
What Developers (Care to) Recall:

An Interview Survey on Smaller Systems

Jacob Krüger1, Regina Hebig2

Abstract: This extended abstract summarizes our paper with the homonymous title published at the
International Conference on Software Maintenance and Evolution (ICSME) 2020 [KH20].

Keywords: Knowledge; Information needs; Developers’ memory

Developers have to understand the behavior and properties of the software in their system

in order to extend and maintain it, which is referred to as program comprehension. While

studying program comprehension, researchers have conducted empirical studies aiming to

analyze the readability of source code (e.g., based on different identifier names), investigated

developers’ information needs (e.g., what questions come to a developer’s mind during their

tasks), and designed techniques to support knowledge recovery (e.g., by reverse engineering

information). Interestingly, researchers have rarely investigated developers’ memory decay

or what knowledge they consider important to remember, and thus keep in their mind.

Understanding what knowledge developers memorize helps to scope tools, practices, and

research. For instance, experts may require more light-weight code searching capabilities,

due to their memorized knowledge. In contrast, novices or new team members may require

extensive documentation or the help of experts to understand the system architecture, which

may be tacit knowledge experts aim to memorize. Moreover, such needs may vary depending

on the type of knowledge, for example, the system’s architecture versus meta information

about the team or the system’s evolution.

Motivated by our previous work, we investigated the connection between developers’

memory decay, types of knowledge, and what knowledge developers consider important to

remember. To this end, we started with a systematic literature review of 14 papers that are

concerned with a total of 456 questions developers ask during maintenance and development

tasks. We analyzed the 420 questions that the authors classified into 81 classes to gain a

first understanding of developers’ knowledge needs. Then, we re-classified all questions to

unify the classes and get a consolidated overview. Building on our insights, we derived a

semi-structured interview guide, which we used to conduct 17 interviews with developers

from different areas (i.e., academia, industry, open-source), domains (e.g., web services,

machine learning, static code analysis), and countries (e.g., Germany, Sweden, France). We

1 Otto-von-Guericke-University Magdeburg, Germany

jkrueger@ovgu.de
2 Chalmers | University of Gothenburg, Sweden

regina.hebig@cse.gu.se

cba doi:10.18420/SE2021_24

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 71

https://creativecommons.org/licenses/by-sa/4.0/
mailto:jkrueger@ovgu.de
mailto:regina.hebig@cse.gu.se
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_24


remark that most of the systems we asked our interviewees about were comparably small

(i.e., 1–6 developers, four with more than 100 k lines of code). During each interview, we

started with a self-assessment of the interviewee’s familiarity (i.e., remaining knowledge)

with the system overall and with respect to three types of knowledge (i.e., architecture,

meta, code), which we repeated after each section related to these types. We then asked our

interviewee to recall answers to six questions from the systematic literature review on each

of the three different types of knowledge from their memory (i.e., a total of 18 different

questions). Afterwards, but before checking for correctness, we asked each interviewee to

rate the importance of the three knowledge types and individual questions.

Triangulating from the results of our systematic literature review and our interview survey,

our core findings areȷ

• Developers consider more abstract knowledge about their system (e.g., the system

architecture and intentions of the code) more important to remember.

• Developers can recall knowledge for questions they consider important more often

correctly than for those they consider less important.

• Developers may be reliable in doing self-assessments of their familiarity, but, inter-

estingly, these self-assessments usually decreased after answering questions about

their system from memory.

In our paper, we report various additional insights that have important implications for

practice and motivate new research directions. For instance, our results support our aforemen-

tioned assumptions that developers aim to remember a system’s architecture. Consequently,

practitioners have to think about how to document and maintain the corresponding informa-

tion explicitly, to avoid that the tacit knowledge is lost over time. Moreover, our findings

provide guidance on how to structure teams or onboard new developers, while researchers

may explore new techniques for reverse engineering information. As direct future work,

we are working on extensions of our study to overcome its limitations (e.g., small system

sizes, number of participants). For this purpose, we are planning and conducting additional

empirical studies (e.g., surveys, controlled experiments) to reinforce our findings.

Bibliography

[KH20] Krüger, Jacob; Hebig, Reginaȷ What Developers (Care to) Recallȷ An Interview Survey on
Smaller Systems. Inȷ International Conference on Software Maintenance and Evolution.
ICSME. IEEE, pp. 46–57, 2020.

72 Jacob Krüger, Regina Hebig


