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Abstract: This paper is focused on the performance analysis, comparison and 
optimization of distributed object middleware for Java 2: RMI (Remote Method 
Invocation), CORBA IDL (Interface Definition Language) and RMI-IIOP (Remote 
Method Invocation on Internet Inter-ORB Protocol). The paper presents the 
following contributions to the research on distributed object performance. First, a 
detailed performance analysis is provided with the comparison. These results help 
to understand how the models perform. Second, an overhead analysis has been 
done, which explains why there are differences in performance. Third, 
optimizations and improved performance for RMI-IIOP and CORBA IDL are 
presented. These show considerably better performance in all areas compared to 
the original versions. 

 

1. Introduction 
 
Reusable components such as JavaBeans and Enterprise JavaBeans and the global shift 
from developing applications from scratch to integrating components require high-level 
support for distributed object communication and interoperability. In version 1.1 Java 
has been enhanced with a native Java Remote Method Invocation (RMI) mechanism. 
RMI provides transparent remote method invocation between objects executing in 
different Java Virtual Machines (JVM). RMI has been designed for Java only and is 
tightly integrated with JVM. However, it addresses the same problem domain as 
CORBA (Common Object Request Broker Architecture). An implementation of the 
CORBA specification has been included in Java 2 (version 1.2) under the name Java 
IDL (Interface Definition Language). Activities have been initiated to merge RMI and 
CORBA. RMI that works with the CORBA standardized Internet Inter-ORB Protocol 
(IIOP) is known as RMI-IIOP and is a part of the Java 2 SDK version 1.3. 
 
With the growing number of applications that use the distributed object middleware as 
their infrastructure, higher demands are placed on the middleware performance. 
Although the performance achieved through distributed object models may not be as 
good as when using low-level approaches, it is still very important that distributed object 
middleware provides at least acceptable performance for the given problem domain. As 
Java developers can choose from three middleware implementations that come with the 
Java 2 SDK, we found it very important to make a performance comparison. We have 
also done bottleneck identifications and optimizations for RMI-IIOP (in cooperation 
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with IBM Java Technology Centre) and for IDL. In this paper we present a set of 
benchmarks that enable quantitative evaluation of distributed object middleware 
performance in several relevant usage scenarios. Further, they enable the comparison of 
the results through different middleware architectures, e.g. RMI, and CORBA. Based on 
the benchmarks we present performance results for RMI, IDL and RMI-IIOP when used 
with Java 2 and we make a performance comparison. We also provide bottleneck 
identification and describe the optimizations that have been implemented on RMI-IIOP 
and IDL. Finally we present the improved performance for both middleware products.  
 
The review of related work has shown that there is no standardized or commonly 
accepted method for performance assessment of distributed object architectures. 
Although several papers on distributed object performance have been published, the 
authors usually use simple benchmarks. The results between authors are not comparable. 
As far as we know, in the middle of the year 1999, in papers [Ju99a], [NPH00], and 
[SYH99] three different benchmarks have been proposed. The proposed benchmarks are 
based on similar concepts. Standardization on this area would be very welcome, as it 
would enable the comparison of the work, done by different authors. In this paper we 
present a short description of the benchmarks, proposed by us, and described in [Ju99a] 
and [Ju99b]. The actual performance comparison of Java distributed object models has 
been done in [He98], [JZR00], [JRH00], by the authors of this paper, and in [SYH99]. In 
our earlier work we have presented some performance results for CORBA/Java (using 
Inprise Visibroker) and RMI version 1.1. We have based our measurements on a 
modified ATM (Automatic Teller Machine) application. In [NPH00] performance 
evaluation of RMI can be found. There are also several papers in which different 
CORBA architectures with the C++ programming language are compared. In [DHE95] 
the authors report the performance results from benchmarking sockets and several 
CORBA implementations over Ethernet and ATM networks. In [AD96a] the authors 
compared the performance of socket-based communication, RPC (Remote Procedure 
Call), Orbix and ORBeline over ATM network and discovered the sources of overhead. 
They used a single client and a single server configuration. In [AD96b] the authors 
measured and explained the overhead of CORBA Dynamic Invocation Interface and 
Dynamic Skeleton Interface. In [AD97] and [AD98] the authors systematically analyzed 
the latency and scalability of Visibroker and Orbix and revealed the sources of overhead. 
Again they used a single client and server configuration over ATM network. They also 
described techniques to improve the performance and they gave an overview of Tao. In 
[Sa97] the author described the implementation of a low overhead ORB. He presented 
some performance results where he used single client server configuration and C++ 
language. Some performance results in the context of real-time systems are presented in 
[DA97], [GLD98] and [SSC97]. In [PTB98] has been done a comprehensive comparison 
of different CORBA compliant ORBs with the C++ language. A common characteristic 
of all performance studies is that the authors used simple tests  to measure performance 
and they only investigated single client scenarios.  
 
This article is organized as follows: first, we describe the performance evaluation 
method. Then we present the performance evaluation results and make a comparison. 
These results represent how the tested systems perform. With the analysis of the results 
and the code we identify the sources of overhead and point to the bottlenecks. These 
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results depict why there are differences in performance. Finally, we present performance 
optimizations and show the performance improvements for RMI-IIOP and IDL. 
 
 

2. Performance Evaluation 
 
Our goal was to evaluate the performance of Java RMI, RMI-IIOP, and IDL from a 
developer’s standpoint. We wanted to gain results that will make it possible to 
understand how do the models perform and why there are differences in performance. 
An important goal was to make the results comparable between the three (and possibly 
other) models. In this paper we have used a subset of the performance evaluation 
method, described in [Ju99a]. For the purposes of this article we have measured the 
round trip times (RTT), throughput and performance degradation (scalability) under 
single and multiple-client load. The method is independent of the underlying distributed 
object model and minimizes the influence and the overhead of the performance control 
component. We have provided results that are directly comparable between the three 
models. The benchmarks can be downloaded from http://lisa.uni-mb.si/~juric/ web page. 
 
For all the performance measurements the Sun Java 2 SDK, Standard Edition, version 
1.2 has been used. Performance for RMI-IIOP are reported for version 0.2. All source 
code has been compiled and executed using the Java 2 SDK, Standard Edition, version 
1.2. Symantec Just-in-Time (JIT) compiler level 3.00.078(x) has been enabled. For the 
code analysis the Intuitive Systems Inc. OptimizeIt 3.02 Professional profiler has been 
used. All the computers used Microsoft Windows NT 4.0 Workstation with Service Pack 
3 as their operating system. The actual performance measurements have been done for 
up to eight simultaneous clients. Therefore ten identical Pentium II-333 MHz computers 
with 128 MB RAM have been used. Eight of them were used for client applications, one 
of them was the server and one was used for running the synchronization objects. The 
computers were connected into a 100 Mbps Ethernet network that was free of other 
traffic. 
 
 

3. Performance Measurement Results 
 
Due to the limitation if the paper length we have decided to present the performance 
before optimization and the performance after optimization on the same set of graphs. 
Therefore, in this chapter focus on the unoptimized performance of RMI-IIOP and IDL. 
First we have measured the round trip times for methods that return primitive data types. 
We have observed, that different basic data types (boolean, char, byte/octet, short, 
int/long, long/long long, float and double) do not show any substantial differences in 
method invocation times. Therefore we report the averages for basic data types, RTTs 
for string, testStruct and myObject (Figure 3.1). In all cases RMI shows the best 
performance. IDL and RMI-IIOP are constantly slower. Although primitive data types as 
arguments or return values of methods are frequently used, it is also interesting to 
observe the throughput for arrays and sequences. We have done the measurements for 
arrays with 1 to 16384 elements. Figure 3.2 shows the comparison of the throughput for 
basic data types.  
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Figure 3.2: Throughput comparison for basic data types 
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Figure 3.3: Throughput comparison for string 

 
Figure 3.3 shows the throughput for string. It is important to understand, that both RMI 
and RMI-IIOP used Unicode characters, IDL on the other hand used 8 bit characters. 
Figure 3.4 shows the RTTs for arrays and sequences of testStruct, respectively. Figure 
3.5 shows the RTTs for the object reference myObject. Here all three models were more 
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comparable. RMI achieved the best results, IDL was ~55% slower and RMI-IIOP 67% 
slower than RMI. 
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Figure 3.4: RTT comparison for testStruct 
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Figure 3.5: RTT comparison for object reference myObject 

 
4. Overhead Analysis 
 
The results show that the best overall performance has been achieved by RMI. The 
performance of IDL and RMI-IIOP is slower in every tested case. The tested version of 
RMI-IIOP 0.2 was a technology preview version; therefore it is understandable, that 
there are several bottlenecks. However, the performance of IDL is inadequate for real-
world use. In this paper we present the performance optimizations for RMI-IIOP and 
IDL. The goal was to match the performance of RMI. While the RMI-IIOP 
optimizations have been done in cooperation with IBM Java Technology Center in UK, 
where the RMI-IIOP has been developed, and will be included in the shipping version of 
RMI-IIOP, the optimizations for IDL have been done as a pure research project at our 
university. We did not do any optimizations of RMI. 
 
4.1. IDL Overhead Analysis 
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To process the client requests the IDL server object creates a pool of threads. The Java 
IDL Listener Thread handles the low-level connection details. For each client a Java IDL 
Reader Thread is created which handles the connection with a specific client. For each 
client also a pool of 201 Worker Threads is created. These threads process the IIOP 
protocol input streams. In the Listener Thread ~5% of the total time is spent, in the 
Reader ~80% and in a single Worker thread ~15%. On the server side, for the Listener 
Thread, a lot of time is spent is native methods, like socketAccept (~28% of total time) 
and getHostByAddr (22%). Around 17% of the total time is spent in thread management. 
In the Reader Thread, the majority of time is spent in reading the socket (method 
socketRead, ~56% to ~59%) and in creating new Worker Threads (~25% to ~49%). In 
the Working Thread, depending on the data size there are a few time consuming 
methods. The method read_octet reads the subsequent octet into the buffer (initial size 
1024 bytes). Before this happens it invokes the alignAndCheck method. This method 
takes care for the proper data alignment and calls the method grow when the buffer 
becomes too small. The method grow enlarges the buffer by a factor of two. The method 
write_octet writes the subsequent octet to the buffer. It uses the alignAndReserve 
method which supervises the buffer size and calls the grow method to enlarge it. These 
three methods (alingAndCheck, alingAndReserve and grow) spend up to 42% of 
execution time. A consequence is data copying. The method TypeCodeImpl.copy copies 
the input stream to the output stream and with larger data sizes has a significant share in 
the total execution time (up to ~33%). 
 
On the IDL client side there are two important threads. The Java IDL Reader Thread 
spends the majority of time in the java.net.SocketInputStream.socketRead method which 
we have already described. The behavior is very similar to the RMI-IIOP client. Second 
thread is the main thread, where the majority (over 90%) of the client side execution 
time is spent. We have observed that with the increasing data size the majority of time is 
spent in TypeCodeImpl.copy, write_octet, read_octet, alignAndReserve, 
alingAndCheck, and grow methods (up to ~92%). We have already described the 
functionality of these methods.  
 
4.2. RMI-IIOP Overhead Analysis 
 
On the server side, RMI-IIOP uses the thread pool with the Listener, Reader, and 
Worker threads. It allocates 202 Worker Threads per client. The behavior of the Listener 
and Worker threads is similar as in IDL (described in previous subsection). In the Reader 
Thread the majority of time is spent in the socket communication (socketRead – up to 
~50%) and in the thread creation (Thread.start – up to ~38%). With the increasing data 
size the initialization of the IIOP input stream becomes time consuming. RMI-IIOP 
client creates two threads, the Reader Thread which handles the low-level 
communication and the main thread. The majority of the time in the Reader Thread is 
spend in the socketRead method (up to ~88%). With the increasing data size the method 
processInput becomes time consuming too (up to ~11%). The client side overhead for 
the main thread is comparable to the IDL client side main thread. With RMI-IIOP 
however more time is spend in writing to the sockets and in particular the output stream 
grow method has a larger share of up to ~26% of the total time, compared to ~11% by 
IDL. 
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4.3. Summary 
 
Based on the overhead analysis, we have identified the following points, where 
optimizations will be applied. Much of the receiver side (the server object) and some of 
the sender side (the client object) overhead rises from the inefficient concurrency support 
– the multithreading exploitation shows comparably large overhead (Thread.start, 
Thread.init, Thread.run). The other important source of the receiver side overhead can be 
found in the demultiplexing, demarshalling and presentation layer. IDL and RMI-IIOP 
use inefficient algorithms for demultiplexing which perform heavy checking 
(alignAndCheck) and use bad buffering algorithm which requires buffer enlargements 
(grow) and leads to excessive data copying (copy). An important source of the sender 
side overhead is inefficient multiplexing, easily identified by IDL and RMI-IIOP. This is 
partly because of sticking with the GIOP 1.0 specification and partly due to inefficient 
algorithm which performs aligning and reserving (alignAndReserve), has small initial 
buffer size and inefficient buffer growth method (grow). Vast amount of the 
communication overhead resides in the low-level methods that take care for socket based 
communication (socketWrite, socketRead, socketAccept). These methods are not 
implemented in Java. Rather they are written natively for each target platform in C 
language and use the underlying operating system calls. To access them, the Java Native 
Interface is used, which is not very efficient. Other sources of overhead lie in the 
excessive data copying and local ORB method invocations, and in generated stubs and 
skeletons. For example, by demultiplexing strings, they are first copied into a local array 
and then converted to the actual java.lang.String representation, floats and doubles are 
first converted to integers (floatToIntBits and doubleToIntBits methods), often 
redundant arrays are created, etc. 
 
 

5. Optimizations 
 
Based on the performance analysis and overhead identification we present an overview 
of the optimizations that have been implemented on RMI-IIOP and IDL. To make the 
concurrency model more efficient it is necessary to implement highly optimized thread 
management. For reducing the thread creation time a thread pool can be used. The 
context switching should be minimized. In the Leader/Follower Thread Pool architecture 
context switching is successfully minimized because the request is not transferred from 
one thread to another.  Therefore it provides better performance than the Worker Thread 
Architecture used by IDL and RMI-IIOP, although it is harder to implement.  
 
Demultiplexing overhead is minimized with the use of fast, de-layered and flexible 
demultiplexing algorithms. Instead of the layered demultiplexing a perfect hashing and 
active demultiplexing can be implemented for best performance. Presentation layer 
overhead optimization is  achieved by generation of optimized stubs and skeletons. The 
excessive marshalling and demarshalling overhead in IDL and RMI-IIOP is based on 
non-optimal buffer allocation and enlargements. We suggest two solutions to this 
problem. First, the initial buffer size can be adjusted and the enlargement procedure can 
be optimized. Second, the ORB can be upgraded for support for the GIOP version 1.1. 
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GIOP 1.1 has introduced a new message type (Fragment) that allows a message to be 
sent in portions. Therefore the buffer enlargements become superfluous. All three ORBs 
can be optimized to omit the unnecessary data copying, which would provide 
improvements most noticeable by larger data sizes. Some optimizations could be 
achieved with the techniques for optimized range checking. With the careful internal 
design the count of the unnecessary local ORB method invocation can be minimized. 
Implementation based optimizations such as minimizing the invocation overhead of 
frequently called methods with the optimization for the common case, the replacement 
of large methods with efficient small special purpose methods, avoiding the repeated 
computation of invariant values and storing redundant data all provide performance 
improvements. Also, elimination of the run-time checking for the debugging code brings 
some improvements. Improving the low-level communication overhead requires: (1) 
optimizations in the native code that handles the communication and (2) optimizations in 
the JNI. On one side this is the integration with the operating system network features, 
especially advanced features, such as high-speed network interfaces, and real-time 
threads. On the other side something can be done with buffer optimizations and their 
optimal management and with the transport protocol tuning (for example socket lengths 
can be adjusted). None of the three ORBs evaluated uses an internal buffering for 
network writing/reading. An optimal buffering architecture would reduce the 
communication overhead considerably. RMI omits the unnecessary data conversions, 
found in the IDL and RMI-IIOP communication. Optimizations in the implementation of 
the GIOP protocol, that prevent unnecessary data conversions when the sender and 
receiver use the same format speed the communication.  
 
 

6. Performance Improvements for RMI-IIOP and IDL 
 
On Figure 3.1 the round trip time improvements for primitive data types are presented. 
Figure 3.2 shows the improvements in throughput for the geometric average of basic 
data types. The optimized RMI-IIOP achieved throughput that was always comparable to 
RMI. This is a 2.3 times improvement, compared to the unoptimized version. IDL has 
also been improved and now achieves peak vales of 16 Mbit/s. This is a 4.5 times 
improvement. Figure 3.3 shows the throughput improvements for string. Figure 3.4 
shows the improvements in round trip times for the arrays and sequences of the 
testStruct Figure 3.5 shows the improvements for the arrays of object reference. The 
modifications in the thread management have improved the scalability of RMI-IIOP 
considerably and is now comparable to RMI. As the actual invocation times for 
optimized RMI-IIOP have been considerably improved too, and are now better than for 
RMI, also the actual RTTs in multi-client scenarios have improved. This has been 
verified by additional performance measurements that are not presented in this paper.  
 
 

7. Concluding Remarks 
 
The increasing demand for application connectivity and interoperability intensifies the 
role of distributed object middleware in all areas of application development. With the 
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use of distributed object models in mission critical applications the performance question 
becomes very important. In this paper a detailed performance analysis of important 
distributed object models for Java has been done: RMI, IDL and the newly developed 
RMI-IIOP, which enables the use of RMI over the IIOP protocol and makes it CORBA 
compliant. Performance has been measured for relevant usage scenarios which include 
single and multi-client interactions with up to eight simultaneous clients, different basic 
and compound data types and different data sizes. In the performance comparison RMI 
provided the best results in all tests. Although for the basic data types the results differed 
by a factor of ~2 the larger data sizes showed significant differences. The maximum 
throughput achieved by RMI was ~30 Mbit/s, which is around a third of the theoretical 
network throughput. RMI-IIOP achieved only ~13 Mbit/s and IDL only ~3.5 Mbit/s. In 
multi-client scenarios RMI-IIOP was up to ~90% and IDL up to ~70% slower than RMI. 
 
The overhead analysis showed that the bottlenecks fall in the following categories: (1) 
the inefficient thread management, (2) ineffective algorithms for demultiplexing and 
demarshalling, (3) excessive data copying and local method invocations, (4) the 
overhead of the low-level methods that take care of socket based communication and the 
JNI. Proposed optimizations were applied on RMI-IIOP and IDL and the performance 
was remeasured. The presented results for the optimized RMI-IIOP version show 
performance that is always comparable and some times even superior to the RMI. 
Although RMI-IIOP uses the standardized IIOP protocol for which it has to make 
additional transformations and mappings, the careful design and implementation, 
together with performance analysis and implementation of several optimizations, have 
enabled good performance. Similar performance can be expected from the final release 
version, as this has been a joint project with the IBM Java Technology Centre, UK, 
where the RMI-IIOP has been developed. 
 
In the optimizations of IDL we did not invest as much time and resources. Therefore the 
improvements were not as big as by RMI-IIOP. However, the optimized IDL performs 
much better than the original one, with up to 5 times improvements in throughput. 
However, we believe that neither RMI-IIOP and IDL, nor RMI have reached the limits 
and there is still a lot of room for further optimizations. This is what our future research 
work will be based on. 
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