X X B B B — X

Moses (Esser and Janneck

2001)

X X — A A A — —

PDE (Kuhrmann 2011) — — (X) A B B X —

Pounamu (Zhu et al. 2007) X X X B B B — —

TIGER (Ermel et al. 2006) — — X B B B — —

VisPro (Zhang et al. 2001) — X — A A A — —

VMTS (Mészáros et al.

2008)

— X (X) A A A X —

VS DSLT (Cook et al. 2007) — — — A B B X —

Requirements R4 R14 R15 R3 R3, R5 R3, R5 R9, R10 R13

Table 1: Capabilities of domain-specific modelling or meta-modelling tools

The final capability is supporting distributed model-

ling via shared repositories of models and DSMLs

(Capability C8: shared repositories). Having a cen-

tralised, consolidated repository of models instead

of, for example, distributed flat-file storage facili-

tates distributed modelling and makes it easier to

maintain a consistent state.

2.2 Search Strategy

In this section, we describe the search strategy we

employed to search for relevant tools. We conducted

Table 1: Capabilities of domain-specific modelling or meta-modelling tools

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 47

To conduct the keyword search, we defined two
classes of terms. The first class contains the
terms ‘tool’ and ‘editor’. The second class con-
tains the terms ‘visual language’, ‘visual notation’,
‘graphical model’, ‘meta modelling’, ‘enterprise
modelling’ and ‘domain specific’. We combined
each term of the first class with each term of the
second class, resulting in a total of 12 keywords
that we entered into Google Scholar. For each
keyword, we considered the first 30 hits. Out of
these results we selected those papers published
in peer-reviewed journals and conference proceed-
ings. We did not consider monographs or links to
websites. The resulting set of papers was analysed
with respect to whether the tools they describe
fulfil the capabilities introduced above. This nar-
rowed down the set of papers to a selection of
27 papers representing 15 unique tools. We did
not consider papers describing visual languages
that cannot be used in the context of enterprise
modelling. Examples of such work include pa-
pers on visual languages for biology networks,
image processing, and education. We also ex-
cluded papers that contain a particular modelling
language, modelling framework, or language ex-
change format without presenting an according
implementation within a graphical model editor.
This also includes any kind of modelling tool
with no functionality to specify languages. Fur-
thermore, we did not consider papers presenting
model analysis approaches. Examples of such
work include, for instance, approaches to check
UML diagrams for consistency.

We added eight tools we knew to be related to the
resulting set of 15 tools and also included them in
the following tool survey.

2.3 Tool Survey

In this section, we evaluate the current state of
the art of 23 meta- and domain specific model-
ling tools for enterprise modelling against the
backdrop of the capabilities introduced above. We
demonstrate that while all tools satisfy some of
the capabilities, none of the tools provides com-
prehensive support for all of them. For reasons of

brevity, we will restrict ourselves to a detailed
description of those tools that are most promin-
ent in our opinion. The appendix contains more
information on the exact classification of each
tool.

In Tab. 1, all 23 tools are listed and compared
with respect to the capabilities. For capabilities
C1, C2, C3, C7 and C8, an ‘X’ indicates that
the corresponding features as described in the
previous section are available. We write ‘–’ in
case of the opposite. As special cases, capability
C1 is ranked ‘(X)’ if languages technically can be
added at run-time, but no user support is given to
define one, and capability C3 is ranked ‘(X)’ if an
editor exists but is a 3rd party editor that could be
attached to the tool.

For capabilities C4, C5 and C6, presence or ab-
sence cannot be judged that easily. Therefore,
we decided to rank them with respect to three
different categories ‘A’, ‘B’, or ‘C’, with decreasing
degree of support for the corresponding capabil-
ity.

For capabilities C4 and C6, which are those related
to symbols, we applied the following scheme: A
tool is rated ‘A’ (= high) when it allows virtually all
conceivable adaptations. For example, this is true
if programming languages or GUI frameworks are
used. It is rated ‘B’ if a set of visual primitives (e.g.,
lines and rectangles) are composed declaratively
to define the representation. We assign rating ‘C’
if static pictures are used.

For capability C5, which relates to edges, we
applied the following scheme: Rating ‘A’ means
that everything is customizable by programming
languages with a wide range of functionality. We
rate ‘B’ if a predefined set of properties exists
from which the user can choose. Category ‘C’
means no support for edge customisation (but
no tool has been scored ‘C’). While aggregated
results of tools and their capabilities can be found
in Tab. 1, we provide detailed information on each
rating in the appendix in Tables 2 to 24.

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

48 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

The first tool we evaluated is the Eclipse Graphical
Modeling Framework (GMF). It is a tool support-
ing the creation of graphical model editors and
modelling languages and allows for generating
source code out of a graphical model. It is built
on the Eclipse Modelling Framework (EMF) and
the Graphical Editor Framework (GEF), to which
it adds a layer of abstraction on top. The EMF
provides basic classes for representing models,
their serialisation and model constraint checking.
In combination with GEF and Draw2D, models
can be visualised. Draw2D provides layout and
rendering features for model elements and adds
an event propagation system for changes and re-
paint operations. Visualisations are composed of
predefined, basic elements (e.g., rectangles) from
Draw2D, which are mapped to meta-model ele-
ments. Advanced visualisation elements require
customised implementations. Thus, knowledge of
low-level procedural programming is required.

Another Eclipse-based tool is the Generic Eclipse
Modelling System (GEMS). It is designed to sup-
port rapid development of graphical modelling
tools (White et al. 2007). Icons (pictures) are
used to visualise modelling elements. They are
customised with Cascading Style Sheets (CSS).

Similar to GMF, TIGER supports generating graph-
ical model editors from a meta-model. It is also
based on EMF and GEF (Ermel et al. 2006). Model
element visualisations are specified using a visual
editor. This results in ease of use, which comes at
the cost of flexibility though. The elements are
closely related to GEF elements. Unlike the tools
discussed above, visualisations are specified in
the meta-model and are not hard-wired into the
modelling tools compiled from it.

Microsoft Visual Studios DSL Tools (VS DSLT) is
another tool for DSML design (Cook et al. 2007).
Like in GMF, generating a graphical model editor’s
source code is done according to a meta-model.
After compilation, the modelling tool is integrated
into Visual Studio as a plugin. Visualisation
of modelling elements can only be modified by
procedural programming.

Kuhrmann (2011) developed a meta-modelling
tool called Process Development Environment
(PDE). It is based upon Microsoft’s DSL Tools
and mainly adds a new graphical model editor on
top of it. The editor analyses a DSML and creates
corresponding generic templates. The templates
are based on the Extensible Application Markup
Language (XAML), with which GUIs can be de-
scribed declaratively. This external document
can then be modified using a software assistant.
Thus, the user is assisted while modifying the
visualisation, but is still required to possess a fair
amount of technical understanding to work with
the XAML code.

MetaEdit+ is another DSML tool primarily devel-
oped to support automatic code generation (Tol-
vanen and Rossi 2003). The MetaEdit+ workbench
allows for creating modelling languages with an
assistant or graphically with its own modelling
language. All DSMLs can be loaded from a shared
repository into the MetaEdit+ Modeller in order
to use them for modelling.

Yet another meta-modelling tool is the Generic
Modelling Environment (GME) (Ledeczi et al.
2001). It uses the UML class diagram notation for
meta-model definition. More complex rules can be
specified with Object Constraint Language (OCL)
expressions. Again, programming is required to
modify the way models are visualised.

A modelling tool extensively used in practice is
the ARIS Business Architect & Designer (Scheer
2000). It has a predefined set of over 200 modelling
languages (Davis 2008). The visual appearance of
the modelling language elements can be changed
with an editor. Specifying a new modelling lan-
guage from scratch is not possible for ordinary
ARIS users. They either have to be implemented
by procedural programming or can be imported.

Mészáros et al. (2008) designed an approach
similar to the graphical model editor presented
in this paper. It is called the Visual Modelling
and Transformation System (VMTS) and is based
on XAML. The authors use plugins which can
be mapped to (meta-) models in order to specify

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 49

the appearance of model elements. Therefore,
the appearance specification is stored separately
in XAML-files and can thus be edited by users
without recompiling code. Still, the user has to
restart VMTS.

Pounamu (Grundy et al. 2006, 2008) is a further
meta-modelling tool that allows for specifying
modelling languages without recompiling the
tool. The model editor incorporated into the tool
is capable of displaying models of all languages
that have been previously defined. The tool also
includes an editor for designing visual representa-
tions of language elements. The user can choose
from a predefined set of properties to customize
and display symbols, edges, and edge symbols.
Based on the literature we reviewed, the tool
is not capable of defining implicit relationships
between language elements and does not store
models and languages in a shared repository.

AToM3 (Lara and Vangheluwe 2002, 2004) is a
meta-modelling tool that provides a model editor
capable of displaying models developed in all
languages defined in the tool. Predefined visual
primitives are available to display symbols, edges,
as well as edge symbols. Models and languages
are stored in a shared repository thus facilitating
distributed modelling scenarios. The modelling
environment requires recompilation of the mod-
elling language definition if changes are being
made to the modelling language and a restart
if representations are changed. An editor for
designing representations is also not available.

Moses (Esser and Janneck 2001) is a meta-mo-
delling tool that allows for specifying and sub-
sequently using modelling languages without
recompiling the code. The model editor is capable
of displaying models developed in the previously
defined languages. Programming symbols, edges,
as well as edge symbols provides utmost flexibility.
The tool does not contain an editor for represent-
ations and does not allow for defining implicit
relationships between language elements. Models
and languages are stored in separate repositories.

Table 1 demonstrates that all meta-modelling
tools we evaluated have their strengths, but a tool
supporting comprehensive support for all of our
capabilities at the same time is lacking. Tools such
as GMF, GME, or VS DSLT offer extensive func-
tionality and great flexibility, but cannot be called
particularly user-friendly. Users who are not
technically skilled cannot be expected to make use
of all this functionality. Other tools such as ARIS
are more accessible for non-technical users, but
offer less flexibility with respect to the graphical
representation of models. The conceptualisation
of a graphical model editor presented in this paper
is meant to be a step towards closing this research
gap. It aims at offering an environment with suffi-
cient flexibility for the representation of advanced
language constructs while maintaining ease of
use by avoiding the necessity for programming.

3 A Conceptual Model of a
Meta-Modelling Tool

To define the basic modelling language elements
and to support the creation of a common ground
(Clark 1996), we first present the meta-meta-model
with which we specify languages. This model
provides the basis for supporting capabilities C1
and C2. It is also means to implement a shared
repository for both languages and their models
(C8).

Databases or repositories of modelling tools are
used to store all relevant model data, meaning
all model elements, relationships, attributes, etc.
A typical way of designing such databases is im-
plementing meta-models of supported modelling
languages directly. This means that for each mod-
elling language the corresponding meta-model
is directly created in the database or, more pre-
cisely, the meta-model elements are transformed
into database tables. However, a meta-modelling
tool has to provide functionality for modelling
language design at run-time. The user of the
tool should thus be able to specify a modelling
language without changing the implementation of
the modelling tool. Designing a meta-modelling
tool’s database in the ‘conventional’ modelling

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

50 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Vocabulary D,TElementType

SourceRole

Role

RelationshipType

(0,n)(0,n)

(1,1)(1,1)

ObjectType

Language
(0,n) (1,n)

(1,1)

(1,n)

TargetRole

ObjectElement

Relationship

(0,n)

(1,1)

D,T
Element

Occurrence

Meta-meta-model

Meta-model

Project Model

Object

Occurrence

Relationship

Occurrence

D,T

(0,n) (1,1)

(0,n)

(1,1)

(0,n)

(1,1)

(0,n) (1,1)

Source

Element

Target

Element

(0,n)(0,n)

(1,1) (1,1) Target

Occurrence

(0,n)(0,n)

(1,1) (1,1)

Source

Occurrence

(0,n)

(1,1)

domain

directed

value

Inheritance
(0,1)

(0,n)

multiplicity multiplicity

Figure 1: Meta-meta-model of the modelling environment

tool manner would require generating and/or al-
tering database schemas dynamically (at runtime
of the modelling tool), as changes to meta-models
would translate to changes of database schemas.
To avoid this, we use a generic data model capable
of storing all sorts of meta-models (i.e., languages)
and their corresponding models (i.e., models cre-
ated with these languages). Consequently, this
data model integrates both a meta-meta-model
enabling users to specify modelling languages (i.e.,
the instances of the meta-meta-model, namely the
particular language-related meta-models) and a
meta-model storing the models (i.e., the instances
of the meta-model, namely the particular models).
Both sections are related, meaning that all model

elements (e.g., a task ‘place order’) can be assigned
to their element type (e.g., ‘BPMN task’).

This rationale implies that the tool we are pro-
posing here does not contain a graphical meta--
language that a language designer can use to
create meta-models. Instead, the meta-meta-
model is defined by the tool’s database structure
(cf. upper part of Fig. 1). This means, that a
modelling language is not created by modelling
its meta-model using a graphical meta-language
like, for instance, ERM or UML class diagrams.
Instead, the language designer creates all basic
language constructs constituting the language’s
syntax by filling in forms, which are then stored
in the database. We call the basic construct that

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 51

all modelling languages consist of an Element-
Type (cf. Fig. 1). It represents any atomic part
of a modelling language. Element types repres-
ent the abstract syntax and via their names also
the semantics of the modelling language con-
structs (Frank and Prasse 1997). Element types
can be split into constitutional vertex types (e.g.,
‘ERM Entity Type’), called ObjectType, and the
edge types between them, called RelationshipType
(e.g., ‘EPC control flow’).

A further important part of modelling languages
is attributes. Attributes describe specific charac-
teristics associated with an object or relationship.
Our tool includes attribute types that can be as-
signed to object types and relationship types.
Normally, attribute types represent artefacts be-
ing existentially dependent on their associated
object types or relationship types (i.e., they are
assigned 1 : 1 to object types or relationship
types, e.g., in case of a caption). In order to
provide a more flexible way to assign attribute
types to object types or relationship types, we
allow different kinds of assignment multiplicities.
This means that, for instance, we can assign an
attribute of the same type more than once to
an object or relationship and, in addition, also
delete an attribute (not only its value) during
the modelling process (like, e.g., when adding or
deleting multiple comments or descriptions). This
way, attributes behave similarly to objects.

Consequently, we regard attribute types as special
kinds of object types that do not have a graphical
vertex representation in the model editor. To
differentiate between object types representing
attribute types and ‘regular’ object types we
introduce the concept of a domain. Each object
type has a domain that specifies its data type (e.g.,
String or Integer). If the domain is set to null, the
object type represents a ‘regular’ object type. If
the domain carries a value, the corresponding
object type represents an attribute type. In this
case, an attribute that instantiates this attribute
type does not have a graphical representation.
Instead, it is displayed in an attribute editor of
the assigned visual model element.

In order to define attribute types or relationship
types only once for multiple object types, an
object type can inherit from a super object type.
The relationship type is associated with both a
source and target element type, which are the
two element types it can connect (e.g., the edge
between an ERM Entity Type and an ERM Rela-
tionship Type). Additionally, a relationship type
defines the assignment of an attribute type to an
element type (e.g., the multiplicity attribute type
of an ERM edge type).

In some modelling languages, element types can
adopt different roles, depending on the context
in which they are used (e.g., the ERM relational
entity type can be used as an ERM relationship
type, to which only ERM entity types can connect,
and as an ERM entity type, to which only ERM
relationship types can connect). This requires
specifying different Roles of element types. To
facilitate reusability, roles are not directly asso-
ciated with the element type. Rather, they are
assigned to a construct called Vocabulary. The
vocabulary specifies the modelling Languages an
element type belongs to. This way, it is possible
to reuse element types in different modelling lan-
guages. Furthermore, this allows for specifying
different roles an element type may assume de-
pending on the language (e.g., a relational entity
type has two different roles when used in an ERM
(see above), but has only one role when used as a
data resource annotation in a BPMN model).

As already stated, roles define the way element
types can be connected by edges and links. Con-
sequently, relationship types always start from a
Source element type’s role and lead to a Target
element type’s role. Source and target define
the direction of a relationship type. In addition,
the number of relations a source or target can
participate in is defined by the multiplicity (e.g.,
0 : 1 or 0 : n). In order to also define undirected
relationship types, the relationship type has an
attribute directed, which is either TRUE or FALSE.
In the latter case, the direction of a corresponding
relationship is ignored. Furthermore, the fact that

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

52 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

roles are assigned to element types rather than ob-
ject types makes it possible to define relationship
types that connect other relationship types (like it
is done, e.g., when connecting association classes
to association edges in UML Class Diagrams).

Once defined, a modelling language can be used
to create models. This is why a particular Model
always belongs to a modelling language. In other
words, a model is an instance of a modelling
language.

Analogously, each particular model Element be-
longs to a certain element type, meaning it is
instantiated from its element type. Model ele-
ments further belong to a modelling Project, which
contains all the models necessary to describe, for
instance, the business processes and data struc-
tures of a company. Elements are specialised as
Objects (e.g., a particular activity named ‘place
order’, or a particular attribute named ‘name’) and
Relationships (e.g., a particular edge connecting
an activity and an associated organisational unit),
structurally equivalent to the according language
definition. Accordingly, each Relationship origin-
ates from a Source element and leads to a Target
element. The roles a relationship can connect to
and the information whether or not it is directed
are taken from the language specification. Objects
can take values in case of attributes that comply
with the domain defined through their object
types. For example, an object named ‘name’ may
carry a value ‘place order’ of the domain ‘String’.
This object, in turn, may be associated with an-
other object of the type ‘activity’ carrying no
value.

The business logic of the tool ensures that the
modeller can only draw objects and relationships
that have corresponding object and relationship
types. This means, for instance, that once the
modeller connects two objects with one another,
the business logic determines if there is a cor-
responding relationship type that connects the
corresponding object types. This is achieved by
querying the RelationshipType table. If such a
relationship type exists, the relationship is drawn

in the model editor. If it does not, the modeller is
informed that there exists no corresponding type
for the relationship she is trying to draw. If there
are multiple relationship types defined for any
two object types, the modeller has to select the
type belonging to the particular relationship. In
doing so, the tool ensures that the model actually
confirms to the syntactical constraints defined by
its language.

To allow for reusing elements within a model-
ling project, for instance, for reusing an entity
type as a resource in a BPMN model that was
originally defined in an ERM, we introduce the
ElementOccurrence. Occurrences inherit all the
attributes associated by multiplicity (1 : 1) (i.e., at-
tributes existentially dependent on their assigned
element) with their definition. Every occurrence
originates from an element definition and can be
reused in different models. ObjectOccurrences and
RelationshipOccurrences are defined structurally
analogous to elements, objects and relationships
as well as element types, object types and rela-
tionship types.

In comparison to other meta-meta-models using
the framework of Kern et al. (2011), the presented
meta-meta-model is comparable to the meta-meta-
model of GME (Ledeczi et al. 2001). In contrast to
GME the presented model does not incorporate
the Port concept, which defines additional con-
straints on how objects can be connected. Such
constraints translate to larger model sections that
have to be or may not be included in the overall
model graph. These constraints thus go beyond
defining relationships between adjacent objects.
As such constraints can most easily be defined
and verified using a pattern matching approach,
our meta-modelling tool contains a respective
mechanism (Bräuer et al. 2013; Delfmann et al.
2010; Dietrich et al. 2011). As pattern matching,
however, is out of the scope of the paper at hand,
we did not include our pattern matching approach
here. Another possibility to define and check
more advanced syntactical constraints is using the
Object Constraint Language (OCL) (O. M. Group
2012a). In contrast to GME, our meta-meta-model

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 53

allows to assign multiple attributes to an object
depending on the multiplicities of the relationship
type. A further difference to GME is that our
model only allows inheritance from a single super
object.

This conceptual model of a meta-modelling tool
could also be extended to support model perspect-
ives, which allow customizing models for different
user groups (e.g., variants of the graphical lan-
guage notation). This extension is described
in Delfmann et al. (2008), but as we want to con-
centrate on the core functionalities of a graphical
model editor, it is not presented here.

The presented conceptual model of a meta-model-
ling tool defines the data model to store all rele-
vant model and modelling language data. There-
fore, it can be seen as a shared repository (cf.
C8), allowing to define multiple modelling lan-
guages (C2) and to instantiate these languages at
modelling tool runtime (C1). To visualise models
based on these specifications, a meta-modelling
tool has to incorporate corresponding representa-
tional mechanisms. In the following, we derive
requirements to be met by such mechanisms.

4 Graphical Model Editor Requirements

Below, we synthetize generic requirements a
graphical modelling editor should fulfil in order
to allow for defining arbitrary languages, in style
similar to those mentioned in the beginning of
Section 2. They stem partly from these mod-
elling languages, from the literature of visual
languages (Costagliola et al. 2002), but also from
the fact that a distributed meta-modelling scen-
ario should be supported. Thus, the capabilities of
Tab. 1 are reflected in them.

The basic requirement of a graphical model ed-
itor is to visualise the elements of a modelling
language. Therefore, a 2D coordinate system is
necessary (R1) (Costagliola et al. 2002). In the fol-
lowing, we call it the model canvas. Any graphical
representation needs a position on this canvas,
meaning some coordinates indicating where it is
located (R2) (Costagliola et al. 2002). Each element

of a modelling language has its own graphical
representation (R3). This requirement relates to
C4, C5 and C6 of Tab. 1, because it provides the
basic functionality for the customizability of edge
and vertex symbols. To account for modelling tool
runtime specification capabilities, the graphical
representation has to be configurable even after
the meta-modelling tool’s source code has been
compiled (R4 , relates to C1). Therefore, it has to
be importable and storable (serialisable).

All graphical modelling languages either use a
visible or invisible (implicit) relation to estab-
lish the connection between modelling elements
(Costagliola et al. 2002). The easiest way to rep-
resent visible relations is to use edges between
elements and provide them with different looks
for easy distinction (R5, relates to C5 and C6)
(cf. e.g., Fig. 3). Thus, an edge needs a start and
end location specifying where it is attached to
the elements it connects (R6) (Costagliola et al.
2002). Visible edges also have a path on the model
canvas (R7) (Costagliola et al. 2002). The path
describes the way that is taken from its start to
end point. To support proper routing of edges, an
interface to graph layout algorithms is vital (R8).
For instance, drawing huge, complicated models
such that edges do not cross can facilitate model
understanding (Himsolt 1995). Also, certain flow
layouts such as top to bottom or left to right could
be of use, for example, to indicate the flow of time
in process models.

Implicit relationships between elements must
be specifiable based on the relative position of
elements to each other (R9, relates to C7) (cf.
the package Graphical Model Editor in Fig. 4)
(Costagliola et al. 2002). Properly documenting
implicit relationships is especially important if
reports of any kind are to be created based on
the model, as the model could not be interpreted
correctly with these associations missing. There-
fore, explicitly supporting the documentation
of implicit relations within the data model in-
stead of leaving the relation truly implicit (i.e.,
only visible through relative positions and sizes

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

54 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

as specified by a modeller) is an important re-
quirement. Furthermore, when establishing such
implicit relationships the element that should
contain another one should automatically adapt
to the size of its content or support manual size
modifications (R10) (e.g., a UML class should grow
when methods are added to it).

Some of the graphical representations need la-
bels to further describe the modelling language
elements (R11) (Costagliola et al. 2002). Con-
sequently, specification of labels and their value
domains is a necessary requirement.

To assist the user during modelling, the engine
should provide certain standard functionality
(R12) which could be a mechanism to align model
elements, to scroll through the model canvas, or
to zoom in and out. Other such functionality
could be model export and printing.

In contrast to modelling tools with a predefined
set of representations, a meta-modelling tool
can configure the representation of each model
element. Therefore, it is necessary to integrate
the representational aspects into the data model
of the tool (cf. section 3) and thereby to enable the
distribution of the representations by this shared
repository (R13, relates to C8). The representation
of model elements should be reusable in other
modelling languages (R14, relates to C2). To
design the representations of modelling language
elements, a user-friendly tool (e.g., a wizard) is
necessary (R15, relates to C3).

5 Concept of a Graphical Model Editor
As explained in the last section, integrating repre-
sentational aspects into the tool’s data model is
crucial if the representation of a language should
be decoupled from the language itself (e.g., for re-
use in other languages). Following best practices
in software development (Fowler 2002), we de-
cided to split functionality for data management
and visualisation. Therefore, we first describe the
representational parts (data management) and
proceed with model visualisation parts (visual-
isation) as well as the connections between the
former and the latter.

5.1 Data Management

Figure 2 depicts an excerpt of the extended data
model of the tool. Any grey-shaded element
is introduced to address one or more of the re-
quirements discussed in Section 4. All remaining
elements are those introduced in Section 3, defin-
ing the abstract syntax in the meta-meta-model.
As the aforementioned requirements specify the
graphical representation of the language elements
and depend on the abstract syntax, the newly
introduced elements define the concrete syntax
(Frank and Prasse 1997).

For each vocabulary, a Representation is defined
by the VocabularyRepresentation relation, which
allows for reusing representations in different
languages (R14). A representation defines how an
element type instance is represented according
to a language. This could either be a graph-
ical visualisation as a VertexRepresentation or
EdgeRepresentation, or a non-graphical one as
AttributeRepresentations used for attribute types,
AttributeEdgeRepresentation used for the edge
types connecting attribute types or ImplicitEdge--
Representation for implicit relationships (here,
the business logic checks that only valid relations
between a representation subtype and a vocabu-
lary and its corresponding element type can be
defined). An attribute representation is not repres-
ented by any sort of icon on the drawing canvas,
but is represented, for instance, in a menu that
can be opened via a right-click on the associated
vertex object (e.g., a process activity (vertex) can
be assigned to one or more comments as attrib-
utes (via menu)). Attribute edges relate attribute
objects to other objects. Implicit edges are used
whenever the relationship of two objects is set up
according to their mutual spatial position (e.g.,
when relating process activities to swimlanes).

A VertexRepresentation or EdgeRepresentation de-
fines what the graphical visualisation of elements
look like and how they behave (R3, R4, R5). A
specification of such a representation itself can
be conceptualised as a meta-model (cf., e.g., Do-
mokos and Varró 2002), consisting, for instance,

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 55

Language Role

Vocabulary

Representation
Representation

(0,n)

ConnectionPoint

(1,1)

(0,n)
DropZone

(1,1)

(1,1)

(0,n)

(0,n)

(0,n)

(0,n)

(0,n)

Meta-model

Object

Occurrence

Relationship

Occurrence

postition

path

(0,n)

Target

Connection

Point

Meta-meta-model

Representational aspects

Source

Connection

Point

(0,n)

(0,1) (0,1)

Non-graphical

Representation

Vertex

Representation
D,T

object

ElementTypeVocabulary
(0,n) (1,n)

Graphical

Representation
D,T

Edge

Representation

Figure 2: Excerpt of the extended meta-meta-model and meta-model

of lines, circles, rectangles and the like. Expli-
citly defining such a meta-model is not a good
idea though. Any changes or new, unforeseen
requirements could potentially entail the neces-
sity for drastic changes to a low level drawing
engine based on this meta-model. To account
for steadily changing visualisation technology,
we abstain from defining any such meta-model
ourselves. Rather, we decided to store an object
(of the type Binary Large Object (BLOB)) in the
Representation, which can be used to store the
information required by the visualisation tech-
nology in use. Support for user-friendly editing
of representations is of course interdependent
with the chosen technology. How to accomplish
this without burdening a user with programming
tasks will be discussed in Section 6.

A VocabularyRepresentation consists of a symbolic
representation (R3, R4, R5), connection points
(R6) and so-called drop zones (R9). Connection
points are those points edges can be attached to.
The ConnectionPoint entity could either represent
a distinctive point on the symbol’s geometry or

alternatively a complete geometry itself (line,
circle, etc.) (Costagliola et al. 2002). While the
latter alternative can have several advantages
such as allowing a layout algorithm to choose
the particular endpoint on the symbol itself, we
have chosen the first one instead. It is easier to
implement and the additional complexity is in
our opinion not worth the effort.

To allow for implicit relations (R9) we introduce
areas called DropZones, which allow dropping a
model element into another one. Once dropped,
the dropped element will be related to the drop
zone’s element. Both ConnectionPoints and Drop-
Zones can be assigned to roles.

Connection points and drop zones are not only
represented in the tool’s data model, but require a
representation within the encapsulated objects
stored in the representation types. What these ob-
jects look like depends on the technology chosen
for visualisation. We assume the technology is
capable of equipping each connection point and
drop zone with unique identifiers. In this case,

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

56 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

it is sufficient to store these identifiers within
the data model’s entities to match them onto
the visualisation technology representation of
connection points and drop zones. This allows for
reusing objects of the visualisation technology
in different contexts (i.e., for different Vocabu-
laryRepresentation types).

To store the actual positions of object occurrences
on the model canvas (R2) as well as the path
of a visible relationship occurrence (R7), object
and relationship occurrences are assigned to a
corresponding attribute. The path of a visible
relationship occurrence is drawn between two
connection points (cf. Source- and TargetConnec-
tionPoint in Fig. 2) (R6).

The data model described above can be shared
using, for example, a client-server architecture,
which provides a shared repository for modelling
language representations (R13) (cf. Section 3). Our
approach uses such an architecture. To support a
shared repository each modeller has to explicitly
lock a model before it can be changed. The model
editor is located on the client side and visualises
the data retrieved from the server that corres-
ponds to the described data model (cf. Delfmann
et al. (2008) for more technical details).

5.2 Visualisation

Another aspect is the conceptual model of the
graphical model editor (cf. Fig. 4). It describes
a view on the data model to visualise the data.
To create a common understanding of the terms
used in this section, we discuss a mock-up of a
model editor (depicted in Fig. 3) along with the
conceptual model (depicted in Fig. 4).

A model is visualised in form of a Diagram hav-
ing Vertices and Edges as children (cf. Fig. 3 and
Fig. 4) (R1). A vertex corresponds to exactly one
ObjectOccurrence of the data model and an edge re-
presents exactly one RelationshipOccurrence. Each
vertex has exactly one VertexTemplate that de-
fines its appearance (R3), the available connection
points (R6), and drop zones (R9). Hence, a vertex
template represents a particular ObjectType, which

defines the type of an object occurrence. This
also allows for describing all object types visually
by means of vertex templates. The appearance
of an edge is determined by the EdgeTemplate.
As we described in Section 3, it is possible to
define an edge between edges. Therefore, the
edge template also defines all connection points
(EdgeTemplateConnectionPoints) on edges (R6).
Consequently, an edge template corresponds to a
RelationshipType.

Connection points of vertex and edge templates
correspond to one ConnectionPoint of the data
model. A drop zone of the vertex template repre-
sents only one DropZone. Therefore, all connec-
tion points and drop zones are linked to specific
Roles.

As mentioned above, an attribute representation
is represented, for example, by a menu that can be
opened via a right-click on the associated vertex
object. The implicit edge is also not represented
on the diagram, as it is used whenever the rela-
tionship of two objects is set up according to their
mutual spatial position.

6 Implementation

In this section, we describe the implementation
of the graphical model editor as generic and pro-
gramming language-independent as possible. This
simplifies any attempts to adapt or re-implement
our graphical model editor.

The visualisation technology to be used in the
graphical model editor is the most important
choice to make. It determines which features the
graphical model editor will offer as well as the
effort required to implement it. Using simple
pictures has several drawbacks. First, pictures
can only scale vertically and horizontally, which
would not suite the requirements, for instance,
of a UML class with many methods but a few
attributes. Second, the quality of pictures is
predefined and is worsening when the image
is enlarged.

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 57

Vertex

Edge

DiagramTemplate

Preview Panel

Vertex

Templates

Figure 3: Mock-up of the graphical model editor

The alternative is using vector formats such as
Scalable Vector Graphics (SVG), or GUI frame-
works. In contrast to vector formats, modern
GUI frameworks already incorporate the func-
tionality for scaling and aligning their elements
to show all viewable sub-elements. All of them
have the features necessary to visualise model
elements (e.g., drawing lines as well as rectangles
or providing reusable layout containers). They
differ with respect to their low level drawing
technology. For example, Windows Presentation
Foundation (WPF) is using vectors while Java
Abstract Window Toolkit (AWT) is using pixel
based operations.

For reasons of performance, vector usage, declar-
ative GUI definition and adaptation, as well as
support for serialisability, we have chosen WPF
for our implementation. WPF was designed to
take advantage of modern graphics hardware and
comes with support for DirectX. This acceler-
ates the drawing of GUIs by utilizing the graphic
hardware whenever possible. Definition of user
interfaces and the program code implementing it
are separated by WPF. The Extensible Application
Markup Language (XAML) is used to describe the
user interface in a declarative way. Consequently,
model element representations can be defined
using XAML. No procedural coding is necessary.

All classes from Fig. 4 are implemented as WPF
UserControls, with Diagram and TemplatePre-
viewPanel being exceptions to this rule. They

inherit from specific Panel classes. Thereby, the
event handling and drawing mechanism of WPF
are inherited.

The Diagram is used as a root container for all
model elements (cf. Fig. 4) (R1). As all model
elements have a 2D position on the model (R2),
we inherited from a WPF Canvas and extended it.
We implemented a visual grid over the canvas
along with snap-to-grid functionality for easier
alignment. For zooming and scrolling we further
extended the Canvas (R12). To allow for graphical
export and printing, we could reuse the corres-
ponding WPF features and implemented them in
the Diagram class (R12).

The VertexTemplate is used to describe all repre-
sentational aspects of a vertex. Along with the
actual graphical Symbol, which is drawn on the
diagram, it defines available connection points,
drop zones, and font properties (cf. Fig. 4). In
XAML, the symbol is described in form of a string
and is deserialised into a WPF object when it
is drawn by a GUI element. This allows using
any feature offered by WPF. One exemplary
feature is the binding feature, which allows for
self-refreshing visual properties that are linked to
the attribute of an object.

To represent all available object types of a model-
ling language, the corresponding vertex templates
are displayed by their symbol in the Template-
PreviewPanel (cf. Fig. 3 and Fig. 4). The template

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

58 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

...

Diagram

Text

IDiagramElement

X, Y, Z

Width, Height

Vertex

Symbol

VertexTemplate

X, Y

VertexTemplate

ConnectionPoint

0..*

ConnectionPoints

VertexTemplate 1..1

Path

Z

Edge

StartConnectionPoint

EndConnectionPoint

StartSymbol

EndSymbol

Colour

Thickness

Pattern

EdgeTemplate

X

EdgeTemplate

ConnectionPoint

ConnectionPoints

0..*

Diagram Children

0..*1..1

1..1EdgeTemplate

Caption

FontSize

FontFamily

ITemplate

VertexTemplate

DropZone

DropZones0..*

Graphical Model Editor

Template

PreviewPanel

Items

0..*

Route()

PreviewRoute()

IEdgeRouter

1..1Router

Figure 4: Excerpt of the graphical model editor UML class diagram

preview panel inherits from a HeaderedItemsCon-
trol and allows creating vertices by dragging
vertex templates onto the diagram. After drop-
ping, a new Vertex will be created by the diagram,
which uses the vertex template as a master.

The new vertex deserialises the symbol from the
template and uses it as its own representation.
Therefor, the vertex was implemented by three
layers (cf. Fig. 5 a). The deepest layer is used
for the actual symbol, which is defined by the
vertex template attribute symbol. The declarative
XAML code can now access the attributes of the
vertex or the object occurrence’s attributes over
the binding feature and can adapt its visualisation

to them. On top of the symbol layer, we added the
text layer. On the highest layer we implemented
the connection point layer. We did so, because
otherwise the text or symbol layer would hide
the connection points. The actual position of the
vertex is saved as X, Y, and Z coordinates. Z
defines how the elements are stacked on top of
each other.

The connection point positions on the layer are
defined by percentage values. X = 0 and Y =
0 defines the upper left edge, whereas X = 1
and Y = 1 defines the lower right edge. Using
percentage values allows using the connection

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 59

Text

Symbol layer

Text layer

Connection

point layer

Text

Line layer

Text layer

Connection

point layer

Start symbol layer

End symbol layer

a) Vertex b) Edge

Figure 5: Exploded view of the Vertex and Edge UserControl

point layer independently from the actual Width
and Height of the vertex.

The drop zone implementation inherits from an
ItemsControl. Thus, it is a class which can be
integrated into the declarative XAML description.
This allows for integrating a drop zone in the
symbol. Furthermore, it is automatically arranged
by the layout components that are integrated in
WPF. When, for instance, a swimlane is changed
in height or width, the corresponding drop zone
is automatically altered to the same width or
height. To use a drop zone, model elements can
be dragged onto the drop zone area. If a valid
relationship type is defined, the model element
will be added to the drop zone. The drop zone
itself has its own panel to arrange its children.
By doing so, the layout container of WPF, like a
Canvas or a StackPanel, can be reused (R10). This
allows automatically adapting to the size of the
drop zone’s content or supporting manual size
modifications.

The EdgeTemplate defines the appearance of the
five edge layers (cf. Fig. 5 b). The lowest line layer
is used to draw a line along the Path of an edge,
which consist of x and y coordinates (cf. Fig. 4).
The edge template specifies Thickness, Colour and
Pattern of a line. Patterns define regular gaps
in the line. The start and end symbol layers are
used to display the rotated Start- and EndSymbol

according to the actual line direction. These
symbols are defined by the edge template. In
contrast to the vertex, the connection points of
the edge are defined by only one value X. It
defines the position on the line by a percentage
value, where X = 0 means at the very beginning
and X = 1 means at the end.

The font properties of the vertex or edge text are
defined by the attributes FontSize and FontFamily
of the templates, which are inherited from ITem-
plate. To distinguish between different templates
the Caption attribute of ITemplate is used to store
a description. The actual edge or vertex Text is
inherited from IDiagramElement (R11).

To create an edge, we used a system to detect the
actual element the mouse points to and allowed
to draw an edge only between two connection
points. The corresponding relationship type of an
edge is determined automatically if it is unique
with respect to the connection points’ roles. Oth-
erwise, a wizard asks the user to choose one.
The connected Start- and EndConnectionPoint are
stored in the edge to save the start and end point.
Whether two connection points can be connected
at all depends on whether a suitable relationship
type has been specified. Therefore, an algorithm
hides invalid destination connections points once
a user started drawing an edge (i.e., specified the
source connection point).

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

60 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

The IEdgeRouter interface defines two functions.
They are used while drawing an edge between
two connection points (PreviewRoute) and to com-
pute the edge’s route through the diagram (Route)
(cf. Fig. 4) (R8). The actual routing algorithm
implements this interface and allows, for exam-
ple, an orthogonal routing of an edge. As each
edge has its own EdgeRouter, different routing
strategies can be applied to edges. Due to the
complexity of layout algorithms for vertices or
complete diagrams (e.g., from the area of graph
drawing), these features are out of the scope of
this paper.

The integration of graphical model editor and rep-
resentational aspects is done by serializing both
the VertexTemplate as well as the EdgeTemplate
and storing them in the corresponding repres-
entation. The edge and vertex templates were
enriched to define not only their appearance with
XAML, but also connection points, drop zones
and the font properties.

As all this information must be stored in a spe-
cial format we implemented a so-called Shape
Designer (R15). It allows a user-friendly edit-
ing of templates and stores them in a XML-file.
This XML string is imported and stored in the
representation.

To manage attributes an editor can be opened
using a menu. The creation of model elements,
the change of position, etc. is signalled by events
to the modelling environment, which creates or
changes the corresponding objects in the data
management layer. The events are consolidated
in the Diagram class to provide a central access
point for the meta-meta modelling environment.
To draw an already created model, the API of the
graphical model editor is used.

7 Defining Visual and Conceptual
Aspects of a Modelling Language – an
Example

The process of developing and using a concep-
tual modelling language is exemplarily depicted
in Fig. 6. At first, a set of vector graphics has

to be defined representing the object types the
language is supposed to offer (Step 1). These
vector graphics represent the shapes the modeller
can use to develop the conceptual models. To
define vector graphics, external software has to be
used. To accomplish this task, basically any soft-
ware that supports exporting XAML-files can be
used. Examples of appropriate tools are Microsoft
Expression Design or the open source software
Inkscape. For more advanced vector graphics,
that incorporate, for instance, a layout container,
the GUI designer Microsoft Expression Blend can
be used.

In a second step, the vector graphics are then
imported into the shape designer. The shape
designer allows for creating a template file con-
taining all imported vector graphics. Each of these
vector graphics then has to be augmented by two
attributes specifying (a) the connection points of
the shape and (b) the way it can be labelled. The
connection points represent the points an edge
will be able to connect to. These points are speci-
fied using a grid structure that is superimposed on
the vector graphic to help adjusting their position.
To specify a label template for a vector graphic,
the shape designer allows for selecting the font
type as well as its size.

To represent the relationship types of a modelling
language, the shape designer allows defining
edges (Step 3 in Fig. 6). An edge consists of three
parts: a line style as well as an end- and start-
symbol. The line style can simply be defined
by specifying two parameters representing the
length of the line and the length of a gap in
the line. The latter parameter is optional and
allows for specifying dotted and/or dashed lines.
To represent the symbols of the edge, we need
again vector graphics. With the shape of the edge
defined, a connection point for the edge has to be
specified next.

With templates for nodes and edges defined, the
template file containing all templates can be ex-
ported to a XML-file. This XML-file is then im-
ported using the shape management (Step 4 in

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 61

2

4

5

63

1 Create vector graphics

(External program)

Create vertex templates

(Shape Designer)

Create edge templates

(Shape Designer)

Import the created edge and vertex templates

(Modelling tool)

Specify modelling language and assign

templates (Modelling tool)

Construct a model using the modelling lang-

uage (Modelling tool: Graphical model editor)

Figure 6: Process of defining a modelling language’s visual and conceptual aspect

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

62 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Fig. 6). For each template a representation in the
database is created that stores the corresponding
serialised template. These representations can
then be used to visualise the (directly visible)
object and relationship types of the modelling
language to be defined.

The language editor is used to specify such a mod-
elling language in two consecutive steps. First, all
object and relationship types have to be defined
conceptually with a wizard. The relationship
types define which object types can be directly re-
lated to which other object types, thus comprising
the syntactical rules of the modelling language.
In a second step, object and relationship types
need to be assigned to templates (or, in case of
menu-based representation, to no template). To
that end, the previously imported representations
from the Shape Designer can be used. After the
assignment, the imported connection points and
drop zones are allocated to the roles they are
representing (Step 5 in Fig. 6).

In a last step, the modelling language can be
used to develop conceptual models (Step 6 in
Fig. 6). The tool offers the exemplarily implemen-
ted graphical model editor that contains a list of
all available object types of the language in use.
The object types are visualised by the templates
that were assigned to them when the language
was specified.

8 Contributions, Limitations and
Outlook

In this paper, we presented requirements for
graphical model editors in the context of distrib-
uted modelling, provided a conceptualisation of
how such an editor could be designed, and finally
presented an exemplary implementation of it,
which is used as part of a meta-modelling tool.
While there exists a considerable body of research
on how meta-modelling tools ensure syntactical
correctness of models created with DSMLs, this
paper contributes to the actual visualisation of
these DSMLs in a distributed modelling scenario.
Therefore, we first examined existing tools with

respect to their representational capabilities. On
top of these findings, we carved out a set of re-
quirements for a graphical model editor as used
within a distributed modelling scenario. There-
after, we have shown a conceptualisation of these
requirements by working out the interrelationship
between the conceptual and the representational
aspects of modelling languages and models. This
conceptualisation was exemplary implemented
and an application example was given.

Compared to existing approaches discussed in
Section 2, we provided the blueprint for a graph-
ical model editor with a distinctive combination
of features. It not only exhibits a high degree of
representational flexibility, but also supports an
easy-to-use development procedure not requiring
users to know special programming languages.

A further advantage of our graphical model editor
is that representations (i.e., the shapes used to
represent model elements) can be reused in mul-
tiple language specifications. Also, the process
of creating these shapes is independent from the
process of defining a modelling language. The
language specification only uses the previously
defined representations as part of the concrete
syntax definition. Therefore, designers can work
on the visual representations of language con-
structs while the domain experts are creating the
language with its abstract syntax and semantics
(Frank and Prasse 1997).

The representations are described declaratively
with XAML. Furthermore, all available GUI
classes can be reused, for example, for layout
purposes. This does not require any procedural
coding and can therefore be accomplished by a
higher number of users. With sophisticated tools
such as Inkscape, Expression Design and Expres-
sion Blend, professional tool support for creating
representations in XAML is readily available.

As WPF and XAML run only on Windows sys-
tems and requires C#, not all design decisions are
directly transferable to other systems or program-
ming languages. But as frameworks like JavaFX
for Java, QML for C++ and HTML5 share a lot

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 63

of basic ideas with WPF, our approach can be
used as a starting point to transfer our editor to
another programming language.

Naturally, we can never be sure that we have
anticipated any conceivable requirement anyone
will ever have for a graphical model editor. Any
such requirements could require manual program-
ming if it cannot be implemented with standard
WPF features. As far as the reviewed modelling
tools from Section 2 are concerned, we could not
identify such a requirement.

Regarding connection points of vertices, we en-
countered the problem that in some cases, connec-
tion points should not be arranged with respect to
width and height of the vertices’ outer geometry.
Therefore, the connection point layer should be in-
tegrated into the symbol and not overlay it. Then,
the connection points can be arranged according
to sub-elements of a vertex. The same holds true
for the text layer, which sometimes should be
arranged by a sub-element of a representation.

In the current implementation, connection points
are defined by percentage values and cannot be
attached to special geometries like a bend of a line.
We plan to add a corresponding functionality in
the future.

References

Aguilar-Savén R. S. (2004) Business process
modelling: Review and framework. In: Inter-
national Journal of Production Economics 90
(2), pp. 129–149

Bardohl R. (2002) A visual environment for
visual languages. In: Science of Computer
Programming 44 (2), pp. 181–203

Bardohl R., Ehrig H. (2000) Conceptual Model of
the Graphical Editor GenGEd for the Visual
Definition of Visual Languages. In: Proceed-
ings of the Theory and Application to Graph
Transformations

Bräuer S, Delfmann P, Dietrich H, Steinhorst
M (2013) Using a Generic Model Query Ap-
proach to Allow for Process Model Compli-
ance Checking - An Algorithmic Perspective.
In: Proceedings of the 11th International Con-
ference on Wirtschaftsinformatik (WI) (2013).
Leipzig, Germany, pp. 1245–1259

Chen P. (1976) The Entity-Relationship Model
– Toward a Unified View of Data. In: ACM
Transactions on Database Systems 1 (1), pp. 9–
36

Clark H. H. (1996) Using language. Cambridge
University Press, Cambridge

Cook S., Jones G., Kent S., Wills A. C. (2007) Do-
main Specific Development with Visual Studio
DSL Tools. Addison-Wesley Professional

Costagliola G., Delucia A., Orefice S., Polese G.
(2002) A Classification Framework to Support
the Design of Visual Languages. In: Journal of
Visual Languages & Computing 13 (6), pp. 573–
600

Davis R. (2008) ARIS Design Platform: Ad-
vanced Process Modelling and Administration.
Springer, London

Delfmann P, Herwig S, Lis Ł, Stein A, Tent
K, Becker J (2010) Pattern Specification and
Matching in Conceptual Models. A Generic
Approach Based on Set Operations. In: En-
terprise Modelling and Information Systems
Architectures 5, pp. 24–43

Delfmann P., Herwig S., Karow M., Lis Ł. (2008)
Ein konfiguratives Metamodellierungswerk-
zeug. In: Proceedings of the Modellierung
betrieblicher Informationssysteme (MobIS)

van Deursen A., Klint P., Visser J. (2000) Domain-
specific languages: an annotated bibliography.
In: ACM SIGPLAN Notices 35(6), pp. 26–36

Dietrich H, Steinhorst M, Becker J, Delfmann P
(2011) Fast Pattern Matching in Conceptual
Models - Evaluating and Extending a Generic
Approach. In: Proceedings of the Enterprise
Modelling and Information Systems Archi-
tectures (EMISA) (2011). Hamburg, Germany,
pp. 79–92

Domokos P., Varró D. (2002) An Open Visu-
alization Framework for Metamodel-Based

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

64 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Modeling Languages. In: Electronic Notes in
Theoretical Computer Science 72 (2), pp. 69–78

Eclipse Graphical Modeling Framework (GMF)
http://www.eclipse.org/gmf/ Last Access:
01/05/2012

Engstrom E., Krueger J. (2000) Building and
Rapidly Evolving Domain-Specific Tools with
DOME. In: Proceedings of the IEEE Interna-
tional Symposium on Computer-Aided Con-
trol System Design

Erickson J., Siau K. (2007) Theoretical and Prac-
tical Complexity of Modeling Methods. In:
Communications of the ACM 50 (8), pp. 46–51

Ermel C., Ehrig K., Taentzer G., Weiss E. (2006)
Object Oriented and Rule-based Design of
Visual Languages using Tiger. In: Proceedings
of 3rd International Workshop on Graph Based
Tools

Esser R., Janneck J. W. (2001) Moses-a tool suite
for visual modeling of discrete-event systems.
In: Proceedings of the IEEE Symposia on
Human-Centric Computing Languages and
Environments

Fowler M. (2002) Patterns of enterprise applica-
tion architecture. Addison-Wesley Longman,
Amsterdam

Frank U. (2002) Multi-Perspective Enterprise
Modeling (MEMO)-Conceptual Framework
and Modeling Languages. In: Proceedings
of the Hawaii International Conference on
System Science

Frank U. (2011) Some Guidelines for the Concep-
tion of Domain-Specific Modelling Languages.
In: Proceedings of the 4th International Work-
shop on Enterprise Modelling and Information
Systems Architectures

Frank U., Prasse M. (1997) Ein Bezugsrahmen
zur Beurteilung objektorientierter Modellie-
rungssprachen – Veranschaulicht am Beispiel
von OML und UML. In: Working Papers of
the Institute of Information Systems of the
University of Koblenz-Landau

Giaglis G. M. (2001) A Taxonomy of Business Pro-
cess Modeling and Information Systems Mod-
eling Techniques. In: International Journal
of Flexible Manufacturing Systems 13 (2),

pp. 209–228
Group O. M. (Jan. 2012a) OMG Object Constraint

Language (OCL) Version 2.3.1 http://www.
omg.org/spec/OCL/2.3.1/PDF Last Access:
04/02/2013

Group O. M. (Apr. 2012b) Unified Modeling
Language Infrastructure Version 2.4.1 http://
www.omg.org/spec/UML/ISO/19505-1/PDF
Last Access: 05/05/2012

Group T. O. (2009) ArchiMate 1.0 Specification.
Van Haren Publishing, Zaltbommel

Grundy J., Hosking J., Zhu N., Liu N. (2006)
Generating Domain-Specific Visual Language
Editors from High-level Tool Specifications.
In: Proceedings of the International Confer-
ence on Automated Software Engineering

Grundy J., Hosking J., Huh J., Na-Liu Li K. (2008)
Marama: an eclipse meta-toolset for generat-
ing multi-view environments. In: Proceedings
of the 30th International Conference on Soft-
ware Engineering

Grundy J. C., Mugridge W. B., G. H. J. (1998)
Visual Specification of Multi-View Visual En-
vironments. In: Proceedings of the IEEE
Symposium on Visual Languages

Haarslev V., Wessel M. (1996) GenEd – An Editor
with Generic Semantics for Formal Reasoning
about Visual Notations. In: Proceedings of the
12th IEEE Symposium on Visual Languages

Himsolt M. (1995) Comparing and Evaluat-
ing Layout Algorithms within GraphEd. In:
Journal of Visual Languages & Computing 6
(3), pp. 255–273

Junginger S., Kühn H., Strobl R., Karagian-
nis D. (2000) Ein Geschäftsprozess-manage-
ment-Werkzeug der nächsten Generation. In:
Wirtschaftsinformatik 42 (5), pp. 392–401

Kern H., Hummel A., Kuehne S. (2011) Towards
a Comparative Analysis of Meta-Metamodels.
In: Proceedings of the 11th Workshop on
Domain-Specific Modeling

Kolovos D., Rose L., Paige R., Polack F. (2009)
Raising the Level of Abstraction in the De-
velopment of GMF-based Graphical Model
Editors. In: Proceedings of ICSE Workshop
on Modeling in Software Engineering

http://www.eclipse.org/gmf/
http://www.omg.org/spec/OCL/2.3.1/PDF
http://www.omg.org/spec/OCL/2.3.1/PDF
http://www.omg.org/spec/UML/ISO/19505-1/PDF
http://www.omg.org/spec/UML/ISO/19505-1/PDF

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 65

Kosar T., Mernik M., Carver J. C. (2012) Pro-
gram comprehension of domain-specific and
general-purpose languages: comparison us-
ing a family of experiments. In: Empirical
Software Engineering 17 (3), pp. 276–304

Kuhrmann M. (2011) User Assistance during
Domain-specific Language Design. In: Pro-
ceedings of the ICSE 2011 Workshop on Flex-
ible Modeling Tools (Flexi Tools)

de Lara J., Vangheluwe H. (2002) AToM3: A Tool
for Multi-formalism and Meta-modeling. In:
Proceedings of the Fundamental Approaches
to Software Engineering

de Lara J., Vangheluwe H. (2004) Defining visual
notations and their manipulation through
meta-modelling and graph transformation. In:
Journal of Visual Languages and Computing
15 (4), pp. 309–330

Larman C. (2004) Applying UML and Patterns:
An Introduction to Object-Oriented Analysis
and Design and Iterative Development. Pren-
tice Hall PTR, New York

Ledeczi A., Maroti M., Bakay A., Karsai G., Gar-
rett J., Thomason C., Nordstrom G., Sprinkle J.,
Volgyesi P. (2001) The generic modeling envir-
onment. In: Proceedings of the Workshop on
Intelligent Signal Processing

Mendling J., Recker J., Reijers H. A. (2010) On
the Usage of Labels and Icons in Business
Process Modeling. In: International Journal of
Information System Modeling and Design 1
(2), pp. 40–58

Mészáros T., Mezei G., Levendovszky T. (2008) A
flexible, declarative presentation framework
for domain-specific modeling. In: Proceedings
of the Working Conference on Advanced
Visual Interfaces

Mili H., Tremblay G., Jaoude G. B., Lefebvre É.,
Elabed L., El Boussaidi G. (2010) Business pro-
cess modeling languages: Sorting through the
alphabet soup. In: ACM Computing Surveys
43 (1), 4:1–4:56

Minas M. (2002) Concepts and realization of
a diagram editor generator based on hyper-
graph transformation. In: Science of Com-
puter Programming 44 (2), pp. 157–180

Minas M. (2006) Generating Meta-Model-Based
Freehand Editors. In: Proceedings of the Third
International Workshop on Graph Based Tools

zur Muehlen M., Recker J., Indulska M. (2007)
Sometimes Less is More: Are Process Mod-
eling Languages Overly Complex? In: Pro-
ceedings of the 11th International IEEE EDOC
Conference Workshop

Sapia C., Blaschka M., Höfling G. (2000) Using a
Standard Repository Management System to
Build a Generic Graphical Modeling Tool. In:
Proceedings of the 33rd Hawaii International
Conference on System Sciences

Scheer A.-W. (2000) ARIS – Business Process
Modeling. Springer, Berlin

Schmidt D. C. (2006) Model-Driven Engineering.
In: IEEE Computer 39 (2), pp. 25–31

Shen H., Wall B., Zaremba M., Chen Y., Browne
J. (2004) Integration of business modelling
methods for enterprise information system
analysis and user requirements gathering. In:
Computers in Industry 54, pp. 307–323

Teorey T. J. (1999) Database Modeling & Design.
Morgan Kaufmann Publishers, San Francisco

Tolvanen J.-P., Rossi M. (2003) MetaEdit+: defin-
ing and using domain-specific modeling lan-
guages and code generators. In: Proceedings
of the Companion of the 18th annual ACM
SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applica-
tions

White J., Schmidt D. C., Mulligan S. (2007) The
Generic Eclipse Modeling System. In: Pro-
ceedings of the Model-Driven Development
Tool Implementer’s Forum at TOOLS

White S. A. (June 2004) Introduction to BPMN.
IBM Cooperation http://www.zurich.ibm.
com/~olz/teaching/ETH2011/White-BPMN-
Intro.pdf Last Access: 01/05/2012

Zachman J. A. (1987) A framework for informa-
tion systems architecture. In: IBM Systems
Journal 26 (3), pp. 276–292

Zhang K., Zhang D.-Q., Cao J. (2001) Design,
Construction, and Application of a Generic
Visual Language. In: IEEE Transactions on
Software Engineering 27 (4), pp. 289–307

http://www.zurich.ibm.com/~olz/teaching/ETH2011/White-BPMN-Intro.pdf
http://www.zurich.ibm.com/~olz/teaching/ETH2011/White-BPMN-Intro.pdf
http://www.zurich.ibm.com/~olz/teaching/ETH2011/White-BPMN-Intro.pdf

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

66 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Zhu N., Grundy J., Hosking J., Liu N., Cao S.,
Mehra A. (2007) A meta-tool for exploratory
domain-specific visual language tool develop-
ment. In: Journal of Systems and Software 80,
pp. 1390–1407

Hanns-Alexander Dietrich

University of Muenster – ERCIS,
Leonardo-Campus 3, 48149 Muenster, Germany
hanns-alexander.dietrich@ercis.uni-
muenster.de

Dominic Breuker

University of Muenster – ERCIS,
Leonardo-Campus 3, 48149 Muenster, Germany
dominic.breuker@ercis.uni-muenster.de

Matthias Steinhorst

University of Muenster – ERCIS,
Leonardo-Campus 3, 48149 Muenster, Germany
matthias.steinhorst@ercis.uni-muenster.de

Patrick Delfmann

University of Muenster – ERCIS,
Leonardo-Campus 3, 48149 Muenster, Germany
patrick.delfmann@ercis.uni-muenster.de

Jörg Becker

University of Muenster – ERCIS,
Leonardo-Campus 3, 48149 Muenster, Germany
Becker@ercis.uni-muenster.de

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 67

Appendix

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages X The graphical user interface can display models of all
modelling languages.

C3: Editor for representations – No editor are provided.
C4: Customizability of symbols B Predefined attributes of symbol representations can

be edited.
C5: Customizability of edges B Predefined attributes of edge representations can be

edited.
C6: Customizability of edge symbols B Predefined attributes of edge symbol representations

can be edited.
C7: Implicit relationships – Implicit relationships cannot be defined.
C8: Shared repository X Models and languages are stored in a shared reposit-

ory.

Table 2: Capabilities of ADONIS

Capability Rating Comment
C1: Specification at run-time (X) The modelling environment can add new modelling

languages at run-time. Specifying a new modelling
language from scratch is not possible for ordinary
ARIS users. They either have to be implemented by
procedural programming or can be imported.

C2: Multiple languages X The modelling environment is capable of presenting
model editors for different languages.

C3: Editor for representations X An editor is provided.
C4: Customizability of symbols B A predefined set of shapes (rectangle, ellipse, polygon,

etc.) is provided.
C5: Customizability of edges B A predefined set of properties is provided.
C6: Customizability of edge symbols B A predefined set of properties is provided.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository X Languages and models are stored in a shared reposit-
ory.

Table 3: Capabilities of ARIS

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

68 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the modelling language definition if changes are
being made to the modelling language and a restart if
representations are changed.

C2: Multiple languages X The modelling environment is capable of presenting
model editors for different languages.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols B Predefined visual primitives called ‘icons’ are avail-

able.
C5: Customizability of edges B Predefined visual primitives called ‘arrows’ are avail-

able.
C6: Customizability of edge symbols B Predefined visual primitives are available.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository X Languages and models are stored in a shared reposit-
ory.

Table 4: Capabilities of AToM3

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the modelling language definition if changes are
being made to the modelling language and a restart if
representations are changed.

C2: Multiple languages – The modelling environment represents each language
in a separate ‘diagram editor’.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A The language designer can include representations

for symbols.
C5: Customizability of edges A The language designer can include representations

for edges.
C6: Customizability of edge symbols A The language designer can include representations

for edge symbols.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository – Languages and models are not stored in a shared
repository.

Table 5: Capabilities of DIAGEN

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 69

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the modelling language definition if changes are
being made to the modelling language and a restart if
representations are changed.

C2: Multiple languages – The modelling environment represents each language
in a separate ‘diagram editor’.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A The language designer can include representations

for symbols.
C5: Customizability of edges A The language designer can include representations

for edges.
C6: Customizability of edge symbols A The language designer can include representations

for edge symbols.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository – Languages and models are not stored in a shared
repository.

Table 6: Capabilities of DIAMETA

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the modelling language definition if changes are
being made to the modelling language and a restart if
representations are changed.

C2: Multiple languages – The modelling environment represents each language
in a separate ‘diagram editor’.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols B A shape library is available.
C5: Customizability of edges B A shape library is available.
C6: Customizability of edge symbols B A shape library is available.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository – Languages and models are not stored in a shared
repository.

Table 7: Capabilities of DOME

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

70 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages – Each generated model editor belongs to a single lan-
guage.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A Programming symbols provides utmost flexibility.
C5: Customizability of edges A Programming edges provides utmost flexibility.
C6: Customizability of edge symbols A Programming symbols of edges provides utmost flex-

ibility.
C7: Implicit relationships X Relationships need not be visualised, but can also be

connected via containment reference.
C8: Shared repository – Models are stored locally on a machine or possibly on

a shared hard drive. There is no dedicated repository.

Table 8: Capabilities of EuGENia

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages – Each generated model editor belongs to a single lan-
guage.

C3: Editor for representations (X) As icons (pictures) are used, they can be designed
with a 3rd party graphic tool.

C4: Customizability of symbols C CSS style provides predefined properties like font,
colour, background, etc. to change the labels or
background of the icons.

C5: Customizability of edges B CSS line styles provide predefined properties like
colour, thickness, line gap, etc.

C6: Customizability of edge symbols B CSS line styles provide predefined start and end
symbols of the edge.

C7: Implicit relationships – As GEMS was designed to support rapid prototyping
of modelling languages with the use of icons (pictures),
implicit relationships are not supported.

C8: Shared repository – Models are stored locally on a machine or possibly on
a shared hard drive. There is no dedicated repository.

Table 9: Capabilities of GEMS

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 71

Capability Rating Comment
C1: Specification at run-time – GenEd uses description logic as a meta-meta-language.

The resulting formulas represent the meta-model of a
given language and need to be compiled to be usable
as a modelling language.

C2: Multiple languages X Multiple languages can be displayed in the model
editor.

C3: Editor for representations – No editor for arbitrary representations is available.
C4: Customizability of symbols B Visual primitives are available.
C5: Customizability of edges B Visual primitives are available.
C6: Customizability of edge symbols B Visual primitives are available.
C7: Implicit relationships X GenEd recognizes seven primitive spatial relations

between object nodes (e.g., disjoint, touches, intersects,
etc.)

C8: Shared repository X Models and languages are stored in a shared reposit-
ory.

Table 10: Capabilities of GenEd

Capability Rating Comment
C1: Specification at run-time – A grammar editor is provided that allows for creating a

visual language specification which is then translated
to the usable modelling language.

C2: Multiple languages X One graphical editor is provided that can display
models created in the previously defined languages.

C3: Editor for representations X A symbol editor allows for drawing arbitrary repres-
entations.

C4: Customizability of symbols B Predefined attributes of symbol representations can
be edited.

C5: Customizability of edges B Predefined attributes of edge representations can be
edited.

C6: Customizability of edge symbols B Predefined attributes of edge symbol representations
can be edited.

C7: Implicit relationships – Implicit relationships cannot be defined.
C8: Shared repository X Models and languages are stored in a shared reposit-

ory.

Table 11: Capabilities of GenGed

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

72 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Capability Rating Comment
C1: Specification at run-time X The modelling environment can reload the models at

run-time if changes are being made to the modelling
language.

C2: Multiple languages X The modelling environment is capable of presenting
model editors for different languages.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A Decorators for programming symbols provides utmost

flexibility.
C5: Customizability of edges A Decorators for programming edge symbols provides

utmost flexibility.
C6: Customizability of edge symbols A Decorators for programming edges provides utmost

flexibility.
C7: Implicit relationships – Implicit relationships are supported by the abstract

syntax but not by the model editor.
C8: Shared repository – GME supports multi user functionalities through

subversion, but not the distribution of modelling
languages.

Table 12: Capabilities of GME

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages – Each generated model editor belongs to a single lan-
guage.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A Programming symbols provides utmost flexibility.
C5: Customizability of edges A Programming edges provides utmost flexibility.
C6: Customizability of edge symbols A Programming symbols of edges provides utmost flex-

ibility.
C7: Implicit relationships X Relationships need not be visualised, but can also be

connected via containment reference. (The implicit re-
lationship in the corresponding EMF model is defined
as the attribute containment in the EReference class.)

C8: Shared repository – Models are stored locally on a machine or possibly on
a shared hard drive. There is no dedicated repository.

Table 13: Capabilities of GMF

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 73

Capability Rating Comment
C1: Specification at run-time X The graph grammar parser checks syntactical integrity

constraints defined in the meta-model at run-time.
C2: Multiple languages X The graphical user interface can display models of all

modelling languages.
C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A The language designer can include representations

for symbols.
C5: Customizability of edges A The language designer can include representations

for edges.
C6: Customizability of edge symbols A The language designer can include representations

for edge symbols.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository X Models and languages are stored in a shared reposit-
ory.

Table 14: Capabilities of GraMMI

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages – Each generated model editor belongs to a single lan-
guage.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols B A predefined set of shapes (e.g., rectangle) is provided.
C5: Customizability of edges B A predefined set of properties is provided.
C6: Customizability of edge symbols B A predefined set of properties is provided.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository – Models are stored locally on a machine or possibly on
a shared hard drive. There is no dedicated repository.

Table 15: Capabilities of JComposer

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

74 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Capability Rating Comment
C1: Specification at run-time X The modelling environment can generate the model

editor at run-time if changes are being made to the
modelling language.

C2: Multiple languages X The modelling environment is capable of presenting
model editors for different languages.

C3: Editor for representations X No editor is provided.
C4: Customizability of symbols B A predefined set of shapes (e.g., rectangle) is provided.
C5: Customizability of edges B A predefined set of properties is provided.
C6: Customizability of edge symbols B A predefined set of properties is provided.
C7: Implicit relationships X Relationships need not be visualised, but can also be

connected via containment reference. (The implicit re-
lationship in the corresponding EMF model is defined
as the attribute containment in the EReference class.)

C8: Shared repository – Models are stored locally on a machine or possibly on
a shared hard drive. There is no dedicated repository.

Table 16: Capabilities of Marama

Capability Rating Comment
C1: Specification at run-time X The modelling environment can reload the models at

run-time if changes are being made to the modelling
language.

C2: Multiple languages X The modelling environment is capable of presenting
model editors for different languages.

C3: Editor for representations X An editor is provided.
C4: Customizability of symbols B A predefined set of shapes (rectangle, ellipse, polygon,

etc.) is provided.
C5: Customizability of edges B A predefined set of properties is provided.
C6: Customizability of edge symbols B A predefined set of properties is provided.
C7: Implicit relationships – Properties can be displayed and layouted inside the

representation, but not other language elements.
C8: Shared repository X Languages and models are stored in a shared reposit-

ory.

Table 17: Capabilities of Meta Edit+ Ver. 4

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 75

Capability Rating Comment
C1: Specification at run-time X The modelling environment provides interpreters for

the modelling language definition to construct the
modelling language at run-time.

C2: Multiple languages X The modelling environment represents each language
in a separate ‘graph editor’.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A Programming symbols provides utmost flexibility.
C5: Customizability of edges A Programming edges provides utmost flexibility.
C6: Customizability of edge symbols A Programming symbols of edges provides utmost flex-

ibility.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository – Languages and models are not stored in a shared
repository.

Table 18: Capabilities of Moses

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages – Each generated model editor belongs to a single lan-
guage.

C3: Editor for representations (X) An assistant is provided.
C4: Customizability of symbols A A GUI framework for programming symbols provides

utmost flexibility.
C5: Customizability of edges B Predefined properties like straight or rectilinear rout-

ing (PDE is based on VS DSLT).
C6: Customizability of edge symbols B Predefined properties like type of arrowhead (PDE is

based on VS DSLT).
C7: Implicit relationships X Relationships need not be visualised, but can also be

connected via Embedding Relationship (PDE is based
on VS DSLT).

C8: Shared repository – Models are stored locally on a machine or possibly on
a shared hard drive. There is no dedicated repository.

Table 19: Capabilities of PDE

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

76 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Capability Rating Comment
C1: Specification at run-time X The modelling environment can generate the model

editor at run-time if changes are being made to the
modelling language.

C2: Multiple languages X The modelling environment is capable of presenting
model editors for different languages.

C3: Editor for representations X An editor is provided.
C4: Customizability of symbols B A predefined set of shapes (e.g., rectangle) is provided.
C5: Customizability of edges B A predefined set of properties is provided.
C6: Customizability of edge symbols B A predefined set of properties is provided.
C7: Implicit relationships – Properties can be displayed and visually designed

inside the representation, but not other language
elements.

C8: Shared repository – Models are stored in an XML representation locally on
a machine or possibly on a shared hard drive. There
is no dedicated repository.

Table 20: Capabilities of Pounamu

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages – Each generated model editor belongs to a single lan-
guage.

C3: Editor for representations X An editor is provided.
C4: Customizability of symbols B A predefined set of shapes (rectangle, ellipse, polygon,

etc.) and anchors are provided.
C5: Customizability of edges B Predefined properties like colour, thickness, line gap,

routing etc.
C6: Customizability of edge symbols B Predefined properties like type of arrowhead.
C7: Implicit relationships – Properties can be displayed and layouted inside the

representation, but not other language elements. TI-
GER aims at visual languages with a graphlike struc-
ture.

C8: Shared repository – Models are stored locally on a machine or possibly on
a shared hard drive. There is no dedicated repository.

Table 21: Capabilities of TIGER

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013
Developing Graphical Model Editors for Meta-Modelling Tools 77

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages X The modelling environment is capable of presenting
model editors for different languages.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A Programming symbols provides utmost flexibility.
C5: Customizability of edges A Programming edges provides utmost flexibility.
C6: Customizability of edge symbols A Programming symbols of edges provides utmost flex-

ibility.
C7: Implicit relationships – Properties can be displayed and layouted inside the

representation, but not other language elements.
C8: Shared repository – Models are stored locally on a machine or possibly on

a shared hard drive. There is no dedicated repository.

Table 22: Capabilities of VisPro

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the modelling language definition if changes are
being made to the modelling language and a restart if
representations are changed.

C2: Multiple languages X The modelling environment is capable of presenting
model editors for different languages.

C3: Editor for representations (X) As XAML is used to describe the representations, they
can be designed with a 3rd party XAML tool.

C4: Customizability of symbols A A GUI framework for programming symbols provides
utmost flexibility.

C5: Customizability of edges A A GUI framework for programming edges provides
utmost flexibility.

C6: Customizability of edge symbols A A GUI framework for programming edge symbols
provides utmost flexibility.

C7: Implicit relationships X Relationships need not be visualised, but can also be
connected via containment relationships.

C8: Shared repository – Models are stored locally on a machine or possibly on
a shared hard drive. There is no dedicated repository.

Table 23: Capabilities of VMTS

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 2, December 2013

78 Hanns-Alexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, Jörg Becker

Capability Rating Comment
C1: Specification at run-time – The modelling environment requires recompilation

of the model editor if changes are being made to the
modelling language.

C2: Multiple languages – Each generated model editor belongs to a single lan-
guage.

C3: Editor for representations – No editor is provided.
C4: Customizability of symbols A Programming symbols provides utmost flexibility.
C5: Customizability of edges B Predefined properties like straight or rectilinear rout-

ing.
C6: Customizability of edge symbols B Predefined properties like type of arrowhead.
C7: Implicit relationships X Relationships need not be visualised, but can also be

connected via Embedding Relationship.
C8: Shared repository – Models are stored locally on a machine or possibly on

a shared hard drive. There is no dedicated repository.

Table 24: Capabilities of VS DSLT

