
On Combining Business Process Integration and
ETL Technologies

Albert Maier, IBM Deutschland Entwicklung GmbH
Bernhard Mitschang, Universität Stuttgart

 Frank Leymann, Universität Stuttgart & IBM Software Group
Dan Wolfson, IBM Austin

Abstract: In this paper we contrast two important information technologies in the
realm of Business Integration: Process Integration and Extract-Transform-Load
(ETL) Technology. After a short characterization and description of either
technology, we argue for a technology crossover that results in a synergy of the
available technologies, and thus realizes a more complete and superior approach. A
technological study as well as show cases will provide insight into the approach
proposed.

1 Introduction

Business Integration is seen as a key technology to enhance the IT landscape and the
productiveness of today’s companies. Typically, Business Integration technology is
separated into three levels (Portal Integration, Process Integration, Information
Integration), whereof (Business) Process Integration [HW04] is commonly perceived as
the driving force. ETL technology is core to Information Integration.

Process Integration comprises a set of capabilities that include among others the ability
to integrate and manage legacy applications, enterprise application systems, and business
partners as well as decision makers. At a more technical level the integration of
information with people and (business) processes is addressed and realized by a service-
oriented architecture.

For business process modeling and enactment a standardized language called BPEL4WS
(Business Process Execution Language for Web Services, for short BPEL, [BPEL4WS])
has been devised. BPEL allows for the definition of both business processes that make
use of Web services and business processes that externalize their functionality as Web
services. Like other language approaches, BPEL supports a process-oriented notion to
describe the relevant processes and activities of a business and among business partners.

533

BPEL fosters a two-level programming model: the lower level consists of executable
software components in the form of Web services [Ley03] that realize the basic
activities, and the upper, more abstract level consists of a process model that defines the
potential order in which the activities making up the business process have to be carried
out. In most cases, the process models are defined in a graph-like fashion and supported
by corresponding graphical design tools [WSADIE]. From a modeling point of view,
process design tools favor the description of control flow over data flow: For example,
BPEL offers various language constructs to express control flow patterns such as loops,
branch, and join, but data flow is defined implicitly by specifying (process) variables
that basically represent input/output data of activities.

Since the activities are described as Web services, the actual implementation can be done
in any language, based on any programming model, and for any execution platform.
Furthermore, the concept of Web services allows postponing implementation selection
decisions to runtime, thus exploiting the available execution environment to a maximum
[Ley04].

Currently, there are already a number of products out on the market that support the
BPEL4WS standard by means of graphical design tools and corresponding execution
engines, e.g. Oracle’s BPEL Process Manager [ORA04] and IBM’s WebSphere
Business Integration Server Foundation [WBISF].

ETL technology is used to provide a common, consistent representation of disparate data
that is previously non-integrated and physically distributed across multiple systems. ETL
processes mostly use a graph-like model to design sequences of data manipulation steps
that are used to extract data from data sources, to remove data inconsistencies, to
transform, restructure, correlate, consolidate, and finally to store the data for subsequent
usage, e.g. to load it to a shared data warehouse. Typically, ETL processes are expressed
in terms of control and data flow. However, unlike Business Integration processes, ETL
process definitions and their corresponding tools favor data flow over control flow. In
addition, ETL products come with a huge set of predefined functions, e.g. for
transformation, correlation, restructuring. Since there is no standardization available,
each product offers its proprietary graphical design language that is based on a
proprietary data and control flow model, and implemented by a proprietary engine
designed for a mostly platform-dependent runtime environment.

Today’s ETL products like Ascential [ASC], Informatica [INF], Oracle Warehouse
Builder [OWB], and IBM’s DB2 Warehouse Manager [DWM] are able to design data
provisioning processes that exhibit (simple) control flows that are capable of very
complex “data flow” activities within a control flow.

As can be seen from the previous discussion, both technologies (Business Integration
and ETL), although targeting different application areas, build on a process model that
reflects data flow as well as control flow concepts. Hence, a comparison of the
underlying techniques seems to be valuable from a technical as well as economical
perspective. Exactly this is the focus of this paper.

534

In Chapter 2 a classical Business Integration scenario is used to highlight typical
business process features and to characterize the BPEL technology. In a similar way, in
Chapter 3, a classical ETL scenario is used to show the peculiarities of typical data
provisioning processes and their corresponding language approaches. Chapter 4 provides
a strict comparison of the underlying technologies, discusses the benefits of a technology
crossover, and outlines a solution concept. An outlook to the industrial perspective of
this enhanced process model and supporting technology in Chapter 5 closes the
discussions of this paper.

2 Business Integration

In the following we present a typical business processes: Booking a trip (see

Figure 1). The process begins by receiving an itinerary via e-mail from a customer. Next,
the soundness of the itinerary is checked by a staff member of the travel agency. After
that, the corresponding flights are booked by sending a request to an airline. If the trip
requires staying overnight, hotel rooms are booked by communicating with a hotel. After
booking the flights and perhaps the hotel rooms the customer’s credit card is charged by
communication with the credit card company. Whenever an error occurs while checking
the soundness of the itinerary, booking flights or hotel rooms, and charging the credit
card, the customer is contacted by some staff of the travel agency.

Figure 1: A Sample Business Process -TripBookingProcess

receiveItinarary

getHotel getFlight

chargeCC

overnight?

checkSoundness

customer

agent

airline

hotel

cardCompany

contactCustomer

535

The following listing specifies this sample process in BPEL; note, that the listing is not
complete because we only want to focus on the aspects key for our subject area. Line 01
starts the BPEL listing and provides the name for the process model. The kind of
interactions a process has with its “partners” is defined by the partnerLink element
which begins at line 02. Nested into this element are the individual partner links; each
partner link specifies which functions a process offers to a partner and which functions it
expects a partner to provide to the process. The partner link at line 03 describes that the
interaction with a customer requires that the customer plays the Recipient role
(“partnerRole”) and the process (“myRole”) plays the TravelAgent role;
roles in turn are described in terms of port types elsewhere. A process receives and sends
messages, and it might need some other data structures for holding and manipulating
intermediate results. Each such data structure is referred to as variable in BPEL
(e.g. line 05) and the variables element (line 04) collects all of these data structures
into what is sometimes called the “process context”.

The specification of the structure of the process model follows next. The flow element
in line 06 specifies that process model is described as a graph. The set of edges used to
connect the various activities (which are the nodes of the graph) are separately specified
in the links section (line 07). An edge is referred to as link in BPEL (line 08). The
graph begins with the receiveItinerary activity (line 09): It is a basic activity
and it specifies that it receives a message from the outside. The message is expected
from a customer which is specified via the name attribute of the partnerLink
element nested within the activity; and the customer is further expected to use the
orderTrip operation of the TravelService port type; when the message is
received it is stored in the Order variable (which has been defined within the
variables sections at line 05). Line 10 indicates that the receiveItinerary
activity is source of the link called Itinerary-to-Check; line 16 says that this link
ends at the checkSoundness activity.

This activity (line 11) is an activity performed by a human being. But BPEL does not
support the definition of such kind of activities, i.e. BPEL has to be extended
accordingly. In [KKL04] corresponding extensions have been proposed: A staff
element (line 12) is used to specify a predicate (line 13) that is used at runtime to
determine which person can handle the task. In the specific example, all people playing
the Agent role will be informed that the checkSoundness activity has to be done.
Finally, one of the notified people will perform the task, and the data from the process
context associated with the activity will be available to be passed to the service used to
work on the activity. The checkSoundness activity is the start point of the
Check-to-Hotel link (line 14); furthermore, a transition condition (line 15) is
associated with that link that specifies that the link is only followed when overnight stay
is required.

536

Fault handling in BPEL is associated with the concept of a scope. A scope embraces a
part of process model and associates common fault handling with that part of the process
model; note, that it also furnishes joint compensation handling with that part, but we are
not dealing with compensation based recovery in what follows. Line 17 begins a
scope and line 19 specifies that each fault occurring in that scope (and which is not
handled locally) is dealt with by the contactCustomer activity. Within this scope,
an airline company is contacted as well as a hotel chain (if needed), and payments are
initiated by getting in touch with the credit card company of the customer: Whenever
one of these activities does not succeed, the contactCustomer activity is run.

The assign activity at line 21 is of interest to understand the next sections:
Assignments are used within BPEL to manipulate the process context, i.e. variables. In
our example (line 22), the customerInfo part of the Order variable is copied into
the corresponding part of the Payment variable. This variable in turn is used as
inputVariable (line 26) of the chargeCC activity, i.e. the corresponding
variable as constructed by the assign activity is send as a message to the service
implementing chargeCC.

Example: BPEL Listing for TripBookingProcess
01 <process name=“TripBookingProcess" … >
02 <partnerLinks>
03 <partnerLink name="Customer"...
 partnerRole="Recipient"
 myRole="TravelAgent"/>
 ...
 </partnerLinks>
04 <variables>
05 <variable name="Order" messageType=“trip"/>
 ...
 </variables>
06 <flow>
07 <links>
08 <link name="Itinerary-to-Check"/>
 ...
 </links>
09 <receive name=“receiveItinerary”
 partnerLink="Customer"
 portType="TravelService"
 operation="orderTrip"
 variable="Order">
10 <source linkName="Itinerary-to-Check"/>
 </receive>
11 <invoke name="checkSoundness" ...>
12 <bpelp:staff>
 <bpelp:potentialOwner>
13 <staff:membersOfRole role="Agent"/>
 </bpelp:potentialOwner>
 </bpelp:staff>
14 <source linkName="Check-to-Hotel“

537

15 transitionCondition=“overnight=‘true’"/>
 <source linkName="Check-to-Flight"/>
16 <target linkName="Itinerary-to-Check"/>
 </invoke>
17 <scope>
18 <faultHandlers>
19 <catchall>
20 <invoke name="contactCustomer" .../>
 </catchall>
 </faultHandlers>
 <invoke name=“getHotel”.../>
 <invoke name=“getFlight”../>
21 <assign>
22 <copy>
23 <from variable="Order"
 part="customerInfo"/>
24 <to variable="Payment"
 part="customerInfo"/>
 </copy>
 </assign>
25 <invoke name=“chargeCC”
26 inputVariable="Payment"...
 </invoke>
 </flow>
 </scope>
 </process>

It should be obvious from the example, how the control flow of a process is specified
explicitly in BPEL. Data flow is implicitly specified based on variables and assignments:
An activity that receives a message specifies the variable to which the message received
must be copied. Once received the message is stored persistently in the specified
variable. An activity that sends a message specifies the variable from which the message
should be taken from. Such underlying variable might be constructed from other
variables beforehand. For example, activity A in Figure 2 receives a message that is
copied into variable v2. The assignment activity B accesses both, variable v2 as well as v3

to construct variable v4. Variable v4 is used as message to be sent out by activity D.
Note, that the dashed arrows are only indirectly represented in BPEL syntax: For
example the arrow from v4 to D is represented by the inputVariable attribute of
D’s invoke.

A B C D

v1 v2 v3 v4

Figure 2: Dataflow in BPEL

538

Once a process model has been defined it can be deployed into a runtime environment
[KKL04]. Deployment especially requires to determine which services (in the sense of
an executable available from within the environment) to use as implementations of the
port types making up all partner links of the process model. Typically, instantiating a
process model then consists of the workflow engine navigating through the graph
structure of the process model and interacting with the service bound at deployment time
to each of the activities reached.

BPEL is geared towards supporting the logic of business processes (“programming in the
large”), but not to be a general-purpose programming language. From a user’s and
experience point of view, it is beneficial to combine BPEL with a standard programming
language to directly express business functions (“programming in the small’). Such an
approach has been proposed as BPELJ [BGK04]. BPELJ consistently extends the BPEL
process model to provide transition conditions and assignments specified in Java. In
Chapter 4 we suggest a similar extension for process models that deals with data
manipulations only.

3 ETL

In the following we present a typical ETL application. In the scenario described we are
looking at a company that manufactures consumer goods for sale to other businesses.
The financial department wants to track, analyze, and forecast the sales revenue across
geographies on a periodic basis for all products sold. The company has decided to create
a data warehouse for the sales data. The source data is stored in different formats in
different operational systems. It has to be cleansed and transformed before being moved
into the warehouse.

A star schema design is used for the warehouse. A star schema [In02] is a specialized
design that consists of multiple dimension tables, and one fact table. Dimension tables
describe aspects of a business. The fact table contains the facts or measurement about the
business. Here, the star schema includes three dimensions: Products, Markets, and Time.
The facts in the fact table include orders of the products over a period of time.

The processing logic for building the small star schema is shown in figure 3. The three
dimension tables can be build in parallel, the creation of the fact table is performed
subsequently. Finally there’s a check whether the fact table could be successfully
populated. If not, an administrator is alerted by email, else this data warehouse is ready
for queries.

539

Figure 3: A Sample ETL Scenario (Control Flow Level)

Today’s ETL products (Extract, Transform, Load) like Ascential [ASC], Informatica
[INF], Oracle Warehouse Builder [OWB], and DB2 Warehouse Manager [DWM], are
able to support such scenarios and to design the sometimes very complex “data flow
activities” triggered by such a control flow. The Build Sales Fact Table
activity for example might include steps like extracting the data from different sources,
normalizing values (e.g. currencies), performing checks for correct formats and value
ranges, and aggregating the data before finally inserting it into the target Sales table.

Figure 4 shows part of the data flow needed to build that Sales table. Typically
graphical tools for designing data flows show both “operation nodes” and “data set
nodes” at the canvas (in contrast to graphical tools for designing business processes and
control flows that show “activity nodes” only). The two nodes in the top left corner of
figure 4 represent a file respectively an operational table, both containing information
about orders. The orders stored in the file contain currency information in $ amount, the
orders in the table in Euro amount. The Euro amounts will be converted into $ amounts
before the order data is merged into a single set. In a subsequent step the orders are
checked for validity, e.g. each order needs to be associated with a valid customer and
each date value needs to have the format for a correct date. In this example the resulting
table ValidOrders contains columns with the order number, and then a pair of
columns for each product, one column holds the amount charged for that product, and
the other column contains the quantity sold. This is a typical spreadsheet format, with
lots of columns, but very far from a normalized table. Therefore, a transformation to
pivot the data is applied; the result is stored in the Orders table that is used as input
for building the final Sales fact table.

Fork
And

Build
Sales
Fact Table

Report
Success

On Failure

Build Markets
Dimension
Table

Build Products
Dimension
Table

Build Time
Dimension
Table

On Success

Email alert

start

540

Load orders
from file

Orders_Location2Orders_Location1

Orders1_unnormalized

Orders1

AllOrders

Orders2

ValidOrders InvalidOrders

Orders

Load orders
from remote db

Merge Orders

Check Validity

Pivoting

Convert Currency

Customers

Figure 4: A Sample ETL Scenario (Data Flow Level)

The focus of ETL products is on the description and execution of data flows. Typically a
very rich set of data operations is offered, the number of transformation functions might
easily go into the hundreds (typically all SQL functions can be leveraged) and the load
and extract operations support many different systems and formats. On the execution
side even data in the terabyte range can be moved and transformed. In contrast, the
control flow capabilities are usually weak. Often it’s even not possible to design a
control flow separately with a design tool, but control flow aspects are mixed with data
flow aspects and the functionality might be restricted to specify sequencing conditions
for data flows.

541

4 Technology Crossover

In this chapter we want to analyze and compare the two technologies that have been
described before. At first sight it seems that business process technology (exemplified by
BPEL) and ETL do not have common characteristics:

Business process technology

The goal of business process technology clearly is to model, manage, and
process business process descriptions focusing on control flow issues.

A service-oriented and message-based model is adopted that provides for a 2-
level programming model: the basic level refers to the activities, and the higher
level orchestrates these to constitute the final business process. A tuple-oriented
model is applied, i.e. input/output to/from activities is done via BPEL variables
that address a single object. Similarly, BPEL variables are used at the process
level to express conditions that are for example part of BPEL loop constructs.

There is a well-accepted standardization, with the BPEL language standard for
expressing process choreography, and the Web service standard for the activity
service level. By means of the Web service approach, an independence from the
implementation level of activities and the execution platform is achieved.
Basically, a flexible scripting of opaque activities is provided.

The standard does also address extended transaction support for short and log-
lived transactions based on a compensation approach. Error handling is another
strong point. Though not standardized yet, user interaction is a further very
valuable concept provided by current products.

In BPEL, all data manipulation issues are hidden within an activity. The Java-
snippet support introduced by the BPELJ proposal [BGK04] extends the BPEL
process model in various aspects: data manipulation and transformation tasks
are expressible via Java coding and Java code can be used in conditions.

ETL technology

The goal of ETL technology is data provisioning based on a rich and extensible
set of data management functions.

Data management functions are primarily set-oriented concentrating on
movement and transformation of potentially large data sets. A set of available
and for the current project necessary transformations are scripted to build the
required data management and data flow aspects of the ETL process.

For ETL, there are no standards available. Hence each product expresses some
form of proprietary language for function definition and function scripting and
a proprietary execution engine that, in turn, is mostly platform dependent.
Furthermore, there is no general error handling defined and no user interaction
provided.

However, at a more abstract level the two technologies do have commonalities. Among
the most important ones are:

542

To both sides, there is a clear joint notion of a process model that deals with
both control flow issues and data flow issues.

On the business process side control flow is the primary one and data flow is
subsidiary, since the classical notion of business processes that are biased on
control issues is predominant.

On the ETL side it is just the opposite: data flow is the core issue and control
flow is added on the side.

As can be conceived quite clearly, an enhancement to business process technology and
especially to its standard BPEL4WS could be done with respect to its data provisioning
capabilities. Vice versa, an enhancement to ETL technology could be focusing on
extending its limited control flow capabilities.

Before further discussing these obvious extensions to either technology it is important to
reflect the needs of the applications in some more detail: clearly, there are true ETL
application scenarios as well as true business process application scenarios. However,
there is an increasing amount of so-called mixed scenarios on both sides that require a
combined technology that reflects control flow and data flow as equal modeling
concepts.

In the conventional application areas for business processing, processes that reflect some
amount of data management and data processing are well conceived. This is exemplified
by the following:

Information gathering
Flows orchestrating the gathering of various portions of information (e.g. from
a number of backend systems) to comprehensively describe the object of
concern (e.g., a customer, user, client).

Information casting
Flows orchestrating updates against a number of (relational) target systems (e.g.
backend data management systems).

Batch processing
Offline processing of for example accumulated orders turns out to produce so-
called batch flows that show a high volume of data processing, on one side
because the volume of orders to be processed could reach MByte to GByte
range and on the other side because most processing activities in this flow refer
to some kind of data processing on backend systems.

The peculiarity of this list of application areas is that although processes are being
addressed, significant emphasis has to be spent on data provisioning tasks. Hence the
problem is to somehow attach complex data provisioning tasks to defined business
processes.

543

Similarly, one can find conventional ETL application areas, where control flow issues
are of primary concern, as for example:

Building a data warehouse
After having designed a set of distinct ETL steps, each one constructing a single
table of the target data warehouse, it is necessary to build the overall warehouse
process, i.e. to orchestrate the whole ETL application.

Content management
Document management is steadily evolving from pure storage and management
of documents into so-called enterprise content management, where the focus is
among others (like rich media support, effective search capabilities) on
document workflow. Document workflow basically defines the whole lifecycle
(e.g. ingestion, search, storage) of a document that is managed by a content
management system.

Grid processing
Processing and especially data provisioning tasks in a Grid environment can be
described in a process-oriented fashion. This is especially supported by the
OGSA standardization approach that subsumes specific data access an
integration services (DAIS)).

The peculiarity of this list of application areas is that mostly processes are addressed that
knit together complex data provisioning tasks.

All the scenarios and discussions from above clearly advocate for a combined
technology that treats data provisioning issues at the same level as (business) process
choreographing tasks. For this we propose to extend the given and standardized
BPEL4WS process choreographing language by well-known SQL functionality and
additional data provisioning functionality like transformation, correlation, and
restructuring. A technical solution to this is to treat these BPEL extensions similar to the
Java extension that was proposed to BPEL as part of the BPELJ approach [BGK04]. We
name this proposal BPEL4SQL. BPEL4SQL will support “SQL snippets” as BPEL
activities and in BPEL conditions. SQL snippets will provide read and write access to
BPEL variables. Another explanation model for the BPEL4SQL approach is that it can
be seen as an embedded SQL approach for BPEL.

544

5 Summary and Industry Trends

In this paper we have argued that a technology crossover that merges the strong
technologies underlying process integration and ETL results into a truly enhanced
technology that in turn provides to both discussed application areas an extended
functionality.

Traditionally, the worlds of ETL and process integration have served different needs. As
discussed in Chapter 4, there are an increasing number of application scenarios that
would benefit from an integrated environment. There are various activities on the
product market that indicate an evolvement towards such an integrated environment.
Some companies like Microsoft and IBM own strong products in both areas, and are
currently driving the standardization of BPEL. Others are completing their portfolio by
buying the missing pieces, e.g. Oracle recently bought Collaxa, the vendor of a BPEL
workflow engine. Traditional vendors of ETL technology, e.g. market leaders like
Ascential and Informatica are currently evolving their proprietary infrastructure to
integrate with a service oriented architecture, for example by allowing their processes to
be called as services and by being able to consume external services. Underpinned by
these trends we could see that the basic technologies are already in place with the market
leaders.

Bibliography

[ASC] Ascential DataStage, http://www.ascential.com/litlib/index.html

[BGK04] M. Blow, Y. Goland, M. Kloppmann, F. Leymann, G. Pfau, D. Roller, M. Rowley,
BPELJ: BPEL for Java, BEA Systems & IBM Corporation, 2004
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelj

[BPEL4WS] OASIS Web Services Business Process Execution Language TC http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

[DWM] IBM DB2 Universal Database Data Warehouse Editions - DB2 Universal Database Data
Warehouse Enterprise Edition, http://www-
306.ibm.com/software/data/db2/udb/dwe/edition-ee.html

[HW04] G. Hohpe, B. Woolf: Enterprise Integration Patterns, Addison-Wesley 2004

[In02] W. H. Inmon: Building the Data Warehouse, Wiley; 3 edition, 2002

[INF] Informatica Power Center, http://www.informatica.com/

[KKL04] M. Kloppmann, D. König, F. Leymann, G. Pfau, D. Roller, Business process
choreography in WebSphere: Combining the power of BPEL and J2EE, IBM Systems
Journal 43(2) (2004).

545

[Ley03] F. Leymann: Web Services: Distributed applications without limits, Proc. BTW'03
(Leipzig, Germany, February 2003), Springer 2003.

[Ley04] F. Leymann: The Influence of Web Services on Software: Potentials and Tasks, Proc.
34th Annual Meeting of the German Computer Society (Ulm, Germany, September 20 –
24, 2004), Springer, 2004.

[ORA04] Orchestrating Web Services: The Case for a BPEL Server, An Oracle White Paper, June
2004.

[OWB] Oracle Warehouse Builder,
http://www.oracle.com/technology/products/warehouse/index.html

[WBISF] IBM WebSphere Business Integration Server Foundation, http://www-
306.ibm.com/software/integration/wbisf/

[WSADIE] IBM WebSphere Studio Application Developer Integration Edition, http://www-
306.ibm.com/software/integration/wsadie/

546

