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Collaborative Modeling Enabled By Version Control

Dilshod Kuryazov ! Andreas Winter ! Ralf Reussner?

Abstract: Model-Driven Software Development is a key field in software development activities
which is well-suited to design and develop large-scale software systems. Developing and maintaining
large-scale model-driven software systems entail a need for collaborative modeling by a large number
of software designers and developers. As long as software models are constantly changed during
development and maintenance, collaborative modeling requires frequently sharing of model changes
between collaborators. Thereby, a solid change representation support for model changes plays an
essential role for collaborative modeling systems. This paper focuses on the problem of model change
representation for collaborative modeling. It introduces a meta-model generic, operation-based and
textual difference language to represent model changes in collaborative modeling. This paper also
demonstrates a collaborative modeling application Kotelett.

Keywords: Model-driven Software Development and Evolution; Collaborative Modeling; Modeling
Deltas; Model Difference Representation

1 Motivation

As a software engineering paradigm, Model-Driven Software Development (MDSD) is the
modern day style of software development which supports well-suited abstraction concepts
to software development activities. It intends to improve the productivity of the software
development, maintenance activities, and communication among various team members
and stakeholders. In MDSD, software models which also comprise source code are the
central artifacts. MDSD brings several main benefits such as a productivity boost, models
become a single point of truth, and they are reusable and automatically kept up-to-date with
the code they represent [KWBO03, pp. 9ff].

Software models (e.g. in UML [RIB04]) are the key artifacts in MDSD activities. They
are well-suited for designing, developing and producing large-scale software projects. In
order to cope with constantly growing amounts of software artifacts and their complexity,
software systems to be developed and maintained are initially shifted to abstract forms using
modeling concepts. Software models are the documentation and implementation of software
systems being developed and evolved [KWBO3].
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Software models are constantly changed during their development and evolutionary life-
cycle. They are constantly evolved and maintained undergoing diverse changes such as
extensions, corrections, optimization, adaptations and other improvements. All development
and maintenance activities contribute to the evolution of software models resulting in several
subsequent revisions. During software evolution, models become large and complex raising
aneed for collaboration of several developers, designers and stakeholders (i.e. collaborators)
on shared models i.e. Collaborative modeling.

Depending on the nature of interaction, collaborative modeling systems can be divided into
two main forms, namely sequential and concurrent collaborative modeling [ESG91]:

o Sequential Collaboration. In sequential collaboration, collaborators design a shared model
by checking out it into their distributed environment. After making changes, they merge
their local changes into the main model. This scenario results in several subsequent
revisions of the same shared central model. After each change, differences between
subsequent model revisions are identified and represented in model repositories
as modeling deltas. Modeling deltas serve as information resources in further
manipulations and analysis of models. Modeling deltas representing significant
changes between subsequent revisions of models are first-class entities in storing the
histories of model changes in model repositories. The sequential version control is
referred to as macro-versioning in this paper.

e Concurrent Collaboration. Concurrent collaboration is usually dedicated to instantly
creating, modifying and maintaining huge, shared and centralized models in real-time
by a team of collaborators. Thus, the changes made by collaborators have to be
continually detected and synchronized among several concurrent instances of that
model. Aslong as synchronization has to occur in real-time, performance of interaction
matters. Thus, model changes have to be represented and synchronized using very
simple notations. Concurrent model instances can be differentiated by changes
represented in small modeling deltas. The required performance of synchronization
in real-time can be achieved by exchanging small modeling deltas [KW15]. Real-time
synchronization of modeling deltas is referred to as micro-versioning.

Sequential and concurrent version control are the key activities of sequential and concurrent
collaborative modeling, respectively. In both activities, modeling deltas are first-class entities
and play an essential role in storing, exchanging and synchronizing the changes between the
subsequent and parallel revisions of evolving models. Thus, the efficient representation of
modeling deltas is crucial.

An efficient change representation notation is needed for both micro-versioning and macro-
versioning. Both versioning techniques might rely on the same base-technology to deal with
modeling deltas. To that end, this paper introduces a difference language (DL) to the problem
of model difference presentation in modeling deltas. The proposed DL is meta-model generic,
operation-based, modeling tool generic, reusable, applicable, and extensible. Associated
technical support also focuses on providing a catalog of supplementary services which
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allow for reusing and exploiting modeling deltas represented by DL. These supplementary
services extend the application areas of DL.

The remainder of this paper is structured as follows: Section 2 investigates existing related
approaches in the research domain. Several requirements for DL and its collaborative
modeling application are defined in Section 3. The core concepts behind the DL-based
collaborative modeling are depicted in Section 4 and the same section explains some DL
services. Section 5 explains collaborative modeling applications. Section 6 discusses the
evaluation of the collaborative modeling application in various modeling languages. This
paper ends up in Section 7 by drawing some conclusions.

2 Related Work

The problem of collaborative modeling and its change representation is the actively discussed
and extensively addressed topic among the research community of software engineering.
There is a large number of research papers addressing to collaborative modeling (Section 2.1)
and model difference representation (Section 2.2).

2.1 Collaborative Systems

Collaborative approaches are widely investigated in collaborative document writing and
code-driven software development. Thus, this section also reviews some collaborative
source code development and document editing systems in order to derive some general
concepts and principals.

Sequential collaborative systems such as Git [Sw08], Mercurial [Mal0], Subversion
[CSFP04] are used for sequential revision control in source code-driven software develop-
ment. There are also sequential collaborative modeling systems such as EMF Store [HK13],
SMoVer [AI07], AMOR [Br10] and [Tal2] that are discussed below.

Concurrent collaborative text editing systems record and synchronize change notifications
during concurrent collaborative development. Collaborative documents writing systems
like Google Docs [Gol7] and Etherpad [Apl17] are widely used systems in concurrent
document creation and editing. There are also several browser-based web modeling tools
like GenMyModel [DMA13], Creately [Cil5] which exchange changes over WebSockets.
Their core ideas and underlying implementation technologies are not explicitly documented.
Their modeling notations and other services are not accessible making them difficult to
study and extend.

For differentiating revisions and calculating differences, the most collaborative systems
for source code-driven software development use Myer’s LCS [My86] algorithm which
is based on recursively finding the longest sequence of common lines in the list of lines
of compared revisions. The core idea behind this algorithm is to represent differences
documents by additions, removals, and matches of textual lines. Software models can also
be represented in textual formats using XMI exchange formats, but it is commonly agreed
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that the collaborative approaches for source code cannot sufficiently fit to MDSD because
of the paradigm shift between source code- and model-driven concepts [CRP07], [StO8].
Differentiating the textual lines of the XMI-based software models can not provide sufficient
information about the changes in associated and composite data structures of software
models. As there are already outstanding collaborative systems for textual documents
and the source code of software systems, MDSD also requires support for generic, solid,
configurable and extensible collaborative modeling applications for their development,
maintenance, and evolution.

2.2 Modeling Delta Representation Approaches.

The existing collaborative modeling approaches employ various techniques for model
difference representation. Below, the existing approaches are classified and discussed.

Model-based approaches represent modeling deltas by differences models. Cicchetti et
al. [CRP07] introduced a meta-model independent approach. The approach uses software
models for representing model differences conforming to a differences meta-model. Cicchetti
et al. also provides a service to apply differences models to differentiated models in order to
transform them from one revision to another. A fundamental approach to sequential model
version control based on graph modifications introduced by Taentzer et. al. [Tal2] is also
used to represent model differences by differences models. The approach is validated in
Adaptable Model Versioning System (AMOR) [Br10] for EMF models [StO8]. The major
focus of the approach is differentiation and merging of software models that serve as the
main foundations for sequential model version control.

Graph-based approaches represent model differences using internal graph-like structures. It
is usually similar to model-based representation, but relying on the low-level graph-like
structures. A generic approach to model difference calculation and representation using
edit scripts is introduced by the SiDiff approach [Ke13]. SiDiff consists of a chain of model
differencing processes which include correspondence matching, difference derivation, and
semantic lifting [Ke12]. SiDiff does not rely on a specific modeling language.

Standard ER Database represents model differences in standard entity-relational (ER)
databases. Likely, SMOVER [Al07] is a sequential revision control system for software
models using ER database.

Text-based approaches represent model differences by a sequence of edit operations in
the textual forms embedding change-related difference information. An early approach is
introduced by Alanen and Porres [AP0O3] in the text-based difference representation area.
DeltaEcore [SSA14] is a delta language generation framework and addresses the problem
of generating delta modeling languages for software product lines and software ecosystems.
EMF Store [HK13] is a model and data repository for EMF-based software models.
The framework enables collaborative work of several modelers directly via peer-to-peer
connection providing semantic version control of models.
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Operation-based. All of these approaches identify themselves as the operation-based
difference representation. They usually use basic edit operations such as create, delete and
change (or similar and more) which is a general concept being relevant to many difference
representation approaches. Regardless of their difference representation techniques, they
employ these basic operations only for recognizing the type of model changes, but information
about model changes is generally stored in various forms as discussed above.

Lessons Learned.

This section discusses the existing related approaches based on the criteria whether
representation by these approaches can provide small modeling deltas for both sequential
and concurrent collaborative modeling. The most approaches focus on only some aspects of
(or only one of) these collaborative modeling scenarios.

Software models themselves are too complex and structured for modeling tool developers
and users. Modeling deltas represented by models or graphs usually consist of additional
conceptual information for representing its modeling or graph concepts alongside actual
difference/change information. In this case, model- or graph-based modeling deltas might
not be as small as text-based modeling deltas. Moreover, if model differences are again
represented by models or graphs, further extension of this class of approaches might
require more knowledge and effort in developing further services on the top. Model- and
graph-based difference representations are unlikely to show high performance in concurrent
collaborative modeling because of their complex data structures which causes difficulties
in rapid synchronization in real-time. During the evolutionary life-cycle, if all difference
information is stored in a database, the database becomes very complex and huge with an
associated and entity-relational data set. In database-based representation, modeling deltas
may not easily be identified and reused.

Modeling deltas represented in textual forms are the most likely to be small, efficient and
well-suited for collaborative modeling for many reasons: (1) directly executable descriptions
of model differences; (2) easy to implement; (3) fully expressive, yet unambiguous providing
necessary knowledge; (4) easy to synchronize with high performance; (5) minimalistic in
comparison to model-, graph- and database-based representations.

Literature reviews show that research on difference representation for collaborative modeling
is still in its infancy. Considering the aforementioned discussion, collaborative modeling
requests a textual difference language (DL) to represent modeling deltas in sequential and
concurrent collaborative modeling.

3 Requirements

As long as there are several modeling languages and model designing tools, collaborative
modeling approaches should not rely on a specific modeling language or modeling tool.
Collaborative modeling has to support both sequential (macro-versioning) and concurrent
(micro-versioning) collaboration forms. Since difference representation lies at the core of
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collaborative modeling, this section defines several requirements that a proposed DL-based
difference representation has to fulfill.

Awareness of Content and Layout. The content of software models is recognized by
looking at the meta-models they conform to. The graphical design of models is
aligned by their layout data in the model editors of model designing tools. There are
several graphical modeling editors which display the modeling content with their
layout representation information. Like models conform to their meta-models, layout
information is represented by and conform to their graphical notation. In order to
provide collaborative modeling on such graphical modeling tools, DL has to be aware
of layout notation together with the meta-models (content) of modeling languages.
For instance, if a designer changes the position and size of a modeling artifact in
a graphical editor, the same changes have to simultaneously occur in the modeling
editors of other tool instances as well.

Genericness. There are several modeling languages and graphical notations following
diverse formal specifications and concepts. DL has to be generic with respect to the
meta-models of modeling languages and their layout without restricting itself to a
particular modeling language or tool. If DL is generic, its collaborative modeling
support can then be tailored to the wide range of modeling languages and tools.

Supportiveness. As defined in Section 1, collaborative modeling forms two scenarios such
as concurrent micro-versioning and sequential macro-versioning, whereas difference
representation is a common and fundamental concern for both. The most approaches
investigated in Section 2 focus on only some aspects of these collaborative modeling
scenarios. DL has to support both scenarios of collaborative modeling by being
applicable, persistent, implementable and expressive.

These requirements are also partly addressed to in [CRP07], [HK10], [SBGOS8]. They are
proper characteristics for emerging an appropriate difference representation approach for
collaborative modeling in MDSD. They are the efficient design of the data structure for
representing model differences in modeling deltas. These significant principles are also the
design foundations for DL that contribute to empowering the qualification and solidity of
difference representation. DL aims at fulfilling these requirements throughout this paper.

4 Modeling Deltas

In collaborative modeling, changed modeling artifacts have to be properly identified and
represented in modeling deltas for further processing of software models. A model change
defines any kind of change made to a modeling artifact during its evolutionary life-cycle.
Modeling deltas including model changes are the core entities in representing model changes
and building collaborative modeling on top. DL focuses on representing model changes in
modeling deltas. Section 4.1 demonstrates the overall conceptual idea of DL. Section 4.2
gives a very simplified example of DL-based change representation. Section 4.3 explains a
subset of supplementary DL services required for collaborative modeling.
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4.1 Conceptual Idea

In order to use the collaborative modeling environment, specific DLs have to be generated
from the meta-models of modeling languages. DL is a generic approach with respect to
the meta-models of modeling languages. It is conceptually a family of domain-specific
languages. As long as the modeling concepts of any modeling language can be recognized
by looking at the meta-model of that language, a specific DL for a particular modeling
language is generated by the DL generator service (explain in Section 4.3) importing its
meta-model. Then, modeling deltas can be represented in terms of DL for instance models
conforming to that modeling language.
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Fig. 1: UML Class Diagram Meta-model

Figure 1 depicts the meta-model of a subset of UML class diagrams which is used throughout
this paper as an example. The meta-model is separated into two parts by a dashed line.
Below of the line, it depicts the content part which is used to represent the subset of the
modeling concepts of UML class diagram. In graphical modeling, every modeling object
has design information such as color, size, and position, also called layout information.
Above the dashed line, the figure consists of the layout part that is used to depict notation
for layout information for the conceptual part. This way of designing meta-models is another
advantage of the DL approach satisfying the Awareness of Content and Layout requirement.
This allows for using the same collaborative modeling environment for different modeling
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content. The complete meta-model is used for creating overall collaborative modeling
application explained in Section 5.

4.2 Motivating Example

In order to explicitly explain how changes are represented in terms of DL, this section
presents a simplified example of the DL-based change representation in modeling deltas.
A very simple UML class diagram [RIB04, pp. 471f] is chosen as a running example to
apply the DL approach. Figure 2 depicts two subsequent revisions of the same class diagram
namely Rev_1 and Rev_2, they conform to the meta-model depicted in Figure 1. Figure 2
further portrays two concurrent instances of the latest revision, in this case, Rev_2. Two
designers, namely Designer_1 and Designer_2, are working on these concurrent instances.
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Fig. 2: Modeling Deltas in Collaborative Modeling

In the first revision, the model has only one class named Person. While evolving from the
first revision to the second, the following changes are made: a class with the name Teacher
is added and it is generalized to the existing class Person, the attribute name of the class
Person is changed to firstName.

According to the ModelElement class of the meta-model in Figure 1, each model element
has an attribute named gDiff_UUID which means all model elements are assigned to
universally unique identifiers (UUID). Therefore, each model element in this example also
has a persistent identifier. Assigning UUID to modeling artifacts allows for identifying
and keeping track of modeling artifacts over time. Any particular modeling artifact can
be traced by detecting the predecessor and successor artifact of that modeling artifact
(inter-delta references). The persistent identifiers are always used in the DL operations in
order to preserve consistency of modeling deltas. They are also used as indicators to refer to
modeling concepts from the DL operations in modeling deltas (delta-model references).
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The DL operations representing modeling deltas in Figure 2 conform to a specific DL
generated from the meta-model depicted in Figure 1. Each delta operation consists of a
Do part (cf. g2.changeName("name");) which describes the kind of change by means of
operations (one of create, change, delete) and an Object part (with attributes if required)
(cf. g2.changeName("name");) which refers to the modeling concept. The modeling deltas
between the subsequent revisions refer to macro-versioning and the modeling deltas between
the two concurrent instances refer to micro-versioning.

Each object of any modeling language can be created, deleted or attributes of each object
can be changed during the evolution process. DL defines model changes by three basic
operations such as creation, deletion of modeling artifacts or change of the attributes of
these artifacts. These basic operations are sufficient set of operations to represent any kind
of model changes by DL.

Macro-versioning. In macro-versioning (cf. Subversion [CSFP04], Git [Sw08], Mercurial
[Mal0]), the differences between subsequent revisions are usually identified and represented
in reverse order i.e. they represent changes in the backward deltas [KW15]. Because these
systems intend to store differences as directly executable forms which are more practical
in retrieving the earlier revisions of software systems. They store the most recent revision
of software systems and several differences deltas for tracing back to the initial revision.
Hence, the latest revision is the most frequently accessed revision. DL-based difference
representation also follows the similar art of delta representation. Thus, the modeling
delta between the first and second revisions is represented in the backward delta (Delta
between Rev_2 and Rev_1). Modeling deltas are directly executable descriptions of model
differences i.e. application of the modeling delta to the second revision results in the first
revision. When the delta Delta between Rev_2 and Rev_1 is applied to the revision Rev_2,
the first operation changes the attribute firstName of the class Person to name, and the
following deletion operations delete the attribute of the class Teacher, the class Teacher
itself and the generalization assigned to g6. For the sack of simplicity, the delta depicts the
conditional full-stops (...) on the last line, meaning the delta consists of other DL operations
for changing layout information.

Micro-versioning. In the second revision, the model is then being further developed by two
designers concurrently. Designer_1 changes the attribute of the class Person from surname
to lastName. This change is then sent to the other instance as a Delta. On the other instance,
Designer_2 creates a new attribute with name age in the class Person. That change is sent
to the instance, Designer_1 is working on, as a Delta. When the new attribute is added,
the height of the class Person is increased and this change of layout information is also
described by DL operation (g1l.changeHeight (38) ;) in the same delta. Both of these deltas
are represented as forward deltas in this case. Because the latest changes have to be reflected
on the parallel models, thus, changes have to be applied to models in forward order.
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4.3 DL Services

In collaborative modeling, several services are involved in generating specific DLs, cal-
culating and applying the DL-based modeling deltas. As all DL services are explained
in [KW15], this section briefly revisits the services which are involved in collaborative
modeling.

DL Generator. DL generator generates a specific DL for a particular modeling language
by importing its meta-model. While generating the specific DL, it inspects all of the
concrete (i.e., non-abstract) meta-classes of a given meta-model and the attributes of these
meta-classes. For each meta-class, it generates interfaces with implementations for creation
and deletion operations, as well as for change operations for each attribute. Modification of
the attribute named gDiff_UUID (e.g. the class ModelElement in Figure 1 is not allowed
by default as it tightly defines the identity of a modeling artifact, therefore, should not be
changed as the part of model changes. A specific DL is always generated in the form of a
Java Interface.

After generating a specific DL for the given meta-model, several DL services still have to be
involved in collaborative modeling as depicted in Figure 3. It depicts an abstract architecture
of collaborative modeling including server and client sides.
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Fig. 3: Overall Architecture of Collaborative Modeling

The server-side consists of the concurrent synchronization service micro-versioning and
sequential version control service macro-versioning which uses the DL-based modeling
delta repository. On the client side, while collaborators are designing models using a model
editor, their changes are constantly detected by the calculator service and sent to other clients
as modeling deltas. Once these deltas arrive at other clients, they are applied to models
by the applier service. During collaboration, designers may to store a particular state of
their model whenever their model is complete and correct. They are able to manage models
and load any revisions of their model which they have saved earlier. The macro-versioning
feature is provided by the DL application GMoVerS (Generic Model Versioning System)
[KW15].

Calculator. Calculation of modeling deltas depends on the form of collaboration whether it
is sequential (macro-versioning) or concurrent (micro-versioning) collaboration. In micro-
versioning, they are calculated by listening for changes in models by change listeners [HK10].
Because changes have to be synchronized in real-time providing sufficient performance. In
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macro-versioning, modeling deltas between subsequent model revisions are calculated using
state-based comparison of subsequent revisions [Ke13]. The state-based comparison and
change listener are two different features of the DL delta calculator service. For instance,
all modeling deltas in Figure 2 are calculated by this service. The modeling delta Delta
between Rev_2 and Rev_l1 is computed by the state-based comparison (implemented using
SiDiff algorithm [Ke13]), whereas the modeling deltas on both instances of Designer_1 and
Designer_2 is computed by the change listener in real-time. The state-based comparison
feature can calculate both, forward and backward deltas, whereas change listener can
calculate only forward deltas.

Applier. In collaborative modeling, modeling deltas are applied to the base model in order
to transform them from one revision to another. Application of modeling deltas to the base
models is provided by the DL delta applier service [KW15]. In case of loss or damage of
information on the initial copy of a model, designers might feel a need to revert their model
for obtaining earlier versions or undoing recent changes they made. For instance, in Figure 2,
the applier applies the Delta between Rev_2 and Rev_1 to Rev_2 to revert it to Rev_1.
The applier is also employed in micro-versioning in order to propagate model changes on
the concurrent instances of a shared model. In Figure 2, the applier is used to apply both
Delta_1 and Delta_2 to the instances of Designer_1 and Designer_2, respectively.

The both, DL calculator and applier, services follow the general principles and do the same
core operating tasks of difference calculator and applier for textual version control systems.
But, their realization follows modeling concepts i.e. the DL calculator and applier operate
on the composite and graph-like software models, whereas the latter operate on the textual
documents.

5 Application: Kotelett

The collaborative modeling applications are established by the specific orchestrations of the
DL services and on the top of the DL-based difference presentation. This section explains
the collaborative modeling application Kotelett and other ongoing work.

The collaborative modeling application entitled Kotelett tool was initially developed by
a students project group in the Software Engineering Group at the Carl von Ossietzky
University of Oldenburg. Kotelett takes advantage of the DL-based modeling deltas for
exchanging changes among various collaborators of the shared model. Figure 4 depicts the
overall user interface of Kotelett. It displays two independent tool instances working on the
same model concurrently. Each Kotelett instance consists of several windows as explained
below. When the tool is launched, it shows the list of models which are currently available
in the repository and asks the user which model to join as a collaborator. But, the users can
open multiple models during collaboration.

In micro-versioning, modeling deltas are not stored for reverting changes. However, reversion
of changes in micro-versioning happens on the client side of the editor and provided by the
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Fig. 4: Kotelett Screenshot

Redo/Undo features of the editor. Kotelett can save the model at a particular time and by
clicking a save button whenever the model is complete and correct. When the tool is asked to
save the model, it calculates the differences (backward deltas for macro-versioning) between
the last and current revisions. It then stores these differences in the form of the DL-based
modeling delta. On the left instance of the Kotelett screenshot, the pop-up menu model
browser (A) allows for selecting and opening any version of the model which was saved
previously. The menu lists all automatically and manually saved versions of the current
model. Once any previous revision is selected, that revision is reverted by the DL applier
service by applying sequential modeling deltas to the base model.

The model tree (B) shows the list of diagrams the user is currently working on. Each diagram
belongs to a specific model. It also shows the list of model elements that are created in
the current diagram. The model editor (D) area is the main part which allows users for
designing UML class diagrams. The Elements (C) part lists the most important notations
of UML class diagram where the users can select and draw that element in the model
editor. These notations of the UML class diagram are created based on the meta-model
depicted in Figure 1. The correctness of the model on this editor is checked according to
that meta-model, automatically. The user list (E) (left instance) window lists all users that
are currently working on the initial diagram. These users are highlighted with different
colors in order to show the clear distinction between them and to recognize which change is
made by which user in the editor. The log (F) window (right instance) constantly displays
the modeling deltas that are exchanged among collaborators after each user action. Creating
one model element on the graphical modeling editor may result in one or several change
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operations that are contained in one modeling delta and synchronized between collaborators.
Modeling deltas are represented by a specific DL generated from the meta-model in Figure 1.

The JGraLab (Java Graph Laboratory) [DWO98] technical space is used for realizing DL in
Kotelett. TGraph [ERWO0S8] is used to represent software models internally, whereas the
TGraph schema used to define meta-models. JGraLab further provides generic features
for defining in-place model manipulations to implement the DL-based operations. The
architectural and implementation concepts of Kotelett is explained in [KW15] in detail.

DL in UML Designer.

As ongoing work, the collaborative modeling approach is being applied to UML designer
which is an EMF- and Sirius-based domain-specific modeling tool [Ob17]. DL will be
applied to UML designer using the EMF technical space. To represent model changes in
UML designer, a specific DL will be derived from the EMF-based Ecore meta-model [St08].
The delta calculator and applier services will be extended by EMF transactional editing
domain and command stack extensions. All other underlying technologies remain the same
and unchanged.

6 Evaluation

The collaborative modeling approach in this paper is validated to achieve its intended goals
by fulfilling the requirements identified in Section 3. More specifically, these requirements
are revisited in this section for presenting their fulfillment by DL. All DL concepts, services
and applications provide evidence to the fulfillment of each of these requirements. Finally,
the extend-ability of the approach is shown in this section.

6.1 Validation

Kotelett is used in Software Engineering lectures for teaching purposes by a group of students
including more than ten collaborators in parallel. The tool was also used experimentally
by more than ten users located over long distance (Germany, Canada, Mozambique, and
Uzbekistan), all connecting to the server located in Germany.

During these experiments, the tool has shown sufficiently high performance by synchroniza-
tion of small DL-based modeling deltas. So far Kotelett did not face any change conflicts in
micro-versioning. This probably is attributed to the rapid synchronization of small modeling
deltas. Exchanging binary formats of deltas can be faster, but so far it was not necessary. It
can be experimented for optimization purposes. But, it probably might not be expressive
enough making it difficult for further extentions. For merging various model revisions in
macro-versioning, Kotelett aims at employing the existing merge feature provided by the
JGraLab technical space [DW98].

In order to accomplish a solid, appropriate, generic and efficient collaborative modeling
approach, this paper has kept the requirements defined in Section 3 in its focus and thoroughly
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attempted to satisfy them. Based on the layout notation part and modeling language notation
part of meta-models (e.g. Figure 1), the collaborative modeling environment is aware
of content and layout of models. The same collaboration environment can be used for
modeling language and layout notations (Awareness of Content and Layout), simultaneously.
The approach is generic with respect to the meta-models of modeling languages. The
collaborative modeling environment can be applied to wide range of modeling languages
and tools by generating specific DLs by the DL generator explained in Section 4.3. It then
can import any meta-model defining modeling concepts and layout notation and generates
specific DL for it (Genericness). If meta-models are changed, they can be re-imported and
specific DLs can be regenerated newly for changed meta-models.

The collaborative modeling approach is applied to Kotelett and other applications under
development. These applications support concurrent (by micro-versioning) and sequential
(by macro-versioning) collaborative modeling (Supportiveness). They are developed on top
of DL which provides more efficient ways of representing, exchanging and synchronizing
modeling deltas improving the performance of data processing. DL is utilized as solid and
common syntactic ground for representing modeling deltas in these applications.

6.2 Extendability

In the approach, existing functionality can be extended, new features can be added by
extending underlying technologies and concepts such as the DL services. The collaborative
modeling approach can represent software models under collaboration using internal
graph-like structures [ERWO0S8] and graphical editors can be separated from that graph
representation. This allows for extending graphical editors without changing the underlying
concepts and technologies of collaborative modeling. This enables tool developers to define
further graphical notations, shapes, and views as they want and reuse existing collaborative
modeling environment without any further development effort. As depicted in Figure 1, the
layout notation part (above the dashed line) of the meta-models enables extendability of
the approach for further modeling languages with the same layout notation. The modeling
concept part (below the dashed line) of the meta-model should be replaced by the meta-model
of another modeling language. Eventually, the same layout information can be reused for
further modeling languages.

The catalog of the DL services can also be replaced by other implementations and extended
with further services or features. Any service, component or plug-in required for collaborative
modeling can easily be developed and registered in the service catalog which is practically
useful for further service-oriented modeling tool development. The only prerequisite for
these services is to recognize the syntax of DL. Eventually, these services can again be
involved in service orchestrations for establishing the collaborative modeling applications.
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7 Conclusions

The approach proposed in this paper is meta-model generic, aware of both content and
layout of models and supports sequential and concurrent collaborative modeling. As
modeling deltas are first-class entities and play an essential role in storing, exchanging
and synchronizing changes between the subsequent and concurrent revisions of evolving
models, representation of modeling deltas is very crucial in both forms of collaboration.
Thus, the collaborative modeling approach is elaborated on top of the efficient difference
language notation which is employed in both micro-versioning and macro-versioning. Both
forms rely on the same base difference representation language for modeling deltas.

A proposed operation-based DL serves as a common change representation and exchange
format for collaborative modeling, making software models commonly available to multiple
users in different locations. Micro-versioning achieves high performance of synchronization
by exchanging small DL-based forward deltas, whereas macro-versioning can effectively
store the change histories of evolving modeling artifacts in model repositories as the DL-
based backward deltas. These and further collaborative modeling scenarios can be developed
by specific orchestrations of the DL services which can produce, store, exchange, synchronize
and apply modeling deltas in collaborative modeling. Kotelett can be downloaded at https:

//pg-kotelett.informatik.uni-oldenburg.de:8443/build/stable/ and presented at
the conference as well.
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