
i
i

“proceedings” — 2017/8/24 — 12:20 — page 603 — #603 i
i

i
i

i
i

Maximilian Eibl Martin Gaedke (Hrsg.): Informatik 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

The Power of Regular Constraints in CSPs

Sven Löffler1, Ke Liu1 and Petra Hofstedt1

Abstract: This paper discusses the use of the regular membership constraint as a replacement for
other (global) constraints. The goal is to replace some or all constraints of a constraint satisfaction
problem (CSP) with regular constraints and to combine them into a new regular constraint to remove
redundancy and to improve the solution speed of CSPs. By means of a rostering problem as an
example it is shown that our approach allows a significant improvement of the solution performance
due to a reduction of the size of the search tree.

Keywords: CSP, Global Constraints, Regular Constraint, Optimization, Refinement, DFA

1 Introduction

Constraint programming is a powerful method to model and solve NP-complete problems
in a declarative way. Typical and the most and with biggest success researched problems
in constraint programming are rostering, graph coloring and satisfiability (SAT) problems
[Ma98].

A perfect declarative program would be solving several descriptions of a problem with the
same speed. Like we will show, this is not the case in general constraint problems. This
paper introduces a way to make a constraint satisfaction problem (CSP) problem more
independent from the description by the use of regular constraints.

In general, for real problems exist many ways to model them by constraints. Different
constraint programs which describe the same real problem need different execution resp.
solution time. One reason is that there are different constraints which can describe the same
restrictions but use different propagation algorithms. Therefore, a replacement of constraints
by constraints of another type which can solve a certain problem faster or which can be
combined to more specific constraints can be a promising approach.

This paper discusses the use of the regular membership constraint in place of other (global
and set of local) constraints. The goal is it to replace some or all constraints of a constraint
satisfaction problem (CSP) with regular constraints and to combine some or all of these
regular constraints to a new regular constraint to remove redundancy, unnecessary backtrack
1 Brandenburg University of Technology Cottbus - Senftenberg, Programming Languages and Compiler Con-

struction, Konrad-Wachsmann-Allee 5, D-03044 Cottbus, {Sven.Loeffler, Ke.Liu, Petra.Hofstedt}@b-tu.de

cbe doi:10.18420/in2017_57

Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 603

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_57


i
i

“proceedings” — 2017/8/24 — 12:20 — page 604 — #604 i
i

i
i

i
i

2 Sven Löffler, Ke Liu, Petra Hofstedt

and to improve the solution speed of CSPs. The regular constraint and its propagation
algorithm [Pe01, Pa08, HPvB04] provide the basis of this approach.

This paper is structured as follows: In Sect. 2 the basics of constraint satisfaction problems
(CSPs) are be explained and a new specification (a regular CSP) is be presented. In Sect. 3 we
show that every CSP can be transformed into a regular CSP, theoretically and we enumerate
a selection of constraints for which effective transformations exist. Section 4 is dedicated to
a discussion of the advantages and disadvantages of this new approach. Finally, we give an
outlook on the directions of future research in Sect. 5.

2 Basic principles of constraint programming

Constraint programming (CP) is a programming paradigm which developed from the logical
programming since the middle of the 1980s. CP is qualified for declarative description
and effective solution of big problems for planning and scheduling, configuration and
optimization and for dealing with tasks for which only incomplete information is available.
In contrast to the imperative programming it is not necessary to define the algorithmic
steps which lead to a solution, instead, in CP we describe the problem and its solutions in a
declarative way.

This paper will consider constraint satisfaction problems (CSPs) which are defined as
follows.

CSP [De03] A constraint satisfaction problem (CSP) is defined as a 3-tuple P = (X,D,C)
with
X = {x1, x2, . . . , xn} is a set of variables,
D = {D1,D2, . . . ,Dn} is a set of finite domains where Di is the domain of xi and
C = {c1, c2, . . . , cm} is a set of primitive or global constraints containing between one and
all variables in X .

Primitive constraints are simple relations like x1 = x2, x1 , x2 or x1+ x2 < x3. In contrast to
this, global constraints [vHK06] are more complex and mostly base on efficient algorithms
to solve a problem faster as with equivalent primitive constraints. Examples of global
constraints are the allDifferent constraint, the global cardinality constraint, cumulative,
count, sum and regluar.

Global constraint [RBW06] A global constraint is a condition which describes a relationship
between a non-fixed number of variables.

Solving a CSP means finding assignments to X = {x1, x2, . . . , xn} such that the value of
xi is in Di , ∀i ∈ {1, 2, . . . , n}, while all the constraints are satisfied. To find a solution of a
CSP, consistency enforcement methods and search (mostly depth-first search) are used. A
consistency enforcement method is an algorithm which tries to remove elements from the
variables domains which are not part of solutions of the CSP.

604 Sven Löffler, Ke Liu, Petra Hofstedt



i
i

“proceedings” — 2017/8/24 — 12:20 — page 605 — #605 i
i

i
i

i
i

The Power of Regular Constraints in CSPs 3

While often it is not possible to reduce the domains such that only values remain, which are
part of at least one solution (global consistency), typically we remove values which violate
single constraints and reach hyper arc consistency (or local consistency).

Hyper arc consistency [Ap03] A constraint c ∈ C, c ⊆ D1 × . . . × Dk is called hyper arc
consistent if for every i ∈ {1, . . . , k} and ∀a ∈ Di :

∃(a1, . . . , ai−1, ai+1, . . . , ak) ∈ D1 × . . . × Di−1 × Di+1 × . . . × Dk :
(a1, . . . , ai−1, ai, ai+1, . . . , ak) ∈ c

Intuitively, a constraint c is hyper arc consistent if every domain value of each variable is
part of at least one solution of c. Unfortunately, mostly it is not possible to conclude from
the hyper arc consistency of all single constraints in a CSP to the global consistency of the
whole CSP.

Global consistency [De03] Let be P = (X,D,C) a CSP with the variables X = {x1, . . . , xn},
the domains D = (D1, . . . ,Dn) and the set of constraints C = {c1, . . . , ck} over X .

The CSP P is globally consistant, if

∀i ∈ {1, . . . , n}, ∀di ∈ Di :
∃d1 ∈ D1, . . . , ∃di−1 ∈ Di−1, ∃di+1 ∈ Di+1, . . . , ∃dn ∈ Dn

such that the valuation σ with σ(xk) = dk , k ∈ {1, . . . , n} is a solution for P, i. e. satisfies
the constraints of C in conjunction.

Finding a valid assignment, i. e. solution, to a constraint satisfaction problem is usually
accomplished by combining or nesting backtracking search with consistency enforcement.
To do so, a variable is assigned one of the values from its domain in every node of the search
tree. Due to time-complexity issues, the used consistency methods are rarely complete
[De03].

2.1 A general problem in (CSP) modelling

When describing real problems using CSPs, there are typically many possible ways of
interpretation and modeling supported by various constraints. The resulting CSPs, thus,
can have very different solution speed and behavior. As an example consider the following
problem.

Problem 1: Given n, n ∈ N, n > 8, find 100.000 permutations of the numbers from 1 to n.

This sounds like an easy problem which can be modeled very easily by the following CSP.

CSP 1.1: Let P = (X,D,C) be a constraint satisfaction problem (CSP) with:
X = {x1, x2, . . . , xn}

The Power of Regular Constraints in CSPs 605



i
i

“proceedings” — 2017/8/24 — 12:20 — page 606 — #606 i
i

i
i

i
i

4 Sven Löffler, Ke Liu, Petra Hofstedt

D = {D1,D2, . . . ,Dn | Di = {1, 2, . . . , n}, i ∈ {1, 2, . . . , n}}
C = {allDifferent(x1, x2, . . . , xn)}
The allDifferent constraint (see e. g. [vHK06]) is a global constraint ensuring that all
variables are pairwise different. CSP 1.1 obviously solves our problem but there are other
modelings, too. Take a look on a second CSP describing our problem.

CSP 1.2: Let P = (X,D,C) be a constraint satisfaction problem (CSP) with:

X = {x1, x2, . . . , xn}
D = {D1,D2, . . . ,Dn | Di = {1, 2, . . . , n}, i ∈ {1, 2, . . . , n}}
C = {xi , xj | i, j ∈ {1, 2, . . . , n}, i < j}
While both modelings, i. e. CSP 1.1 and CSP 1.2 declaratively are equivalent, their
propagation mechanisms differ. CSP 1.1 considers the problem from a global perspective
using a global constraint and a corresponding propagation mechanism [Ré94, Ló03] over all
variables. CSP 1.2 considers a conjunction of n∗(n−1)

2 disequality constraints. Thus, CSP 1.1
mainly relies on consistency enforcement mechanisms while CSP 1.2 uses local consistency
enforcement nested with a huge amount of search. Often it is assumed that global constraints
result in a faster solution process. However, this is not necessarily the case. For our problem,
a small test example shows that for smaller problems up to n ≤ 45 CSP 1.2 is faster than
CSP 1.1.

Whether the solution process for a certain modeling is faster than for a semantically
equivalent CSP description, depends on many different things, like the kind of constraints,
the number of variables, variable orderings, domain sizes, search strategy, propagation
engine and much more. If only one of these points changes, it may result significantly in the
speed of the solution process. Finding the best combination of search strategy, propagation
engine, used constraints, variable order and so on is one of the biggest problems in CSPs and
it is not yet completely solved or even researched. Until someone might find an algorithm to
detect best combinations of settings for general problems, it is useful to consider settings
which are better in average or in special areas of applications.

2.2 Regular CSPs

In this section, we introduce regular constraints as a means of modeling constraint problems.
First, we briefly recall the notion of a DFA [La12].

DFA A deterministic finite automaton (DFA) is a quintuple M = (Q, Σ, δ, q0, F), where

• Q is a finite set of states,

• Σ is the finite input alphabet,

• δ is a transformation function Q × Σ→ Q,

606 Sven Löffler, Ke Liu, Petra Hofstedt



i
i

“proceedings” — 2017/8/24 — 12:20 — page 607 — #607 i
i

i
i

i
i

The Power of Regular Constraints in CSPs 5

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final or accepting states.

A word w = (w1,w2, . . . ,wn) is accepted by M , i. e. w ∈ L(M), if the corresponding DFA
M with the input w stoppes in a final state f ∈ F.

Regular membership constraint [vHK06] Let M = (Q, Σ, δ, q0, F) be a DFA, let X =
{x1, . . . , xn} be a set of variables with domains D = {D1,D2, . . . ,Dn}, ∀i ∈ {1, . . . , n} :
Di ⊆ Σ. The regular language membership constraint (regular constraint) is defined as:

regular(X, M) = {(w1, . . . ,wn) | ∀i ∈ {1, . . . , n} : wi ∈ Di, (w1,w2, . . . ,wn) ∈ L(M)}
In the following, we use the notion of regular CSPs:

Regular CSP A regular constraint satisfaction problem (regular CSP) is defined as a 3-tuple
P = (X,D,C), where
X = {x1, x2, . . . , xn} is a set of variables,
D = {D1,D2, . . . ,Dn} is a set of finite domains where Di is the domain of xi and
C = {c1, c2, . . . , cm} is a set of regular constraints over variables from X .

3 Transformation from a general CSP into a regular CSP

In this section we briefly show that for every CSP there exist an equivalent regular CSP and
we enumerate a selection of constraints for which effective transformations exist.

3.1 A theoretical consideration

The solution space S, i. e. the number of solutions, of every CSP P is finite by definition.
For P, there is a finite number n of variables X = {x1, . . . , xn} with finite domains
D = {D1, . . . ,Dn}. A CSP P over n variables but with the only constraint true has a
solution space S of size Πn

i=1Di . In general, constraints can restrict domains but they can’t
add values to a domain. Thus, the solution space S′ of a CSP P′, i. e. P but with the
constraint set C ′ = {c1, . . . , cm} is smaller or equal to the solution space of the original CSP
P: S′ ⊆ S.

A finite solution space can also be described by a finite language L over the finite alphabet
Σ =

⋃
∀i∈{1,...,n} Di . Every word w of L has length n. A word w = (w1,w2, . . . ,wn) is an

element of L iff there exists a solution s = {x1 = w1, . . . , xn = wn} for P.

Since L is finite, there exists a DFA M for L (Myhill-Nerode theorem [HU79]) and, therefore,
for the solutions of the CSP P. It follows that for every CSP P = (X,D,C) there exists an
equivalent regular CSP P′ = (X,D,C ′) where C ′ = {regular(X, M)}.

The Power of Regular Constraints in CSPs 607



i
i

“proceedings” — 2017/8/24 — 12:20 — page 608 — #608 i
i

i
i

i
i

6 Sven Löffler, Ke Liu, Petra Hofstedt

3.2 Transformations

As discussed previously, for every general CSP P = (X,D,C), there exists a regular CSP
P′ = (X,D,C ′). Obviously P′ can be generated if all solutions of P are known because,
given the language L, we can easily create an appropriate DFA A. In practice, however, this
is not useful because we intend to use the regular CSP P′ to find one or all solutions of P
faster.

For this reason, we are interested in direct transformations of (global) constraints into regular
constraints. For some constraints corresponding efficient transformations are known (e. g.
for stretch see [Pa08]), for others we defined such, among them count, the global cardinality
constraint, and table constraints.

4 The use of regular CSPs

In this section, we discuss advantages and disadvantages of the transformation of a general
CSP P into an equivalent regular CSP P′ and show cases in which this can be very useful
and improve the solution speed.

4.1 Advantages and disadvantages

Let’s start with the obvious disadvantages: We need a transformation for every constraint
(not trivial for some global constraints) and it may be time-consuming to transform a
constraint to a regular constraint. Furthermore, the newly created regular constraints might
even reduce the performance of the solver.

What are the advantages on the other hand? The solution process of a CSP consists of
depth-first search (DFS) nested with consistency enforcement. The regular constraint
has hyper arc consistency over its variables. Thus, transforming constraints with a lower
consistency level into regular constraints, can (while potentially increasing the effort for
consistency enforcement) reduce the number of fails and backtracks in DFS in the solving
process. Furthermore, an important advantage is that several constraints can be combined
into one new constraint with hyper arc consistency by using the automata intersection.

As an (well-known) example, consider Fig. 1. On the left-hand side (a) we see a constraint
network over the variables X = {a, b, c} with domains D = {Da,Db,Dc}, where Da =

Db = Dc = {1, 2}, and C = {a , b, b , c, a , c}. The right-hand side (b) gives a
semantically equivalent constraint network, but with another constraint representation:
C ′ = {allDifferent(a, b, c)}.
A solver using search nested with consistency enforcement will find out, that no solution
exists in both cases. However, in case (a) the propagation method of the solver uses local

608 Sven Löffler, Ke Liu, Petra Hofstedt



i
i

“proceedings” — 2017/8/24 — 12:20 — page 609 — #609 i
i

i
i

i
i

The Power of Regular Constraints in CSPs 7

Fig. 1: The use of the allDifferent constraint

consistency over the three disequality constraints and, thus, needs backtracking search to
finally reduce the solution space to the empty set. In contrast to this, in the second case (b),
the allDifferent constraint is propagated with global consistency enforcement and directly
yields the empty solution space without search. Notice, that the constraints (in both cases)
have hyper arc consistency but hyper arc consistency leads only sure to global consistency
if the constraints are not overlapping.

A transformation of the constraint network of Fig. 1 case (a) yields a representation
similar to case (b): In a first step, every disequality constraint is transformed into a regular
constraint, i. e. C is transformed into C ′′, where
C ′′ = {regular({a, b, c}, M1), regular({a, b, c}, M2), regular({a, b, c}, M3)} and with
DFAs M1, M2, and M3 (for a , b, b , c, and a , c resp.) given Fig. 2.

M1) M2) M3)

q0

q10

q21

q3

1

0

q4
0,1

a b c

q0 q1
0,1

q20

q31

q4

1

0

a b c

q0

q10

q21 q4
0,1

q3
0,1

q5

1

0

a b c

Fig. 2: Equivalent DFAs for the disequality constraints from Fig. 1 (a)

In a second step, an intersection of the automata M1, M2, and M3 is built and minimized
which yields one new automaton Mf inal and a corresponding regular constraint. In our
example, the language Mf inal accepts is the empty set. Thus, propagation of the newly
created regular constraint on Mf inal is sufficient to find out about the empty solution space
and search is not needed (as in case (b), Fig. 1).

One big advantage of the transformation of general CSPs into regular constraints (in contrast
to using the original constraints) is that this method allows the combination of constraints
of originally different type into a one new constraint with joint propagation function. This
is possible by generating the automata, building their intersection, and minimizing the
resulting DFA as described above. This, furthermore, leads to a removal of redundancy and,
in average, to a reduction of fails and backtracking steps in the depth-first search process.

The Power of Regular Constraints in CSPs 609



i
i

“proceedings” — 2017/8/24 — 12:20 — page 610 — #610 i
i

i
i

i
i

8 Sven Löffler, Ke Liu, Petra Hofstedt

4.2 A rostering example

In this section, a more complex example is shown to demonstrate the power of regular
constraints. Consider a rostering CSP P = (X,D,C), where

X = {x1, x2, . . . , xn | n mod 7 = 0}
D = {D1,D2, . . . ,Dn | ∀i ∈ {1, . . . , n} : Di = {0, 1, 2, 3}}
C = {Cshi f tRequirements,Cshi f tRepetitions,Cshi f tOrder,CequalDays}
We consider n, n ∈ N, n mod 7 = 0 days, i. e. several weeks. A variable xi , i ∈ {1, 2, . . . , n}
represents the shift of a person A1 at day i, where we have four possible shifts: 0 represents
a day off, 1 is early shift, 2 is late shift and 3 is night shift.

As typical for many staff rostering problems, we just consider the plan of one person A1 and
assume, that the plan for further staff is received by rotating A1s plan by e. g. a week. For exam-
ple given a shift plan solA1 = (v1, v2, . . . , v7, v8 . . . , v14, v15, . . . , vn) (as a solution of the CSP
P) for A1, the plan for a person A2 would be solA2 = (v8, . . . , v14, v15, . . . , vn, v1, v2, . . . , v7),
and for a certain person A3 it might be solA3 = (v15, . . . , vn, v1, v2, . . . , v7, v8, . . . , v14).
The constraints C are explained in the following:

Cshi f tRequirements contains the core constraints which describes how many shifts of each
kind (i. e. from 0, 1, 2, 3) are necessary for every day (i. e. 1, 2, . . . , 7) in a week. Often these
values vary over the week, for example, less staff is needed on weekends (days 6 and 7). To
express such restrictions, the count constraint is useful. Let’s for our example assume that
we wish a nearly equal staffing per day. This yields the following count constraints:

∀i ∈ {1, 2, . . . , 7}, j ∈ {0, 1, 2, 3} : count(Xi, occ, j)
where Xi = {xi, x7+i, x14+i, . . .} ⊂ X and occ = {b n

7∗4 c, d n
7∗4 e}

Remark: The use of global cardinality constraints would be an alternative here, but, yield
in performance measurements worse results.

Cshi f tRepetitions contains constraints to limit the minimum and maximum number of the
same shift in consecutive days. In Germany, ergonomic knowledge must be respected. This
means for example that the minimum number of days in a row with the same shift should be
two [Bu13]. As well, the maximum number of repetitions is limited. In our example, we
allow a maximum of four repetitions, except that on night shifts, where we limit it on three.

The stretch(X,min,max, values, . . .) constraint is perfect to model these requirements
[Pa08] as follows:

stretch(X, {2, 2, 2, 2}, {4, 4, 4, 3}, {0, 1, 2, 3}, . . .)
Cshi f tOrder restricts the order of shifts. We require that only later shifts or days off can
place after an earlier shift, this guarantees conformance with the regulations on rest periods

610 Sven Löffler, Ke Liu, Petra Hofstedt



i
i

“proceedings” — 2017/8/24 — 12:20 — page 611 — #611 i
i

i
i

i
i

The Power of Regular Constraints in CSPs 9

in the German working time law [Ar94, §5]. Here, we use table constraints, which can
express allowed or disallowed relations by tuples. The following table constraint says that
for each two successive days xi and xi+1 after a night shift there must not follow an early or
a late shift (i. e. tuples (3, 1) and (3, 2) are forbidden) and that a late must not be followed by
an early shift (i. e. tuple (2, 1) is forbidden).

∀i ∈ {1, 2, . . . , n − 1} : table(xi, xi+1,
©­­«
3 1
3 2
2 1

ª®®¬
, f alse)

CequalDays are constraints which guarantee that on Saturday a person always has the same
shift as on the following Sunday, which is recommended [Bu13]. Here, we use arithm
constraints (arithmetic equality).

∀i ∈ {6, 13, . . . , n − 1} : arithm(xi, “ = “, xi+1)
Remark: Of course, for real rostering problems, further restrictions and recommendations
must be considered.

4.2.1 Evaluation

A series of tests with different values for n (28, 35, 42, 49, 56) and four different search
strategies (see Table 1) was investigated. We applied variable and value selection strategies
as defined by Charles Prud’homme for the Choco 4 solver (for details see [Ch17, PFL16]).

Name Variable selector Value selector
Search 1 “Smallest” “IntDomainMin”
Search 2 “Smallest” “IntDomainMedian”
Search 3 “FirstFail” “IntDomainMin”
Search 4 “FirstFail” “IntDomainMedian”

Tab. 1: The used search strategies

Tables 2 to 5 show the average results over all four search strategies and for the respective
values of n. For example, Table 2 shows results for the staff rostering over four weeks, i. e.
n = 4 ∗ 7 = 28.

We compare the solution behaviour of the original version of the CSP P and its regular
version, i. e. a CSP P′ as a result of the transformation. In the regular version P′ all
constraints - except the Cshi f tRequirements - were transformed like described in the previous
chapter (including intersection and minimization of the automaton) to a new constraint
cregular as described before. We omitted the transformation of Cshi f tRequirements because
that, in particular the intersection step, needs more time as we can save.

The Power of Regular Constraints in CSPs 611



i
i

“proceedings” — 2017/8/24 — 12:20 — page 612 — #612 i
i

i
i

i
i

10 Sven Löffler, Ke Liu, Petra Hofstedt

n = 28 t1 in s t44 in s Nodes Backtracks Fails
Original 0.110 0.734 10501 20917 10415
Regular 0.024 0.304 3480 6873 3393
Improvement 4.546 2.413 3.018 3.043 3.069

Tab. 2: Statistics for n = 4 ∗ 7 = 28

n = 35 t1 in s t100 in s t10000 in s t217339 in s Nodes Backtracks Fails
Original 0.045 0.234 2.312 26.319 1262001 2089324 827324
Regular 0.008 0.073 0.630 4.283 504647 574618 69970
Improvement 5.774 3.210 3.670 6.146 2.501 3.636 11.824

Tab. 3: Statistics for n = 5 ∗ 7 = 35

n = 42 tno in s Nodes Backtracks Fails
Original 5.337 199283 398568 199284
Regular 1.351 43911 87823 43912
Improvement 3.950 4.538 4.538 4.538

Tab. 4: Statistics for n = 6 ∗ 7 = 42

By ti we represent the time in seconds needed to compute i solutions of the corresponding
CSP. Thus, t1 is the time to find a first solution, t100 to find the first 100 solutions (depending
on selection strategies). For values of i which are different from 1 or multiples of 100, i
represents the maximum number of solutions. “Nodes” represents the number of nodes in
the completely expanded search tree (i. e. for the last ti in the resp. tables), “Backtracks”
and “Fails” the numbers of backtracking steps and failing leafs, resp., during this search.
The values for tno represent time needed to detect that no solution exists.

It can be seen that the regular approach is in average always faster due to a lower number of
nodes, fails, and backtracks to be investigated during search. Furthermore, and not to be
seen here, not only the average values over all search strategies were better resp. times were
faster, but this also holds for every single regular search wrt. its original version of the CSP.

Table 6 shows the number of solutions found in a restricted time of 300s for the four search
strategies (cf. Table 1). Again, the regular approach is superior, while the scattering can be
quite large. However, during our investigations it became obvious that in cases where higher
numbers of solutions are requested, the regular approach is always better.

5 Conclusion

This section contains a summary of the paper, gives a conclusion and explains our next
steps.

612 Sven Löffler, Ke Liu, Petra Hofstedt



i
i

“proceedings” — 2017/8/24 — 12:20 — page 613 — #613 i
i

i
i

i
i

The Power of Regular Constraints in CSPs 11

n = 49 tno in s Nodes Backtracks Fails
Original > 600 > 26684769 > 53369496 > 26684758
Regular 215.807 11188915 22377832 11188916
Improvement > 2.780 > 2.385 > 2.385 > 2.385

Tab. 5: Statistics for n = 7 ∗ 7 = 49

n = 56 (300s) Search 1 Search 2 Search 3 Search 4
Original 0 1140 25 1442
Regular 20512 1463 419 3886
Improvement ∞ 1.283 16.76 2.695

Tab. 6: Number of solutions found in 300s for n = 8 ∗ 7 = 56

5.1 Summary

In this paper we presented a new approach for the optimization of general CSPs using the
regular constraint. It was shown that every CSP can be transformed into a regular CSP by
transforming primitive and global constraints into regular constraints and using automata
intersection and minimization. By means of a rostering example we demonstrated that this
approach allows to reduce the size of the search tree and to significantly improve the solution
speed.

When comparing the performance of regular CSPs in contrast to the original version of
the problem, of course, also the time needed for the transformation must be taken into
consideration. Here, our investigations support that our approach can be applied successfully
when considering subproblems of a potentially large CSP P and, thus, subsets of its variables
X . The reason is the exponential growth of the number of states of the automaton with the
number of variables. Transforming only subproblems (instead of P completely) is, thus,
much faster and, nevertheless, leads to a reduction of the number of constraints (also the
number of backtracks) and of the redundancy which, altogether, improves the solution
speed.

5.2 Future work

Future work includes finding good direct transformations for global constraints, investigating
promising variable orderings to optimize the size of the DFAs and, similarly, variable and
value orderings for the regular constraints, research on potential benefits from decomposition
of automata, finding out about general (static) criteria to decide when to apply the approach
as well as extracting promising application areas in general.

The Power of Regular Constraints in CSPs 613



i
i

“proceedings” — 2017/8/24 — 12:20 — page 614 — #614 i
i

i
i

i
i

12 Sven Löffler, Ke Liu, Petra Hofstedt

References
[Ap03] Apt, Krzysztof: Principles of Constraint Programming. Cambridge University Press, New

York, NY, USA, 2003.

[Ar94] Arbeitszeitgesetz vom 6. Juni 1994 (BGBl. I S. 1170, 1171), zuletzt geändert durch Artikel
3 Absatz 6 des Gesetzes vom 20. April 2013 (BGBl. I S. 868). http://www.gesetze-im-
internet.de/arbzg/BJNR117100994.html, 1994. last visited 2017-05-10.

[Bu13] Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) - Gestaltung von Nacht- und
Schichtarbeit. http://www.baua.de/de/Informationen-fuer-die-Praxis/Handlungshilfen-
und-Praxisbeispiele/Arbeitszeitgestaltung/Nacht-%20und%20Schichtarbeit.html, 2013.
last visited 2017-05-10.

[Ch17] Choco Solver 4.0.1. http://www.choco-solver.org/, 2017. last visited 2017-05-10.

[De03] Dechter, Rina: Constraint processing. Elsevier Morgan Kaufmann, 2003.

[HPvB04] Hellsten, Lars; Pesant, Gilles; van Beek, Peter: A Domain Consistency Algorithm for
the Stretch Constraint. In: Principles and Practice of Constraint Programming, 10th
International Conference, CP 2004. pp. 290–304, 2004.

[HU79] Hopcroft, John E.; Ullman, Jeffrey D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[La12] Lang, Hans Werner: Algorithmen in Java - Sortieren, Textsuche, Codierung, Kryptographie.
Oldenbourg Verlag, München, 3rd edition, 2012.

[Ló03] López-Ortiz, Alejandro; Quimper, Claude-Guy; Tromp, John; van Beek, Peter: A Fast and
Simple Algorithm for Bounds Consistency of the AllDifferent Constraint. In (Gottlob,
Georg; Walsh, Toby, eds): IJCAI-03, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence. Morgan Kaufmann, pp. 245–250, 2003.

[Ma98] Marriott, Kim: Programming with Constraints - An Introduction. MIT Press, Cambridge,
1998.

[Pa08] Paltzer, Niko: Regular Language Membership Constraint. Seminararbeit, Universität des
Saarlandes, Deutschland, 2008.

[Pe01] Pesant, Gilles: A Filtering Algorithm for the Stretch Constraint. In (Walsh, Toby, ed.):
Principles and Practice of Constraint Programming, 7th International Conference, CP
2001. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 183–195, 2001.

[PFL16] Prud’homme, Charles; Fages, Jean-Guillaume; Lorca, Xavier: Choco Documentation.
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016. http://www.
choco-solver.org/.

[RBW06] Rossi, Francesca; Beek, Peter van; Walsh, Toby: Handbook of Constraint Programming.
Elsevier, Amsterdam, First edition, 2006.

[Ré94] Régin, Jean-Charles: A Filtering Algorithm for Constraints of Difference in CSPs. In
(Hayes-Roth, Barbara; Korf, Richard E., eds): Proceedings of the 12th National Conference
on Artificial Intelligence, Volume 1. AAAI Press / The MIT Press, pp. 362–367, 1994.

[vHK06] van Hoeve, Willem-Jan; Katriel, Irit: Global Constraints. In [RBW06], First edition, 2006.
Chapter 6.

614 Sven Löffler, Ke Liu, Petra Hofstedt

http://www.gesetze-im-internet.de/arbzg/BJNR117100994.html
http://www.gesetze-im-internet.de/arbzg/BJNR117100994.html
http://www.baua.de/de/Informationen-fuer-die-Praxis/Handlungshilfen-und-Praxisbeispiele/Arbeitszeitgestaltung/Nacht-%20und%20Schichtarbeit.html
http://www.baua.de/de/Informationen-fuer-die-Praxis/Handlungshilfen-und-Praxisbeispiele/Arbeitszeitgestaltung/Nacht-%20und%20Schichtarbeit.html
http://www.choco-solver.org/
http://www.choco-solver.org/
http://www.choco-solver.org/

