
Monaco: A DSL Approach
for Programming Automation Systems1

Herbert Prähofer, Dominik Hurnaus, Roland Schatz,
Christian Wirth, Hanspeter Mössenböck

Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University

A-4040 Linz / Austria
{praehofer, hurnaus, schatz, wirth, moessenboeck}@ase.jku.at

Abstract: In this paper we present the language Monaco, which is a DSL for
programming event-based, reactive automation solutions. The main purpose of the
language is to bring automation programming closer to the domain experts and end
users. Important design goals therefore have been to keep the language simple and
allow writing programs which are close to the perception of domain experts. The
language Monaco is similar to Statecharts in its expressive power, however, adopts
an imperative notation. Moreover, Monaco adopts a state-of-the-art component
approach with interfaces and polymorphic implementations and it enforces strict
hierarchical communication architectures which support the hierarchical abstrac-
tion of control tasks. We discuss the main design goals, the essential programming
elements, and the visual program representation and illustrate how the language
supports hierarchical abstraction of control functionality by an example applica-
tion.

1. Introduction

Domain-specific languages (DSLs) are a proven approach to bring programming closer
to application domains. DSLs focus on specific application domains, strive for present-
ing software in the notations of the domain experts, and allow a straightforward mapping
of application concepts to software solutions. They have the capability to significantly
improve the productivity and quality of software engineering in the focused domain. The
ultimate goal of a DSL approach is to empower domain experts and end users by pro-
viding languages and tools that enable them to realize and adapt software systems by
themselves.

In an ongoing project [20] we pursue a DSL approach in the domain of automation
systems. We develop modeling and programming notations as well as tools that
empower domain experts and end users to implement and adapt control programs in an
intuitive and concise way. The background for this work is a cooperation with Keba AG

1 This work has been conducted in cooperation with Keba AG, Austria, and has been supported by the
Christian Doppler Forschungsgesellschaft, Austria.

242

(www.keba.com), which is a medium-sized company developing and producing
hardware and software platforms and solutions for industrial automation. Development
of automation solutions is a multi-stage process involving different stakeholders at
different stages of the automation process with different programming knowledge and
capabilities as follows: Keba develops and produces a PC-based hardware and software
platform with associated tool support, in particular a programming environment based on
the IEC 61131-3 standard. The hardware and software platform enables the customers of
Keba to realize automation solutions for their products. The customers of Keba are
mainly OEMs of manufacturing solutions, like injection molding machines, painting
robots for the automotive industry, material handling equipment, etc. Employees of
OEMs, however, are often domain experts with limited software engineering
capabilities. Moreover, an important part of the automation solutions are end user
programming environments. In the domain, it is required that end users, which are the
machine operators, are enabled to make adaptations to the control programs. This
represents a particular challenge as the end users normally have no software
development knowledge and, on the other side, have to make changes in a highly safety
critical software system.

We have found that current modeling notations and languages in the automation domain,
most notably the programming languages of the IEC 61131-3 standard [15] and others
[5], do not satisfy the requirements of a programming language which can be used by
domain experts or end users. Moreover, these languages lack many characteristics of
state-of-the-art programming languages from a software engineering perspective. Other
formalisms, in particular the widely adopted Statechart [13] formalism or the IEC 61499
standard [16], have the expressive power required and can be regarded as being up-to-
date software engineering practices. However, those modeling approaches primarily
target at software engineering experts. Moreover, in our investigations domain experts
and end users clearly articulated a preference of flowchart-like notations over state-based
notations.

Hence, we have defined a new DSL for event-based, reactive control programming –
called Monaco (MOdeling Notation for Automation COntrol). The language Monaco is
similar to Statecharts in its expressive power, however, adopts an imperative notation. It
is designed with the goal that also domain experts and, in a limited way, end users are
capable of reading, writing and adapting control programs. Monaco is specialized to a
rather narrow sub-area of the automation domain, i.e., programming control sequence
operations for manufacturing machines. The lower level continuous control layers and
the higher manufacturing execution system (MES) layers are therefore out of scope. It is
intended to cover the event-based, reactive control part of machine automation software
only. Therefore, a continuous control system, typically realized in languages of the IEC
61131-3 standard or plain C, will form a lower layer which will be controlled, scheduled,
and coordinated by the higher reactive layer implemented in Monaco. Its run-time
infrastructure is a PC-based hardware with a real-time operating system.

In this paper we will present the main language concepts of the language Monaco. The
outline of the paper is as follows. Section 2 presents the main features of the Monaco
language as well as its visual representation. Moreover, equivalent Statechart structures

243

are presented. Section 3 demonstrates how hierarchical control programs can be realized
using an example control program for an injection molding machine. Section 4 discusses
differences of Monaco and Statecharts and UML-RT and other approaches. In Section 5
we present the current status of evaluation and Section 6 concludes with a summary and
an outlook to future work.

2. The Monaco Language

In extensive discussions with domain experts of our industrial partners, we learned about
the perception of domain experts and end users of automation machines as follows: (1) A
domain expert perceives a machine as being assembled from a set of independent
components working together in a coordinated fashion. (2) Each component normally
undergoes a determined sequence of control operations. There are usually very few
sequences which are considered to be the normal mode of operation, and those are
usually quite simple. Complexity is introduced by the fact that those normal control
cycles can be interrupted anytime by the occurrence of abnormal events, errors, and
malfunctions. (3) Reactive behavior is intrinsically complex. Especially, realizing asyn-
chronous event and exception handling in a concise way always represents a challenge.
(4) The control sequences of the different machine components are coordinated at a
higher level to fulfill a particular control task.

The design of Monaco is based on those findings and on the following ideas: (1)
Although the behavioral model of the language is very close to Statecharts, an
imperative style of programming is used. The language adopts proven concepts from
imperative languages such as procedural abstraction, synchronous procedure calls,
parameters, block structure, lexical scoping, and a Pascal-like syntax. (2) The main focus
of the language is on event handling. Statements have been introduced to express
reaction to asynchronous events, parallelism and synchronization, exception handling,
and timeouts in a concise way. (3) Monaco pursues a component-based approach with
strict modularization which allows a direct mapping of the machine structure to the
software structure. (4) In contrast to many other component-based approaches in this
domain, Monaco pursues hierarchical control architectures of subordinate and superordi-
nate components where the superordinate is of full control over the tasks performed by
its subcomponents. The superordinate component composes and coordinates the
behavior of its subordinates and provides abstract and simplified views to its
superordinate. Between sibling components only limited event signals for task
synchronization purposes are allowed. How the sibling components can interact is again
determined by the common superordinate. (5) The setup of Monaco programs is done in
a separate configuration phase prior to execution, i.e., the entire system is statically
configured. (6) Besides a text-based notation, there is a second, visual representation of
Monaco programs, which is usually preferred by domain experts and end users.

In the following we present the main programming elements.

244

2.1. Component approach

Interface declarations (Figure 1) are used for defining the static contract between
components and their clients and hence have a similar purpose as interfaces in modern
object-oriented languages. However, interfaces in Monaco account for the hierarchical
communication architecture of control programs. On the one hand, an interface defines
the externally visible operations of a component in the form of routine declarations.
Those represent the operations a superordinate will be able to perform. On the other
hand, an interface defines how a component will provide feedback about the fulfillment
of its control tasks by specifying events it will signal and functions it provides for
accessing run-time state properties of the component.

II NTENTE RF ARF ACECE I Ty pe
E VE VE NTE NT SS ev ent , …;
F UF UNCTNCT I OI ONN f unc (…) : Re tRe t T yT y ppee;
……
RROUTOUT I NEI NE r out (…) ;
……

E NE NDD I Ty pe

<<INTERFACE>>
IType

<<EVENTS>>
event, ...

<<FUNCTION>>
func(…) : RetType
…
<<ROUTINE>>
rout(...)
...

Figure 1. Interface declaration in Monaco (left), visual representation (middle), and UML (right)

Interfaces are implemented by components (Figure 2), i.e., components have to imple-
ment the routines, functions, and events defined in the interfaces. In addition, a
component has parameters, which are run-time constants used to configure a compo-
nent, and internal state variables. A component declares subcomponent variables which
can hold references to subcomponent instances. Interface types are used in the subcom-
ponent variable declarations. In a setup phase, Monaco components need to be instanti-
ated and the component/subcomponent relation needs to be established. The
component/subcomponent structure forms a tree-like hierarchy.

A function implementation in a component is similar to functions in procedural
programming languages, e.g. Pascal. They return run-time state properties of compo-
nents. Routines are used to implement control algorithms and therefore constitute the
central programming elements of components. Established language constructs from
structured programming languages like parameters, block structure, lexical scoping,
loops, if-statements etc. are used. Additionally, special programming constructs for
parallel execution tasks and reactive behavior with semantics similar to Statecharts are
provided (see below).

245

CCOMPOMPONEONE NTNT CompTy pe
I MPI MPL EL E MME NE NTTSS I Ty pe

PPAARAMRAME TEE TE RSRS
pa r a m: PTy pe : = def a ul t ;
…

SS UUBCOBCOMPOMPONE NNE NTSTS
s ubComp1: I Ty pe1;
s ubComp2: I Ty pe2;
…

EE VVE NTE NT SS
ev ent , …;

VARVARSS
v a r : VT y pe;
…

FF UUNCTNCT I ONI ON f unc (…) : Ret T y pe
BBEE GI NGI N … E NDE ND
…
RROUTOUT I NEI NE r out (…)
BBEE GI NGI N … E NDE ND
…

EE NDND CompTy pe

CompType

<<PARAMETERS>>
param: PType = default;
...
<<EVENTS>>
event, …;
<<VARS>>
- var: VType;
...

<<FUNCTION>>
func() : RetType
…
<<ROUTINE>>
rout(...)
...

IType

subComp1 subComp2 …

Figure 2. Component with provided and required interfaces in Monaco (left), visual representation
(middle), and UML (right)

2.2. Reactive system programming

The WAIT statement is provided to suspend the execution of the current execution thread
until a specified condition is satisfied. Any Boolean expression can be used. Compared
to Statecharts, a WAIT corresponds to a state node with the condition as the triggering
event (Figure 3).

…

a c t i on1;

WAWAI TI T c ondi t i on;

a c t i on2;

Figure 3. WAIT statement, visual representation, and equivalent Statechart model

ON handlers are used to handle events which can occur asynchronously to normal,
sequential program execution. ON handlers specify an arbitrary event condition and are
attached to BEGIN/END blocks (Figure 4). Their meaning is that, whenever the condition
of the ON handler becomes true while program execution is within the BEGIN/END block,
the block is left and the statement sequence of the ON handler is executed. For ON
handlers to be meaningful, the guarded BEGIN/ENDblock has to have blocking statements,
i.e., WAIT statements, where program execution gets suspended and the asynchronous
event handling can occur.

ON handlers in Monaco are analogous to OR states and their transitions in Statecharts.
Figure 4 shows the relation. The OR state groups the states, e.g. the blocking WAIT state-

246

ments, and transitions within the BEGIN/END block. The transition leaving the OR state is
labeled with the condition of the ON handler. An arbitrary sequence of statements can
follow. ON handlers have interruptive behavior, therefore program execution continues
with the first statement after the block.

BEBE GIGI NN
a c t i on1;
WAIWAI TT c ond1;
. . .

ONON c ond2
a c t i on2;
. . .

E NE NDD
a c t i on3;

Figure 4. ON handler, visual representation, and equivalent Statechart model

The PARALLEL statement is used for creating multiple concurrent execution threads. Each
parallel execution thread consists of a statement or a statement block. As soon as all
parallel execution threads have terminated normally, program execution continues after
the PARALLEL statement. The PARALLEL statement has the semantics of the AND state in
Statecharts, see Figure 5.

PPARARAL LAL L E LE L
BE GBE GI NI N

a c t i on1;
WAI TWAI T c ond1;
. . .

E NDE ND
| |

BE GBE GI NI N
a c t i on2;
WAI TWAI T c ond2;
. . .

E NDE ND
E NE NDD
a c t i on3;

Figure 5. PARALLEL statement, visual representation, and equivalent Statechart model

Although Monaco allows using arbitrary Boolean conditions as event triggers, event
signals are provided. Those are similar to the event triggers in Statecharts or the signal
concept in Esterel [5].

247

3. Example Control Program

In this section we will demonstrate programming in Monaco with an example automa-
tion program for an injection molding machine. It is a reimplementation of the reactive
part of an existing control program for an injection molding machine, originally imple-
mented in the IEC 61131-3 [15] standard languages. This example should especially
show how the language supports hierarchical abstraction of control functionality.

Figure 6. Injection molding machine

Figure 6 shows the structure of the sample molding machine. There are two main
components in the machine: the mold subsystem with the clamp, the ejector, and a core
puller; and the nozzle subsystem that is mounted on a sledge with the material funnel,
the heating system, and the screw for injection. Finally, the ejector ejects the finished
parts out of the mould.

Component hierarchy

The component hierarchy of the control program resembles the structure of the real
machine (Figure 7). This leads to a direct mapping from the problem structure to the
solution structure. On top, the Supervisor component is responsible for encoding the
overall control cycles. It knows different operation modes, e.g. full automatic or half
automatic. It relies on and coordinates several subcomponents corresponding to the
different machine subsystems. The components for nozzle and mould are further decom-
posed according to the different parts of the subsystems. At the bottom of the hierarchy
there are components for interfacing with the hardware or lower level control layers.
Figure 7 shows the higher level components on the left hand side and the low-level
components on the right hand side.

Components at different hierarchy levels typically serve different purposes as follows:
(1) Components at the bottom are used for interfacing with the hardware or lower control
layers. They usually read and write basic system variables. (2) Components at the first
level compose those primitive operations into elementary control routines and supervise
their execution. (3) Higher up in the hierarchy there are several coordination components
which coordinate and supervise the operations of several subcomponents.

248

Figure 7: Component hierarchy of an injection molding program

Interface to hardware and continuous control layers

In the example program, the components forming the leaves of the component hierarchy
are native Java classes building the interface to a simulator which simulates the real
machine and the continuous control layer. The native components implement a Monaco
interface which represents the interface for the superior components (there is a direct
mapping of routines, functions and events to equally named Java methods). The follow-
ing code snippet (Figure 8) shows the interface definition for the core puller component
ICore. The interface defines elementary routines to set system variables to start and stop
insertion and removal of the core and a function giving the current position of the core
puller.

II NTENTE RF ARF ACECE I Cor e

F UF UNCTNCT I OI ONN pos i t i on() : RRE ALE AL ;

ROROUTIUTI NENE s t a r t I ns er t () ;

ROROUTIUTI NENE s t opI ns er t () ;

ROROUTIUTI NENE s t a r t Remov e() ;

ROROUTIUTI NENE s t opRemov e() ;

E NE NDD

Figure 8: Interface ICore

First level control components

The components residing in the hierarchy level directly above the native components use
those interfaces to compose elementary operations into basic task routines. For example,
the CoreCtrl component has the native component as its single subcomponent (Figure 9).
It defines routines to insert and remove the core and one to immediately stop all move-
ments. However, besides defining the basic sequence of actions, those routines also

249

check for the correct execution of control tasks and correct reactions from the subordi-
nate by ON handlers. In this way, the component provides routines to its superordinate
having all possible errors already checked and reported as error events.

CCOMPOMPONEONE NTNT Cor eCt r l I MPLI MPL E ME MEE NTNTSS I Cor eCt r l
PPARAARAME TME T E RE RSS

c or eS t a r t edTi meout : I NTI NT : = 200;
c or eI ns er t T i meout : I NTI NT : = 1400;
c or eI ns er t Pos : RE ARE ALL : = 0. 6;
c or eRemov ePos : RE ARE ALL : = 0. 8;

SS UBCUBCOMPOMPONONE NTE NT SS
c or e : I Cor e;

EE VE NVE NTSTS
er r or ;

FF UNCUNCTI OTI ONN i s Remov ed() : BOOBOOLL
BBE GIE GI NN … E NE NDD i s Remov ed

FF UNCUNCTI OTI ONN i s I ns er t ed() : BOOBOOLL
BBE GIE GI NN … E NE NDD i s I ns er t ed

RROUTOUT I NEI NE s t op()
BBE GIE GI NN … E NE NDD s t op

RROUTOUT I NEI NE i ns er t ()
BBE GIE GI NN … E NE NDD

RROUTOUT I NEI NE r emov e()
BBE GIE GI NN … E NE NDD

Figure 9: Component CoreCtrl

The following code snippet (Figure 10) demonstrates this approach with the insert routine
(only the graphical representation is shown). First, startInsert is called from its
subcomponent core which will set a hardware signal, thereby starting the insertion
process. Next, a reaction from the isRemoved signal is expected. If this sensor does not go
to false within a given (short) time period, a fault in the insertion process or a faulty
sensor has to be assumed; so the process is stopped and an error event is fired. Next,
execution waits for the isInserted signal to become true and then stops the insertion
process. Again the process is supervised by two ON handlers. The first checks that the
isRemoved signal does not switch to true again (which might be caused by a faulty
sensor). The second checks that the reaction of the isInserted signal occurs in time. In
both error cases the process is stopped and the error event is fired.

Figure 10: Routine insert of CoreCtrl

250

Coordination levels

As the next higher level component the MoldCtrl component is discussed. This component
has to coordinate the operations of the core and the clamp subcomponents. The example
routine shown in Figure 11 exemplifies this by the close routine. Its purpose is to control
the process of closing the clamp and inserting two cores, all of which should occur in
parallel.

Figure 11: Routine close of MoldCtrl

Finally, the routine automatic (Figure 12) represents the overall automatic control cycle
of the machine. This is usually the level which is also presented to end users working
directly at the machine. The operation cycle of the machine gets clearly represented in
the code. In the inner control loop first the mold is closed. Then injection is performed
and in parallel the cooling time is checked. Then, in parallel activities, the mold is
opened, new material is inserted into the screw (nozzle.plasticize), and, after the mold has
been opened to a determined point, the molded piece is ejected.

Figure 12: Routine automatic of Supervisor

251

4. Related Work

The design of the language Monaco has been influenced by several different languages
and tools for reactive embedded systems modeling and programming, most notably by
the synchronous languages Esterel [5] and its derivatives [7], [4], [8], the Statecharts
formalism [13] and related systems [6], [2], and UML/RT [21] and other component-
based modeling approaches [16], [17], [19], [23]. In the following we give a short
comparison to Statecharts, Esterel and the UML/RT component approach.

4.1. Comparison to Statecharts

The Statecharts formalism [13] together with implementations like AnyLogic
(www.xjtek.com) and Rhapsody (www.ilogix.com) have been the primary influencers
on the Monaco language. As outlined in Section 2, Monaco has statements which are
analogous to Statecharts’ OR and AND states. However, Monaco is more restrictive in
respect to control flow, i.e., Monaco enforces a hierarchical block structure with lexical
scoping and arbitrary program jumps (gotos) are prohibited (which are possible in
Statecharts because no restrictions are defined for source and destination states of
transitions). The main difference between Monaco and Statecharts is the imperative
notation. One could claim that Monaco is an imperative version of an essential subset of
Statecharts. We argue that the imperative notation makes Monaco programs more
suitable for domain experts. Our experiences with domain experts have shown that they
are not used to thinking in states and state transitions, but usually perceive the control
behavior as coordinated sequence of machine operations. Our visual representation of
control routines compares to the Statecharts visual formalism. However, we argue that
the structured approach of Monaco with block structure and a clear separation of normal
control flow and asynchronous event handling results in better arranged diagrams.

4.2. Comparison to Esterel

A second important influencer has been Esterel [5]. Esterel is a synchronous language
[3], [12] with an imperative syntax for describing event-based, reactive control of
embedded systems. Esterel programs consist of collections of nested threads which
communicate exclusively through event signals. As a novel feature, Esterel has
introduced statements for pre-emption and exception handling.

Monaco relates to Esterel as it is also an imperative language for reactive control
programming. The WAIT-, PARALLEL-, and ON-statements of Monaco have semantics
similar as the await-, par- and abort-statements of Esterel. Moreover, the execution model
is similar to Esterel; actually, it shows much similarity to the SugarCubes [8] and Junior
systems [14], which are synchronous machine implementations strongly influenced by
Esterel.

However, Monaco also differs significantly from Esterel and its derivatives in many
respects. First, Monaco’s event handling is much more general. In Esterel, thread
communication and event synchronization is possible exclusively through signals

252

(signals are analogous to the EVENT construct in Monaco). In Monaco, any Boolean
expression can be used to specify an event trigger. We argue that this is an important
enhancement which makes control programming much simpler and more user-friendly.
Moreover, Monaco syntax is simpler than Esterel. It has less control structures and
shows stronger similarities to common imperative programming languages.

4.3. Comparison to component-based approaches

Our component approach has strongly been influenced by UML/RT [21] and comparable
component approaches for embedded systems, e.g. [16], [17], [19], [23]. The main
difference to those component approaches is that in Monaco communication is between
superordinate and subordinate components only. In the more traditional approaches,
components are coupled by connecting input and output ports, i.e., components at the
same hierarchy level are connected. Although components can be arranged in a
hierarchical manner, communication between components is not hierarchical. Moreover,
in most approaches components can only communicate through simple signals whereas
Monaco uses synchronous routine calls. We argue that the parent-child communication
structures supported by the Monaco language are an important feature of our approach
which facilitates the required hierarchical abstraction and simplification of control
programs.

Moreover, our hierarchical communication scheme shows similarities to hierarchical
scheduling schemes for real-time system recently emerged [18], [11], [24]. Similar to
our approach, they employ event-based methods for modeling control of task execution
in a hierarchical manner. However, their focus is on task scheduling issues and only
limited language support is provided. Our approach concentrates on the language
expressiveness and does not care for task scheduling in the lower control layers
currently, which is considered to be taken care within the lower control layers
themselves.

5. Evaluation

The language has been developed and tested relying on a set of typical examples,
starting from simple machines to small manufacturing cells. In particular, we have re-
implemented two existing automation solutions from our industrial partner, both
implemented currently in the IEC-61131-3 languages Structured Text and Sequential
Function Charts. The first is an automation solution for an injection molding machine.
The example in Section 3 has been taken from this system. The other is an existing
solution for the paint supply system of a painting robot used in the automotive industry.
Both are typical solutions from the domain of our industrial partner, where end user
programming environments are strongly needed. In both programs we have covered the
event-based reactive part of the systems and tested them with a simulator.

Results of those two case studies were very encouraging. It was possible to reduce the
code size of the systems to a fraction of the original one. The original injection molding

253

solution has in total more than 30 000 lines of code (Structured Text), where about 1/4 is
for the pure reactive control part (which is a rather conservative approximation). Our
solution has exactly 942 lines of code. The abstract control part for the paint supply
system typically consists of over 20 medium-sized Sequential Function Charts plus
several time-based programs (a proprietary programming model used in this type of
solution). Our Monaco program has 1403 lines of code. However, it is difficult to
compare SFCs to textual code, because of their different nature (SFCs are a graphical
notation with actions coded in Structured Text).

As a next step in the project we plan detailed validation studies which should show two
properties: (1) that the language is expressive to represent complex control programs in a
concise way and (2) that the language is intuitive for domain experts and end users. To
show the first we are looking for typical programming challenges in the domain and find
patterns which show how to solve those. In particular, we want to show how the
hierarchical component approach should be utilized. To show the second property we are
planning to make usability studies, relying on manufacturing engineering students. In
particular, we want to compare our visual representation to other visual languages in the
domain, like Statecharts or Sequential Function Charts.

6. Summary and Outlook

In this paper we have presented the domain-specific language Monaco and its visual
programming environment. We have discussed the objectives of the language, the main
design decisions, the most important language features, and the visual representation
scheme. The language Monaco is the core of a larger research project with the overall
goal of making machine control programming more reliable and more adequate for the
domain experts, and to give even end users limited programming capabilities. We regard
the language features of Monaco, in particular its imperative notation, its hierarchical
component and communication architecture for control abstraction, the asynchronous
event handling mechanism as well as the static nature of Monaco programs as important
features making such an approach feasible.

Also important to note is what has been omitted in the Monaco language. For example,
Monaco language is intentionally not object-oriented. Language features like inheritance
and dynamic binding are well accepted as powerful, high-level programming concepts.
However, they introduce a complexity which stands in conflict with the requirements of
bringing programming capabilities to domain experts. For similar reasons, Monaco does
not support pointers, references, and a newoperator (component instantiation only can be
done at setup time).

We have developed an integrated development environment (Monaco IDE) based on the
Eclipse RCP. The core of the Monaco IDE is a visual editor which displays control
routines automatically from source code. Experience has shown that the visual
representation is easily understood by domain experts. Currently we only have a virtual
machine for Monaco programs in Java, which, of course, does not have the required real-
time capabilities. An implementation of a compiler framework which allows translation

254

to different target platforms, in particular the IEC-61131-3 platform of our industrial
partner and plain C, is underway.

Another important future extension of Monaco is the support of protocol contracts as
well as their exploitation in guiding and constraining domain experts. The idea is simple:
protocol contracts will define the valid sequences of operations and the legal feedback of
a component defined in the form of finite state automata [10]. A component has to
guarantee that it will not violate the contracts of its subcomponents. This will allow us to
statically check that a sequence of operations is correct and will result in a semantically
meaningful and complete program. Standard automata simulation and model checking
methods [9] represent the underlying theoretical basis for this approach.

References

[1] Aldrich, J., Chambers, C., and Notkin, D. 2002. ArchJava: connecting software architecture
to implementation. In Proc. of the 24th ICSE (Orlando, Florida, May 2002). ICSE '02. ACM
Press, NY, pp. 187-197.

[2] André, C.: Representation and Analysis of Reactive Behaviors: A Synchronous Approach.
CESA'96, IEEE-SMC, Lille(F), July 9-12, 1996.

[3] Beneviste, A., Caspi, P., Edwards, S., Halbwachs, N., Guernic, P., and De Simone, R.:
Synchronous Languages 12 Years Later. Proc. of IEEE, 91 (1), Jan 2003.

[4] Benveniste, A., LeGuernic P., and Jacquemot Ch. Synchronous programming with events and
relations: The SIGNAL language and its semantics. Science of Computer Programming,
16:103–149, 1991.

[5] Berry, G. and Gonthier G., The Esterel Synchronous Programming Language, Science of
Computer Programming 19 (1992), pp. 87–152.

[6] Bond, G. W.: An Introduction to ECharts: The Concise User Manual. AT&T Labs–Research,
August, 2006 http://echarts.org/.

[7] Boussinot, F.: Reactive C: An Extension of C to Program Reactive Systems. SOFTWARE—
PRACTICE AND EXPERIENCE, VOL. 21(4), 401–428, April 1991.

[8] Boussinot, F. and Susini, J-F.: The SugarCubes tool box - a reactive Java framework,
Software Practice and Experience, 28(14), December, 1998, pp. 1531--1550.

[9] Clarke, E.M., Grumberg, O., and Peled, D.: Model Checking. MIT Press, 2000.
[10] de Alfaro, L. and Henzinger, T.A.: Interface automata. Proceedings of the Ninth Annual

Symposium on Foundations of Software Engineering (FSE), ACM Press, 2001, pp. 109-120.
[11] Ghosal, A., Henzinger, T.A., Kirsch, C. M., Iercan, D. and Sangiovanni-Vincentelli, A.: A

Hierarchical Coordination Language for Interacting Real-Time Tasks. Proceedings of the
Sixth Annual Conference on Embedded Software (EMSOFT), ACM Press, 2006.

[12] Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic, 1993.
[13] Harel, D.: Statecharts: a visual formalism for complex systems. Science of Computer

Programming, 8:231–274, July 1987.
[14] Hazard, L. and Susini, J-F. and Boussinot, F.: The Junior reactive kernel -- Inria Research

Report, RR-3732, July, 1999.
[15] IEC, IEC 61331-3, Programmable controllers - Part 3: Programming languages.

http://www.iec.ch/, 2003.
[16] IEC, IEC 61499-1, Function blocks - Part 1: Architecture. http://www.iec.ch/, 2005.
[17] Li, S., Wu, J., and Hu, Z.: A Contract-Based Component Model for Embedded Systems. In

Proceedings of QSIC'04 (September 08 - 10, 2004). QSIC. IEEE Computer Society,
Washington, DC, 232-239.

255

[18] Lipari, G., Gai, P., Trimarchi, M., Guidi, G., Ancilotti, P.: A hierarchical framework for
component-based real-time systems, Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 116, 2005.

[19] Nierstrasz, O., et al.: A Component Model for Field Devices. Proc. First International
IFIP/ACM Working Conf. on Component Deployment, ACM, Berlin, Germany, June 2002.

[20] Prähofer, H., Hurnaus, D., Mössenböck, H.: Building End-User Programming Systems Based
on a Domain-Specific Language. 6th OOPSLA Workshop on Domain-Specific Modeling,
Portland, Oregon, USA, October 2006.

[21] Selic, B. and Rumbaugh, J.: Using UML for Modeling Complex Real-Time Systems.
ObjectTime Limited, 1998.

[22] Unified Modeling Language: Superstructure, version 2.0, http://www.omg.org, 2004.
[23] van Ommering, R.; van der Linden, F.; Kramer, J.; Magee, J.: The Koala component model

for consumer electronics software. Computer 33, (3), Mar 2000 Page(s):78 – 85.
[24] Yang, G., Li. H., Wu, Z.: SmartC: A Component-Based Hierarchical Modeling Language for

Automotive Electronics, dasc, pp. 203-210, 2006.

256

