A transparent bridge for forensic sound network traffic
data acquisition

Stefan Kiltz, Mario Hildebrandt, Robert Altschaffel, Jana Dittmann
Otto-von-Guericke University Magdeburg, Germany
Research Group on Multimedia and Security
{kiltz, dittmann } @iti.cs.uni-magdeburg.de, {mhildebr, altschaf} @cs.uni-magdeburg.de

Abstract: In this paper we introduce a prototype that is designed to produce forensic
sound network data recordings using inexpensive hard- and software, the Linux Foren-
sic Transparent Bridge (LFTB). It supports the investigation of the network commu-
nication parameters and the investigation of the payload of network data. The basis
for the LFTB is a self-developed model of the forensic process which also addresses
forensically relevant data types and considerations for the design of forensic software
using software engineering techniques. LFTB gathers forensic evidence to support
cases such as malfunctioning hard- and software and for investigating malicious ac-
tivity. In the latter application the stealthy design of the proposed device is beneficial.
Experiments as part of a first evaluation show its usability in a support case and a
malicious activity scenario. Effects to latency and throughput were tested and limita-
tions for packet recording analysed. A live monitoring scheme warning about potential
packet loss endangering evidence has been implemented.

Keywords: IT-Forensics, Network security, Reactive security, Intrusion detection

1 Introduction

Computer networks are subject to failure both for unintended and malicious reasons. Such
failures are usually attended by incident responders. However, in some cases it is not only
important to identify and address the root cause of a malfunction or compromisation of
computer networks. Depending on the type of the computer network together with the
costs of its downtime, a detailed forensic analysis may become necessary (e.g. to deter-
mine which data has been compromised). A forensic model can be used in order to ensure
that sound forensic principles are applied throughout the whole investigation. The focus
within this paper is the description of a forensic sound network data collection procedure
by employing a self-developed tool named “Linux Forensic Transparent Bridge (LFTB)”.
It is designed to run on inexpensive and readily available hardware and with no costs for
software, clearly distinguishing it from costly solutions as provided by e.g. Narus [Nar10].
In the following section the underlying theoretical foundation of our model of the forensic
process is introduced. After that, design concepts and their implementation of the LFTB
that collects network data with respect to integrity and authenticity as well as confiden-
tiality and privacy is shown in detail. Also issues of the deployment of such a device are
discussed. Two application examples as part of a first experimental proof of the utility and
scalability are shown. The throughput and the latency were tested, addressing the issues
of scalability and potential packet loss when employing the LFTB in the field.

2 A holistic model for the forensic process

To gather network data in a forensically sound manner, the security aspects of integrity,
authenticity, confidentiality and privacy need to be observed (see also [Bis06]). The latter

94 A Transparent Bridge for Network Traffic Data Acquisition

is relevant because a collection of network data is bound to include data that is protected
by data privacy regulations. Different models already exist to describe the forensic process
(see for instance [Fre07] and [New07]). Our model extends the one presented in [Fre07]
and consists of three main aspects:

e The grouping of investigation steps that belong together logically into phases.

e The classification of forensic methods into classes of forensic methods.
e The classification of forensically relevant data types.

The introduced model covers support cases or hardware/software failures and malicious
intent. The three aspects of the model are covered in the following subsections.

2.1 Phases of the forensic process
In our model, six mutually exclusive phases of the forensic process could be identified:

e Strategic preparation SP, i.e. measures taken prior to an incident.

e Operational preparation O P, i.e measures of preparation for a forensic investigation
after a suspected incident.

e Data gathering DG, i.e. measures to secure evidence.

e Data investigation D], i.e. measures to evaluate and extract data for further investiga-
tion.

e Data analysis D A, i.e. measures for detailled analysis and correlation between digital
evidence.

e Documentation DO, i.e. measures for the detailed documentation of the whole inves-
tigation.

The phases of the forensic process do not always follow the chronological order in which
they are listed, e.g. the findings during the data investigation phase can lead to subsequent
data gathering phases on the same or a different computer system.

During the conduct of each phase, a process accompanying documentation should be im-
plemented, i.e. every step taken has to be extensively documented. The final phase of a
forensic investigation is the final documentation, i.e. the processing of all parts of the pro-
cess accompanying documentation and the destillation into a report varying in technical
detail depending on the audience.

With the Linux Forensic Transparent Bridge (LFTB), the phase of strategic preparation
SP is of a considerable importance (see also Section 5). Only by looking at IT-forensics
from the perspective of the operator of an IT-system, anticipating system failures and ma-
licious activities and therefore practise strategic preparation, the usage of our proposed

LFTB becomes useful.
The LFTB can gather data that is relevant to data protection and privacy legislation. The

operator of the IT-system has to make sure that he conforms with the legal requirements
ahead of any incident.

The decision, what amount of data is to be collected and from which particular LFTB (if
multiple instances accross the network exist) form part of the operational preparation
OP as they rely heavily on the symptom and other incident dependent factors.

2.2 Classes of forensic methods

In our model, forensic methods are not exclusively represented by dedicated forensic
toolkits. A lot of software installed on computer systems has forensic capabilities (e.g.
logging facilities, anomaly detection). In our model we categorise them according to their
type in six classes of forensic methods:

A Transparent Bridge for Network Traffic Data Acquisition 95

e Operating system OS. This class contains methods provided by the operating system
(see also [BW06)).

e File system F'S. This class contains methods provided by the file system (see also
[BWO06]).

o Explicit means of intrusion detection £ A/ ID. The characteristic of EMID methods
provided by extra software is that they are executed autonomously on a routine basis.

o IT-Application /T A. This class contains methods provided by IT-Applications run by
the user. In addition to their main functionality they also provide forensic methods.

e Scaling of methods for evidence gathering SMG. This class contains methods to
further collect evidence unsuited for routine usage in a production environment (e.g.
false positives, high CPU demands etc.). The LFTB is such an example. It would be
undesirable to routinely having the LFTB collect the whole network traffic because of
the resulting high data volume.

e Data processing and evaluation DPFE. This class contains methods which support a
detailed forensic investigation, display, processing and documentation.

Those classes of methods are mutually exclusive.

2.3 Data types

Data types are important to describe forensic relevant data of the target computer system,
which the forensic tools use as input. The idea is to model forensic data types within a
computer system with a layered approach similar to the widely known ISO/OSI network
layer model [Zim80]. Although at present our model of data types introduced in the fol-
lowing is considered to cover forensically relevant data within a computer system, it can
be extended by new data types in principle. Currently eight data types are suggested:

e Hardware data D7T;. Hardware data is data in a system, which is not or only in a
limited way influenced by the operating system and applications. Examples are RTC-
clock, serial numbers of hardware devices or the code of firmware of hardware devices.
This includes virtualisation data, these are easily changed by the host OS but not by the
client OS.

e Raw data DT7,. Raw data is a sequence of bits (or data streams) of components of
the system not (yet) classified. In principle they can contain data of all the other data
types. Examples of raw data are memory- and mass-storage dumps. Network packets
also constitute raw data.

e Details about data D735. Details about data constitute meta data added to user data.
These can be stored within user data or externally. Details about data can be persistent
or volatile. Examples are MAC-times of files or sequence numbers of network packets.

o Configuration data DT,. Configuration data is data that can be changed by the OS
or applications, which modify the behaviour of the system, but not its behaviour with
regards to communication. That includes the configuration of hardware, of the OS and
applications.

o Communication protocol data D75. Communication protocol data comprises data,
which controls the behaviour of the system with regards to communication. That in-
cludes, amongst network configuration data, also inter-process communication (e.g.
pipes and RPC) of IT-applications.

96 A Transparent Bridge for Network Traffic Data Acquisition

e Process data DTg. Process data is data about a running process. That includes, for
example, the status of the process, the owner of the process, its priority, memory usage
or the related application. In IT-applications these can be single threads or data about
them.

e Session data DT7. Session data constitutes data collected by a system during a session,
regardless of whether the session was initiated by a user, an application or the OS. This
includes, for example, started programmes, visited websites or documents within a user
session.

e User data DTy. User data are contents created, edited or consumed by the user. This
includes, for example, media data such as pictures, texts, audio or video data.

The data represented in the layers, however, is not mutually exclusive; the same data that
constitutes raw data can also form user data, the difference is the semantics, in which the
data is looked at. Although during the usage of the LFTB, in principle, almost all data
types can be collected off the raw data D75, the main focus is on the Communication
protocol data DTy and User data DTg. In the following section we describe the features
of the LFTB in detail.

3 Designing forensic software using software engineering techniques

In [SomO06] three generic software process models are described. For our project we chose
a mixture of the waterfall model and component-based software engineering, since we start
from scratch with the design of the LFTB but use parts of the functionality already existing
from other authors. For a generic forensic application the requirements to be analysed are
methods for integrity and authenticity protection. Depending on the processed data the
security aspects of con fidentiality and privacy need to be included. Common for all
forensic applications is the demand for documentation. Within our model for the forensic
process this is the process accompanying documentation (see Section2.1). The resulting
software design is shown in Figure 1.

QI ——— Peimai

b ']
pr—— -
e Pl iy

M

| 1] |

Figure 1: Software design for a generic forensic application

All requirements are incorporated in our LFTB. The process accompanying documenta-
tion is a central component for the forensic application, sometimes needing protection for
privacy and confidentiality reasons. The implementation and integration phases include
the testing of units and the final system (see Section 7).

4 The concept, implementation and usage of a Linux Forensic Trans-
parent Bridge (LFTB)

We designed the Linux Forensic Transparent Bridge to be a universal tool for capturing
network data (raw data D75) in a sound forensic manner to store evidence on a mass
storage device. It is built around the following concepts:

e Integrity of the captured network data

o Integrity of the reports

o Authenticity of the reports and the captured network data

A Transparent Bridge for Network Traffic Data Acquisition 97

o Integrity of the operating environment
e (Optional) confidentiality of the captured data to preserve privacy
e Stealthy operation within the network

Most of these requirements meet those defined for generic forensic applications. It is of the
highest importance, that the source data is not altered by the LFTB during the capturing
and storage process. Hence, a cryptographic hash sum is calculated to prove the integrity
of the data. The LFTB calculates a cryptographic hash sum using the sha256 algorithm
during the capture operation'. The LFTB meets the requirement of a accompanying docu-
mentation by keeping a detailed log and also ensuring the integrity of that documentation
by calculating a cryptographic hash sum, again using the sha256 algorithm. The security
aspect of authenticity (i.e. establishing a link of the recorded data to the actual inci-
dent) is ensured by a sha256-hmac which uses a user selected passphrase and the current
hardware configuration (DMI data) of the computer running LFTB. Hence, our solution
ties the gathered network data both to the investigator and the LFTB hardware.We select
the sha256-hmac over the use of certificates, which are difficult to employ when using a
read-only medium; those certificates would have to be supplied externally.

Instead of developing all functions from scratch the LFTB uses commonly accepted appli-
cations and extends them to meet the requirements for forensic applications (see Figure 2).

Lardey W

T prss aes
]

Dy
e Eorewemany TR T
il ol el Poizog Wl e
e
Zon P ALY s P

Pl B g T

Figure 2: LFTB schematic

The LFTB is a bootable CD-ROM image and comes together with a sha256 publicly com-
parable cryptographic hash sum, thus ensuring the integrity of the executed code.

We designed the LFTB to be particularly stealthy, which is necessary when recording in-
tended malicious incidents. However, this can only be achieved if the LFTB is deployed
in bridging mode or with network taps, since the presence of monitor ports might be de-
tectable via SNMP. Optionally also means of keeping the security aspect of con fidentiality
and privacy are available. Making this feature optional became necessary, if the hardware
platform chosen is not powerful enough to perform both the capturing and encryption pro-
cesses fast enough. It is, however, positively advised to use the option so as not to collide
with data privacy regulations.The following Figure 3 summarises the basic concept.

Plaw dxis] Eirapaiad 3 Maw daly

| acacaom]

Tzt of gl o PR e T i

[o= MO pricond dais

Ll

- &é L Contm
"'-—-"

Figure 3: Functionality of the Linux Forensic Transparent Bridge

We designed the LFTB to record data onto a storage media, together with the documenta-
tion script and the cryptographic hash sum, for further analysis. The LFTB is to be used

'We select the sha256 algorithm over the popular mdS5 algorithm despite the higher demands on computational
power because the latter is not seen as secure enough with regards to intended collisions.

98 A Transparent Bridge for Network Traffic Data Acquisition

in the phases of strategic preparation(SP), operational preparation(OP) and dur-
ing the data gathering(DG) phase according to the model introduced in Section 2. It
is a Scaling of methods for evidence gathering SMG method and collects raw data
content D75 during the data gathering phase DG. The LFTB writes the captured data in
a structured file in pcap format> which can contain all of the forensic data types DT} to
DTyg. That data is then used in the following phase of data investigation DI to mainly
extract Communication protocol data D75 and User data DT5.

Data is captured on a conventional, readily available, x86-based computer system with two
network interface adapters installed. The computer has to be equipped with an optical drive
capable to boot off a CD-ROM. Mass storage devices need to be attached to the computer
(preferably external media such as USB disc drives) to record the captured data together
with cryptographic checksums and scripts as part of the accompanying documentation. A
generous amount of RAM installed in the LFTB is an advantage, since one option is to
use the RAM as intermediate storage for the captured data. The network adapters need
to support the promiscous mode for capturing every network packet passing through the
network (see also [Tan96]). They should match the surrounding network interface devices
(e.g. network speed, duplex operation mode) to prevent a deterioration of the network
performance. Data is captured on the data link layer of the ISO/OSI model of network
traffic (see [Zim80]). The basis for the Live CD is the Debian Linux Distribution® which
was hardened with only necessary software present (see [Tur05]). We add the software
packages bridge-utils, tshark and wireshark-common, which provides the network packet
sniffer dumpcap. The first package allows a detailed configuration of two network adapters
to form a network bridge. In order to be as stealthy as possible, the spanning tree protocol
is disabled. The software dumpcap can act as a network packet capturing tool. Potential
alternatives such as ettercap were not selected, because they offer the option of actively
manipulating network packages and staging man-in-the-middle attacks. To achieve con-
fidentiality and privacy, we use the software TrueCrypt*, which provides a secure virtual
drive. A self-developed shell script combines all the software components and provides
the user with a screen dialogue based interface.

A useful addition when using the LFTB is the network tap (see also [Lai00]), which sep-
arates the upstream and downstream directions of data within the network. Most of the
taps offer a read-only access, which is beneficial to forensic investigations, ensuring the
stealth functionality and preventing manipulations by the capturing process during the data
gathering phase DG (see 2.1). Also placing the network taps as part of the strategic prepa-
ration S P allows for a more economical use of the LFTB devices (see Section 5). This
enables the investigator to deploy the LFTB without disconnecting the network connection
on demand. It also prevents negative impacts to the availability of the network in case of

hardware or software failure of the LFTB.))))
After inserting the LFTB media our boot shell script establishes the bridge (’br0”), using

the two network adapters. The script then logs in the user "’Iftb” and invokes the execu-
tion of the application script that forms the functionality of LFTB. The user is asked to
verify the system time to assure a valid time base. The usage of the NTP network time
is not an option as it would give away the presence of the LFTB. Although not currently
implemented, in principle the employment of radio controlled clocks or GPS modules is
possible.

After ensuring the time base, the script asks for the name of the investigator for use in
transcripts and reports. In the next step the investigator has to chose a target for storing
the captured packets. A menu allows for mass storage devices initialised for use with the
LFTB. The script checks and warns the investigator, if data from previous sessions has
been detected. With the highly favourable option of using a virtual secure drive being cho-

2http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html
3http://www.debian.org
“http://www.truecrypt.org/downloads

A Transparent Bridge for Network Traffic Data Acquisition 99

sen, this drive can also be created during this step. After that the investigator currently has
five options for recording network data traffic:

e Capture complete traffic.

Capture traffic to or from a particular MAC.
Capture traffic using a custom filter.
Capture traffic using a timer.

Capture traffic with delayed start and timer.

These options are chosen to reflect different needs when being deployed at different lo-
cations (see Section 5). Especially the employment of custom filters (e.g. only recording
traffic using the http protocol) allows for scalability with respect to respect to storage space
limitations and for application in support cases. The options differ further in the network
source and the start and length of the capturing process. All options, however, gather net-
work data starting from the data link layer up to the application layer of the ISO/OSI Model
(see also [Zim80]). Further options could easily be added, should the need for extension
arise. Every network data recording is then secured in its integrity using the sha256 hash-
ing algorithm. However this can not cover errors during the writing process to the HDD,
because the hash is computed afterwards. In future releases the network packet capturing
tool should be extended or replaced by a tool which supports internal hashing. The tran-
script contains timestamps for the start and the termination of the recording (see Figure
4). Those dates are based upon the time the investigator entered when starting the LFTB
and are therefore independent of potentially maladjusted system clocks in the network,
therefore providing proof within the limits of the correct clock setting of the investigator.
Linux forensic transparent bridge evidence storage

Starting time: Sun Mar 28 20:18:51 CEST 2010
Investigator; Hildebrandt

Log item SHAZSGE hash: 717322afebl490saede00bddfod0215046e60d3d93ab75cfe7 3 dbbld
052291
HWAC; 3d161b1c8168a313c8f 2ed2abcheh3b0Eb7 507 f12e82091 cadf 11831 7803837

starting time; Sun Mar 28 20:;18:55 CEST 2010

action: dumpcap -i brd -w Aroot/data/1269800330,cap —a filesize: 127004

exit timeiSun Mar 28 20:13:29 CEST 2010

result: /root/data/1269800335, cap

SHAZEE haszh: ebSbS%ecf7lce?adbfIeBolBelb?oca04b9a0387 ac?2eboBe324£ 37526144295 A
oot/data/ 1269800335, cap

dumpcap output:

Packetz: 95648 Packets dropped: O

Log item SHAZSE hash: adbbdcSoddedShichel ei9e20e54f 737 3 6a330:7 FESZ20EFB0Chf 2dd
92ab26
HWAC: Z20EEFEdERafaadbObT08c2ef] 26304482208 529421 BI0204bF 2eaalafbdd

MAC-table of brd at Sun Mar 28 20319:33 CEST 2010

port no mac adde is local? ageing timer 1 00:0aiBaiaZ;30:b5 no 38,63 1 0030c:29;
Za:BBiaf yes 0,00 2 00:0c329:32:06:b9 yes 0,00 1 00:12:43:30:c1e7 no 42,66 1 00
£13:66:c32471d no 73,593 1 00:1at4f:80:0f:6d no 36.73 1 00:30:1b:b8:letbe no 8.6
21 003805c8:d7ef1ch no 35,41 1 40500:0431116F144 no 10,38 1 40;00:04:11:6F 46
no 10,18 1 40300:04:11:6F3152 no 10,58 1 40:00304:1126f:7d no 10,78 1 40200204211

Figure 4: Output of the protocol function of the LFTB

In the bottom of the figure the MAC table of the bridging mechanism is shown, which can

be crucial when IP addresses need to be correlated to hardware MAC addresses. Confirm-
ing with forensic best practices every action the investigator performs is recorded together

with command line parameters and the results. A sha256 hash sum and a sha256 hmac
hash is being calculated for every item, thus ensuring integrity and authenticity of the
collected data. In contrast to the hash of the network dumps, the hashes for each log item
are computed internally before the storage process. Thus write errors can be detected.

100 A Transparent Bridge for Network Traffic Data Acquisition

S Positioning of the Linux Forensic Transparent Bridge (LFTB)

The data collected by the LFTB depends heavily on the location within the network it is
placed in. This placement is a vital part of the strategic preparation SP introduced in
Section 2.1. Figure 5 shows a typical local network and potential locations of the LFTB.

@ S g
@ :I "! F'»-J [1"

(= | '\-_-"

Figure 5: Potenllal locatlons for the LFTB

In this setup V1 represents a router connected to the Internet. N2 is a Firewall/VPN
server. N3 and N4 represent network switches. S1 to S4 incorporate various dedicated
servers. In an exemplary setup, S2 has a mail server functionality, with S3 acting as a file
server. S4 is a general purpose server with high protection requirements. In this setup, C'1
represents a client with normal and C?2 a client with high protection requirements.

If the LFTB is placed at location 1, it records unfiltered network data traffic to and from the
Internet. However, VPN connections are only recorded in their encrypted representation.
If the LFTB is stationed at location 2, it captures filtered network data traffic to and from
the internet. VPN data is captured in its unencrypted representation. If the functionality of
the firewall N2 has to be investigated, two LFTBs on location 1 and location 2 are needed.
If a LFTB is situated at location 3, the transition of network data between systems with
normal protection requirements to systems with high protection requirements can be cap-
tured. To exclusively capture network data originating from or destined to server S4 with
high protection requirements, a LFTB should be placed at location 4. Network taps (see
Section 4) at the locations 1 to 4 should to be placed as part of the strategic preparation
S P. If the switches /N3 or N4 have a monitoring port, the LFTB could be connected to it.

6 Examples for using a Linux Forensic Transparent Bridge (LFTB)

In this section we show, using two scenarios, how a deployment of LFTBs collecting foren-
sic sound evidence (i.e. adhering to the security aspects of integrity, authenticity) as
well as conforming with con fidentiality and privacy can aid in investigating both sup-
port cases (malfunctioning hard-/software components and operating errors) and intended
malicious activities. The result in both cases is a capture file together with a sha256 hash
sum ensuring integrity as well as a report file with a hmac sum for every protocol entry
ensuring authenticity and a sha256 sum ensuring the integrity of the report file. The
output is placed in a secure virtual drive for con fidentiality and privacy, allowing access
only to the investigator supplying the chosen password. Also we discuss the scalability of
the LFTB for the chosen examples as a first evaluation of the concept of the LFTB.

Support case For the first scenario we assume that two systems within a network are
accidentally assigned the same IP address. This seemingly trivial problem can prove to be
a major problem especially in large intranetworks. In the network (see Figure 5) the task of
distribution of IP addresses is assigned to the dhcp server N2. It uses static dhep (i.e. each
hardware MAC address is tied to a preconfigured IP address). A client using the Microsoft
Windows XP operating system shows multiple alerts of IP address conflicts. A LFTB was

A Transparent Bridge for Network Traffic Data Acquisition 101

placed at location 3, from which the whole of the network traffic can be captured with all
local IP addresses being present. The network traffic (D75, see Section 2.3) is recorded as
part of the data gathering phase (see Section 2.1) using the LFTB.

Depending on the overall network bandwidth the scalability of the LFTB can be a factor.
Since at location 3 the full bandwidth can be required, off-the-shelf PC hardware may not
be sufficient to capture the full data content in time, especially if a secure virtual drive is
used.

For the following investigation we select the tool “tshark>” from the class DPE (see Sec-
tion 2.2) because it allows the dissection of the captured data in the following phase of data
investigation DI to extract data confirming to the ISO/OSI transport layer (see [Zim80]).
This extracts the MAC address data (D75, see Section 2.3) from the captured network
data. The same tool can also be used to extract ISO/OSI gateway layer data (D75). In the
phase of data analysis D A those two investigation results can be correlated. For this we
also need the ARP tables® (DT5) as collected by the LFTB. It in this case an IP address
is used by two different MAC addresses. By using this information to correlate it with the
data from the dhcp server, it shows which computer was using the IP wrongly. By having
the MAC table from the LFTB it can be seen, in which network segment the computer
that is using the IP address wrongly is located. This enables the investigator to locate
the misconfigured system even without managed switches, witch also maintain a user ac-
cessible MAC table. Following the data analysis part, a detailed technical report in the
documentation phase DO (see Section 2.1) which also includes all of the accompanying
documentation has to be created.

Malicious activity In the second scenario, an unusual network activity has been ob-
served. An LTFB was placed on location 2 (see Figure 5) during the strategic preparation
SP (see Section 2.1). This location is chosen because the whole and unfiltered network
data traffic (D75, see Section 2.3) is needed and no filtering decisions can be made as part
of the operational preparation O P. The network data traffic is captured by the LFTB to
secure evidence as part of the data gathering phase DG. At the chosen location the scala-
bility of the LFTB is not likely to be an issue since the volume of network traffic passing
from the intranet to the Internet will not overstrain the LFTB. In the following phase of
data investigation DI, the communication protocol data DT5 of the captured network data
is dissected using the tool tshark. The following Figure 6 shows a sample of the output of
tshark when used in the data investigation mode, depicting communication protocol data
(D1Ts5, see 2.3) on the transport layer according to [Tan96]).

TCP Conversations
Filter:<No Filter=

| - 11 o= 11 Total |

| Frames Bytes | | Frames Bytes | | Frames Bytes |
192. 168.3.200: 8822 «<-> 192.168. 1. 14:3722 164 27540 163 10997 327 38537
192. 168.3.200: 8823 «<-= 192.168. 1. 14:3124 71 14930 71 4802 42 19732
192, 168.3.260: 58251 =<-> 192.168. 1. 14: 11457 51 6378 71 4978 122 11356
192, 168.3.200: 52786 =<-> 192. 168. 1. 14: 447 1 54 1 =t 2 112
192. 168.3.200: 52786 =<->= 192.168. 1. 14: 1398 1 54 1 =t 2 112
192. 168.3.200: 52786 =<->= 192.168. 1. 14: 3985 1 54 1 =t 2 112
192. 168.3.200: 52786 =<-= 192.168. 1. 14: 1621 1 54 1 =t 2 112
192, 168.3.200: 52786 =<-> 192.168. 1. 14: 268 1 54 1 =t 2 112
192, 168.3.200: 52786 =<-> 192.168. 1. 14:479 1 54 1 =t 2 112
192. 168.3.200: 52786 =<-> 192.168. 1. 14: 6OS 1 54 1 =t 2 112
192, 168.3.200: 52786 =<-> 192.168. 1. 14: 742 1 54 1 =t 2 112
192, 168.3.200: 52786 =<-> 192.168. 1. 14:288 1 54 1 =t 2 112
192. 168.3.200: 52786 =<->= 192.168. 1. 14: 1541 1 54 1 =t 2 112

a

187 1€0 3 TAA.CATOE - - 107 1E0 1 14-4AA7 1 ca 1 co 117

Figure 6: Communication protocol data analysis using tshark

Consequently the IP traffic together with port information is visible. It shows that one
computer (192.168.3.200) establishes a lot of connections to different TCP ports of another
computer (192.168.1.14) only transmitting one single network packet (a typical indicator

Ssee http://www.wireshark.org
6see also http://www.ietf.org/rfc/rfc826.txt

102 A Transparent Bridge for Network Traffic Data Acquisition

of a port scan). Also network traffic using the TCP ports 11457, 3124 and 3722 is detected.
Since those are of no regular use on that computer, an investigation of the payload is
inevitable as part of the data analysis phase D A. The tool wireshark can be used on the
packet level of the captured data from the LFTB. The following Figure 7 shows the output
of a packet level analysis to extract user data DTy (see 2.3).

= - Raurm e i
i i b= B e == e e |
L LR & TN NN - BIE - et il [BCB] R

(W T AT AT — Vi NI R .I T e i
fifmw Fel GEcend rhi (e 5 § o B s TRl (RCE . el dw e

e e i e v

frgm 19 LM bwiew = e 18 e s

e E1, Wy e i 8 P (0 B ke Tl B ey 6 B e 0 B T

L s et L (PR LN N SRS CRT WP IR N E BTN B

BT i Cwira e, e S eescedtad i DITRR, Sl ey EESR DR, e AP, daho W L

b odns TR b1

5]
OO M AT LNl W N TR P DN R NT A A= el i
N T Il I AL R T T
PEEEFE PR MR W OHE O N DN B S A ek Sebiaeo
e E F L L L L L F R T Y sy =

Figure 7: Network data packet level analysis using wireshark

The communication protocol data can be seen in the middle of the screenshot, sectioned
into the different layers of the ISO/OSI model. In the Ethernet II entry the MAC address
(DT5) representing the layer 2 (i.e. the data link layer) is shown. The content of the
network layer, the IP address, constituting D75 is shown on the entry Internet Protocol.
The entry Transport Control Protocol shows the ports used and represents transport layer
content (DT5). The payload of the selected network data packet is shown on the lower part
of the screenshot (DTy). We select the forensic toolkit Py Flag’, from the class DPFE (see
Section 2.2) because it enables the restoration of complete sessions (i.e. the combination
of payload data).

L e Somm edlld H
Viewing (ile In inode Inei] | S3600 350

"t T AR T O
R LT

I O L T r—

—

s g e e P
| ST —

| — —

|

foomes e i e

o e =

Figure 8: Network session analysis using py flag

The resulting output (see Figure 8) shows the execution of the script named make_me_root.
Also, a malicious kernel module enyelkm.ko is moved to the /etc directory on the target
computer. In the data analysis DA phase it can be established, that shell commands are
transmitted using those ports. As shown in Figure 7, this backdoor-ports were also utilised
by the attacker. By having the complete network data recording, the progress of the at-
tacker can be reconstructed, including which data was accessed by the intruder. A detailed
report in the documentation phase DO (see 2.1) ends the investigation.

"http://www.pyflag.net

A Transparent Bridge for Network Traffic Data Acquisition 103

7 Testing the Linux Forensic Transparent Bridge (LFTB)

Testing of the LFTB covers the impact on the network by deploying one or more LFTB-
devices and the quality of the collected evidence. The test concept includes throughput
and latency, as well as the expected packet loss depending on the storage destination and
the integrity and authenticity of the log-file.

LFTBs impact to the network For the impact the network transfer rate and the latency
of packets were tested. Each test was performed for three setups: no LFTB deployed,
LFTB connected to the monitor-port of the switch and LFTB in the bridging-mode.

reference without LFTB
0.258ms
22.655s

performed test
average ping latency
transferring time

LFTB at monitor port
0.252ms
23.196s

LFTB in bridging mode
0.414ms
22.918s

Table 1: Average ping latency and transferring time

Table 1 shows the average ping latency in the tests and the time to transfer a 256MB file
via netcat through the network. The ping-latency has not changed in the first two cases
and got bigger in bridging-mode. This is an expected result, because every OSI-Layer-2
device adds to the total latency. The network transfer rate has not changed significantly.

Quality of the collected evidence When capturing network traffic a certain amount of
dropped packets, resulting from insufficient CPU-power or from the bandwith limitation
of the storage device. Especially the ad hoc encryption consumes a lot of CPU-time. Our
testing system was equipped with two Pentium II CPUs, each running at 450MHz and
384MB of RAM. The network connection was set to 100MBit.

[[HDD+TrueCrypt (256MB file) | HDD (256MB file) [RAM-drive (128MB file) |
[captured/dropped (percentage) | 139403/ 150853 (51.97) [210929783075 (28.26) | 13917079603 (6.45) |

Table 2: Captured and dropped packets

Table 2 shows the percentage of dropped packets. Our conclusion is that the testing system
is insufficient for capturing the full 100mbit traffic. In each case a warning message was
displayed to warn about the packet loss. In order to be able to capture the full traffic
without dropping packets the prior-incident testing is a necessity. However, this packet
loss only affected the recording, not the network itself. Further testing showed that newer
systems are capable of recording the full 100mbit traffic into a RAM-drive (see Table 3).

System RAM-drive (256MB file) HDD (256MB file) HDD+TrueCrypt (256MB file)
Pentium-M 1.6GHz 0 0.41 6.47
Athlon64 X2 2*2GHz 0 0.37 3.69
Phenomll X4 4¥3.2GHz | 0 0.01 0.13

Table 3: dropped packet percentage on newer systems (worst results)

The systems in Table 3 used different hard disk drives. For the PhenomIl X4 an internal
3.5 inch SATA disk was used. The two other systems utilised a 2.5 inch SATA HDD,
which was connected externally via USB. While capturing to the internal drive resulted in
no or small amount of dropped packets, the USB device caused constant drop rates around
0.4 percent. However the realtime AES encryption needs sufficient processing power. The
five year old hardware of the two slower systems is obviously not sufficient. The PhenomlII
is still too slow resulting in drop rates between 0.046 and 0.13 percent. The utilisation of
special network adapters, which reduce the CPU load, might improve those results.

Reliability of the LFTB log file Although each item is secured by a sha256 hash it is
very easy to replace an item with another one. Hence, an additional HMAC is used to
provide authenticity. To prove the authenticity of the log item the output of dmidecode of
the LFTB and the HMAC password is required.

104 A Transparent Bridge for Network Traffic Data Acquisition

8 Conclusion

In this paper we have proposed the Linux Transparent Forensic Bride (LFTB) as a network
data gathering tool for the investigation of support cases and malicious activities. The
LFTB allows for comprehensive and stealthy capturing of network data, ensuring integrity
and authenticity of the data and, optionally but highly recommended, confidentiality and
privacy. For its construction a self-developed holistic model of the forensic process was
used, also firmly integrating accompanying documentation. We discussed the importance
of the strategic preparation as an important part of forensic investigations to broaden the
view of forensic investigations as a well defined way of data analysis not only limited to
criminal proceedings. Especially when using the proposed LFTB the strategic prepara-
tion becomes paramount as the location of such a capturing device needs to be determined
ahead of a potential incident.

The location management, the scalability to record potential large amount of data in
quickly as well as issues with the key management for the hmac and the secure virtual
drive containing the evidence constitute further work and testing areas.

Acknowledgement

The work in this paper for IT-forensics has been supported in part by the the Federal Office for Information Security (BSI). The
authors wish to thank Mr. Carsten Schulz from the BSI for the initial inspiration and continued support.

The information in this document is provided as is, and no guarantee or warranty is given or implied that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

References

[Bis06] Matt Bishop. Computer Security - Art and Science. Number ISBN 0-201-44099-7.
Addison-Wesley, 2006.

[BWO06] Steve Bunting and William Wei. The official EnCE Study Guide. Number ISBN 978-0-
7821-4435-2. Wiley Publishing Inc., 2006.

[Fre07] Felix Freiling. A Common Process Model for Incident Response and Digital Forensics.
Proceedings of the IMF2007, 2007.

[Lai00] Brian Laing. Intrusion Detection Systems. Technical report, IBM Internet Security Sys-
tems, 2000.

[Nar10] Narus. Narus - Leader in Real-Time Traffic Intelligence. http://www.narus.com/, April
2010.

[New07] Robert C. Newman. Computer Forensics - Evidence collection and Management. Number
ISBN 978-0-8493-0561-0. Auerbach Publications, 2007.

[Som06] Ian Sommerville. Software Engineering. Number ISBN 0-321-31379-8. Addison Wesley,
2006.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Number ISBN 0-13-394248-1. Prentice Hall
International Inc., 1996.

[Tur05] James Turnbull. Hardening Linux. Number ISBN 978-1-59059-444-5. Apress, 2005.

[Zim80] Hubert Zimmermann. OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection. IEEE Transaction on Communications, 1980.

