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Abstract: Nowadays, the necessity of safeguarded environments is stronger than ever.
The defence of public areas against terroristic threats requires intelligent security as-
sistance systems that comprise state-of-the-art surveillance technology to localize per-
sons with hazardous materials. The recent progress in the detection of hazardous ma-
terials by a new generation of chemical sensors leads to an increasing need of appro-
priate sensor models. Though, the detection capability of such sensors is quite high,
their spatio-temporal resolution is very limited. Hence, a single chemical sensor is not
able to localize hazardous material and assign it to a person. This drawback can be
compensated by fusing the information of multiple chemical sensors with the location
estimates of persons in an observed area. In this work, we are describing a Rao-
Blackwellized Particle Filter (RBPF) that fuses person tracks with chemical sensors
and thereby localizes persons carrying hazardous material.

1 Introduction

Freedom of movement for people as well as freedom to come together safely in open public
events or utilities is vital for each citizen. The defence of this freedom against ubiquitous
threats requires the development of intelligent security assistance systems that comprise
state-of-the-art surveillance technology and work continuously in time. To satisfy this
demand, we recently introduced an indoor security assistance system for the localization
of hazardous materials in person streams [7]. Within this system, basic input data for the
detection of explosives is provided by a new generation of chemical sensors. However, due
to the fact that these sensors have only a limited spatio-temporal resolution, an individual
chemical sensor is unable to localize this material and assign it to a potentially threatening
person. To compensate this deficiency, our system fuses the output of several distributed
chemical sensors with the location estimates of the persons based on laser range data.

The laser data can be assigned to the constructed and successively updated tracks in many
ways. Therefore the solution of the assignment problem is crucial for every multiple tar-
get tracking algorithm. Traditional approaches to multiple hypothesis tracking rely on
the complete enumeration of all possible interpretations of the measurements and avoid
an exponential growth of the hypothesis trees by various approximations (MHT: Multiple
Hypothesis Tracking [2, 3], (J)PDAF: (Joint) Probabilistic Data Association Filter [1]). Al-
ternatively, the Probabilistic Multiple Hypothesis Tracking (PMHT) [5, 6] uses the method
of Expectation-Maximization for handling data association conflicts. Furthermore, there
exists a multitude of sequential Monte Carlo approaches [10] to solve the tracking task.



However, the simultaneous tracking and classification of persons using complementary
types of sensors with differing resolution capabilities is still an open research topic. Our
system mentioned above [7] uses an extension of the PMHT [4] to fuse laser output
with chemical attributes. Schulz et al. [8] developed a Rao-Blackwellized Particle Fil-
ter (RBPF) to combine laser range scanners with infrared and ultrasound receivers. In the
following sections we shall extend this RBPF framework by the capability of fusing person
tracks with chemical attributes to localize persons with hazardous material.

2 RBPF Design and Algorithm

Let J be the number of persons that are moving in the surveillance area and that are ob-
served by multiple laser range scanners. At each scan k, the scanners generate a set of
Nk measurements1 {zn

k}
Nk
n=1. The task of tracking consists in estimating the locations

xk = {xj
k}Jj=1 of the observed persons, i.e. in estimating the posterior p(xk|z1:k) over

the state xk, based on all the measurements up to time k. Difficulties arise from unknown
associations of measurements to persons. These associations are given by J × Nk as-
signment matrices Θk with: Θk(j, n) = 1 if measurement zn

k is assigned to person j and
Θk(j, n) = 0, otherwise.

2.1 RBPF for Multiple Person Tracking

The idea of Rao-Blackwellization is to augment the state by the assignment history Θ1:k

and to consider the posterior p(xk,Θ1:k|z1:k) = p(xk|Θ1:k, z1:k)p(Θ1:k|z1:k). This pos-
terior can be approximated by sampling assignments from p(Θ1:k|z1:k) and then determine
the locations xk analytically, based on the respective sample.

The RBPF uses a fixed number of S particles. Each particle sk(ι) consists of an assignment
history Θ1:k(ι), J Kalman Filters (one for each person) and an importance weight wk(ι).
Given the samples of scan k − 1, the algorithm proposed in [8] can be summarized as
follows: Step 1: Use the Metropolis-Hastings algorithm [9, 11] to efficiently generate an
ergodic Markov chain with ML assignment matrices2 for each particle sk−1(ι). Step 2:
Update the importance weights wk−1(ι) with respect to each track’s ability to predict
the current observation zk. Step 3: Resample from the previous sample set using the
updated weights. For each sample, draw an assignment from the corresponding Markov
chain. Finally, update the location estimates of all samples and set each weight wk(ι) to
1
S . Restart the algorithm for scan k + 1. Details can be found in [8, 9].

1Measurements are assumed to be preclustered.
2L refers to the location phase. In the chemical assignment phase the length of the Markov Chain is MC .



2.2 RBPF for Chemical Assignment

In this section we describe how the RBPF framework of section 2.1 can be extended to
assign chemical attributes to person tracks. Therefore, we introduce a chemical assign-
ment vector (CAV) Φk ∈ {0, 1}J with the following meaning: Φk(j) = 1 if person
j ∈ {1, . . . J} is supposed to carry hazardous material and Φk(j) = 0, otherwise. The
initial CAV Φ0 is set to 0 ∈ RJ . Furthermore, let ck = {ci

k}Ci=1 be the set of outputs
provided by C chemical sensors at scan k. There exists a threshold that breaks down each
chemical concentration measurement to a binary output ci

k ∈ {0, 1}.
Assume that the location phase for scan k has already been finished. Thus, we have es-
timates xj

k(ι) for each person j of each particle sk(ι). In the following, we outline the
chemical assignment phase, in which the persons carrying hazardous material are esti-
mated for a fixed particle sk(ι). For the sake of simplicity we do not denote the sample
index ι in this context anymore. To this end, the posterior

π(Φk) := p(Φk|ck,xk,Φk−1) =
p(ck|Φk,xk) · p(Φk|xk,Φk−1)

p(ck|xk,Φk−1)
(1)

has to be estimated. Analogously to the location phase, we sample from the posterior by
applying the Metropolis-Hastings algorithm [11]. The sampling procedure works as fol-
lows: Let Φk−1 be the CAV at scan k−1. Then, an ergodic Markov chain {Φr

k}r=0...MC−1

with MC elements is created. We initialize the chain with the previous CAV, i.e. Φ0
k :=

Φk−1. For a given element r, a new CAV Φ is proposed using the proposal density
Q(Φ|Φr

k). This can be easily realized by flipping some values of the given CAV pro-
portional to their probability [9]. For the new CAV Φ, an acceptance ratio

α := min
(

1,
π(Φ) ·Q(Φr

k|Φ)
π(Φr

k) ·Q(Φ|Φr
k)

)
(2)

is calculated, where π(Φ) is the intended stationary distribution. With probability α, we
accept Φ, i.e. we set Φr+1

k := Φ. If Φ is rejected, we keep the previous CAV, i.e. we
set Φr+1

k := Φr
k. When the Markov chain is fully created, the new assignment Φk can be

sampled out of it, proportional to the occurrences.

In general, the quality of the Markov chain, and thus of the sampled assignment, strongly
depends on the proposal density Q, because it is in charge of exploring the state space
of the CAV. However, in our application the state space is not that big consisting of 2J

elements. Therefore, the posterior function of a given assignment π(Φk) becomes more
important and has to be modeled in a proper manner.

2.2.1 Modeling the Posterior of a CAV

As derived in equation (1), the posterior of the CAVs can be found by estimating the sensor
model p(ck|Φ,xk) and the evolution model p(Φk|xk,Φk−1).

Let us first have a look at the sensor model. Using the evidence of a given assignment
Φ, we can directly calculate the expected value E

[
ci
]

of the measurement ci for sensor



i, which is located at the position coordinates P i. Without loss of generality, it can be
assumed that the associations of hazardous material are independent for different tracks.
Thus, we can sum up the likelihoods of each track and obtain:

E
[
ci
∣∣Φ] =

∑T
j=1 Φ(j) · e−

|Pi−xjk|
2σ2∑T

j̃=1 Φ(j̃)
, (3)

where σ describes the sensor variance and depends on the sensing range. Based on our
assumption that the measurement cik has a binary state space, we can now easily derive the
posterior probability by setting the evidence on a given output value cik:

p(cik|Φ,xk) = cikE
[
cik|Φ

]
+ (1− cik)(1− E

[
cik|Φ

]
) (4)

If we further assume that the chemical outputs are stochastically independent, we get:

p(ck|Φ,xk) =
C∏

i=1

p(cik|Φ,xk). (5)

For the evolution model, we introduce a parameter Pc, which describes the probability of
an association to be altered. Thus, we have for the jth track:

Φ−k (j) := p(Φ(j)|x,Φk−1) = Φk−1(j) + (−1)Φk−1(j) · Pc. (6)

It can be easily seen, that a small parameter value for Pc leads to a greater stability, whereas
a high value results in a faster approximation. Putting it all together, equation (1) leads to:

p(Φk|ck,xk,Φk−1) = Φ−k ·
p
(
ck|Φ−k

)
p (ck|Φk−1)

. (7)

2.2.2 Transition Model

The algorithm presented in the previous section can be extended by modeling the fact, that
a value flipping of a CAV is likely to happen at certain spatial points near the chemical
sensors. Let P i be the position of a chemical sensor with a sensing range r. We expect
that an assignment value changes most likely at points lying on a sphere of radius r around
the sensor. This leads to a model, which only depends on the distance from a person’s
position x to the sensor at P i. So, if we look at a projection to a half plane cut vertically
at P i, the probability function Pc(x) describes a truncated Gaussian with its peak at r and
a width controlled by a parameter σc. As this parameter is angle independent, we get:

Pc(x) = e−
|‖x−Pi‖−r|2

2σ2 (8)

Furthermore, we consider σc to be proportional to the radius r, i.e. σ = ar. Now we
substitute the ratio of the distance to the radius by a new variable u := ‖~x−P i‖

r and obtain

Pc(u) = e−
u2−2u+1

2a2 = e−
(u−1)2

2a2 . (9)



For a usual environment, we propose to set the full width at half maximum (FWHM) of the
Gaussian to the radius r. Using the well-known approximation formula for the FWHM,
this results in a proportionality constant a = 1

2
√

2·ln(2)
.

2.2.3 Extended Transition Model

As a further extension, we propose to regard the current motion direction of a given track,
as well. It is an important fact that the chemical assignment is only likely to change when
the person enters the sensing area of a fixed sensor i at P i. To this end, we construct
a cosinusoidal filter using the scalar product, which truncates the transition model Pc(u)
described above. Thus, let vj

k be the velocity vector of person j at the position xj
k. Then,

we the extended transition model is defined as

P e
c (u, v) = max

0,

(
xj

k − P i
)
· vj

k

‖xj
k − P i‖‖vj

k‖

 · Pc(
‖xj

k − P i‖
r

). (10)

3 Examples

This section discusses two simulated scenarios. The setup consists of an intersection of
two corridors. The screenshots in fig. 1 and 2 show the positions of the chemical sensors
(S81-S85), of the laser range scanners (L1 and L2), and of the simulated persons at a scan
k. The tables show the results of the corresponding Markov Chain that has been created
according to section 2.2. The resulting CAV was sampled afterwards. If the CAV Φk

associates hazardous material to a person we set a dot into the corresponding column. The
percentages denote the relativ occurrences of a certain CAV in the Markov Chain. The
examples are discussed for a single particle sk(ι).

Scenario 1
P1 P2 occurrences

• 83%
• • 17%

Figure 1: Scene with two persons on well separated positions.

Case 1 – Distinct positions: This is an easy-to-decide-situation. The positions of the two
persons are well separated. The person marked with the big blue dot (P2) is correctly
classified as a dangerous person. As we can see, the probability for P2 to have a positive
association is 100%. Still with 83% probability, it is the only person to be associated in



this case. As indicated by the gray row, the correct CAV was sampled out of the chain.

Case 2 – Almost colliding positions: In this case we simulate four persons, two of them
being dangerous (P1 and P4). In particular, the positions of those two nearly coincide.
As the table in fig. 2 shows, 11 out of 16 possible states were accepted at least once.
Furthermore, there are three CAVs that are likely to arise out of the sampling procedure.
These involve exactly the two persons carrying the dangerous material, namely P1 and P4.
The results clearly show that the association is not easy to resolve. As indicated by the
green row, the sampling resulted in a CAV that supposes only P1 as dangerous.

Scenario 2
P1 P2 P3 P4 occurrences

1%
• 28%

• • 5%
• • 4%

• 23%
• • 24%
• • • 2%
• • 3%
• • • 6%
• • • 1%
• • • • 3%

Figure 2: Complicated scenario with almost colliding positions.

The discussion shows, that in a simple scenario, as in case one, the probability of the result
is quite high. In contrast, the second case describes a situation, in which it is not easy to
resolve the association. This results in a Markov chain that has more than one probable
output.

4 Conclusion

For the safety in public environments, surveillance technology with complementary types
of sensors is needed. In this work we showed how persons can be simultaneously tracked
and classified in a network of laser range scanners and chemical sensors. The association
of chemical detections to person tracks is carried out by a Monte Carlo Markov Chain
procedure. We discussed exemplary results for two simulated scenarios.
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