
Developing Bare-Metal GPGPU Drivers From
Scratch

What prevents scientists from developing own GPGPU drivers?

Marcel Lütke Dreimann
Universität Osnabrück

Germany
mluetkedreim@uos.de

Daniel Kessener
Universität Osnabrück

Germany
dkessener@uos.de

ABSTRACT
Most of modern computers use Graphic Processing Units
(GPUs) as an additional source of computing power.
However, using GPUs in bare-metal research operating
systems comes with some challenges. Existing drivers for
Linux or Windows are complex and cannot be used for
without much effort. Documentation of modern GPUs
is often missing or incomplete and drivers are incom-
prehensive or closed source. This paper tries to explain
what prevents scientists from creating their own GPU
drivers. Additionally, it gives an overview about GPGPU
driver development for GPUs from different manufactur-
ers and shows some challenges. Nevertheless, we have
ambitiously started an undertaking to develop our own
driver from scratch. To some extend this was successful,
but with many problems on the way.

KEYWORDS
GPGPU, bare-metal driver, GPU documentation, chal-
lenges

1 INTRODUCTION
Present research operating systems like the MxKernel
are developed to run well on heterogeneous hardware
[8]. The hardware platform can consist of many-core
CPUs, GPUs and Field Programmable Gate Arrays (FP-
GAs). Because research operating systems are designed
to run on bare hardware, a driver for each hardware
unit is required. The use of GPUs with their GPGPU
functionality is especially interesting, because GPUs can

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Authors.
FGBS ’21, March 11–12, 2021, Wiesbaden, Germany
© 2021 Copyright held by the authors.
https://doi.org/10.18420/fgbs2021f-03

achieve more computing power than traditional CPUs [9].
GPU drivers for Linux and Windows already exist and
are mostly developed by the manufacturers themselfes.
However, these drivers cannot be easily used in custom
operating systems. The driver code is large compared to
other device drivers and contains a lot of code, which
is not needed for GPGPU functionality. Additionally, a
custom driver allows up for more flexibility and a better
integration into novel operating system architectures.
Furthermore, new concepts for GPU tasks and differ-
ent strategies to better exploit heterogenity could be
researched. A closer look into the existing Linux drivers
will be taken in Chapter 3.

Because we did not find any research driver or scientific
work dealing with developing own GPU drivers, there
has to be a cause that prevents science from doing so.
This paper tries to identify some of the causes. Therefore,
we will show that:

(1) GPUs evolve more quickly than research teams
could develop drivers for the new hardware

(2) the hardware documentation of the manufacturers
is not sufficient for driver development

(3) a GPGPU driver for Intel IGPs is feasible in less
than 2000 lines of code, which is about 0.2% of the
open source Linux driver lines of code

2 RELATED WORK
In the scientific field, no research operating system we
are aware of can use GPUs natively. And most scien-
tific works focus on GPU virtualization instead of native
usage (see [5] and [11]). Other works extend already
existing drivers and allow GPUs to access memory over
a network connection [3]. [10] and [6] deal with more ad-
vanced integration of GPUs into Linux. Additionally, [1]
analyzed the existing Linux drivers and [12] developed
their own tool chain for cracking and reassembling GPU
binaries. In contrast to these papers, [2] deals with a
hardware implementation of a GPGPU.

1

https://doi.org/10.18420/fgbs2021f-03


FGBS ’21, March 11–12, 2021, Wiesbaden, Germany Marcel Lütke Dreimann and Daniel Kessener

3 GPGPU DRIVERS ON LINUX
This chapter shows how the Linux operating system
manages to use GPUs for executing GPGPU applica-
tions. We will analyze drivers for GPUs from different
manufacturers and show how large their codebase is.
The three manufacturers we compare are Intel, AMD
and Nvidia. Intels GPUs are mostly integrated into Intel
desktop processors and are therefore less complex and
less powerful. However, Intel plans to build dedicated
GPUs with more computing power, especially for the
GPGPU field1. AMD and Nvidia build mostly dedicated
GPUs with more power and complexity.
All these manufacturers have their own drivers and soft-
ware packages to run GPGPU applications on Linux.
However, not all of them are open source and can be used
as additional documentation for a custom driver. Figure
1 shows the open source drivers and components which
are required to run OpenCL applications on hardware.
i915, amdgpu and nouveau are the kernel modules for In-
tel, AMD and Nvidia GPUs respectively, and have direct
access to the hardware. They are responsible for printing
the kernels graphics output to the screen and therefore
also initialize the hardware. The kernel’s graphics output
is printed via the Direct Render Manager (DRM) and
Translation Table Manager (TTM) kernel module. Run-
ning GPGPU applications is not part of the graphics
driver and needs additional software. For Intel GPUs
this is the NEO driver, which consist of three software
components: The compute driver is the main driver for
running GPGPU applications. The Gmmlib is respon-
sible for memory management and the Intel Graphics
Compiler (IGC) generates binary code from OpenCL
code. AMD has a similar software package called ROCm.
Nvidia has no open source compute driver and can only
run GPGPU applications with the closed source dri-
ver. If the user wants to run a GPGPU application, the
OpenCL API calls the computing driver of the chosen
hardware unit, which communicates with the hardware
via the kernel module.
The lines of code of these components are listed in Fig-

ure 2 and 3. These figures also show a subdivision into
comments, headers and C/C++ code. The comments
are measured without licensing information. Note that
not all the code is necessary to understand a GPGPU
driver. Graphics driver code and compiler code are less
important for a custom driver, because the custom dri-
ver can load a binary image without compiling OpenCL

1https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/iris-xe-max-graphics-product-
brief.pdf

Figure 1: Linux open source drivers

kernel module text size in byte
i9153 1.862.293
amdgpu3 4.211.273
nvidia 450.102.04 19.385.754

Table 1: Comparision of text segments of different ker-
nel modules.

code at runtime. The Intel driver package is small com-
pared to AMD’s driver package with a about 1.2 million
lines of code. The amdgpu driver with ROCm has the
largest codebase with about 33.5 million lines of code.
However, these drivers contain additional parts that do
not contribute to the complexity of the driver. amdgpu
has about 2.1 million lines of code in the header files,
where most of them only define register identifiers and
bit locations of these registers. The ROCm driver con-
tains tools and libraries such as the llvm project. The
nouveau driver for Nvidia GPUs is the smallest driver.
This can be justified by the smaller feature set the driver
offers (see nouveau feature matrix2). An open source
compute driver for Nvidia GPUs is missing. Nevertheless,
we compared text segments of the driver binaries. The
results suggest that the closed source Nvidia driver does
have an even larger codebase than amdgpu or i915 (see
table 1).

4 HARDWARE DOCUMENTATION
The documentation is the first place to look for detailed
information about GPUs. Therefore this chapter gives an

2https://nouveau.freedesktop.org/FeatureMatrix.html
3Ubuntu 20.10, kernel version 5.8.0-41
4All Numbers calculated by the cloc tool on 16.01.2021 0:00

2

https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/iris-xe-max-graphics-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/iris-xe-max-graphics-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/iris-xe-max-graphics-product-brief.pdf
https://nouveau.freedesktop.org/FeatureMatrix.html


Developing Bare-Metal GPGPU Drivers From Scratch FGBS ’21, March 11–12, 2021, Wiesbaden, Germany

Figure 2: Source code comparison of kernel modules
from AMD(amdgpu), Nvidia(nouveau) and Intel(i915)4

Figure 3: Source code comparison of compute drivers
from AMD(ROCm) and Intel(NEO)4

overview of documentation for Intel, AMD and Nvidia
GPUs. Additionally, some alternative resources are listed.
At last, we check whether these resources are sufficient
for writing a custom driver.
Intels GPU documentation can be found on the Intel
Open Source Website5. There, we can find a collection
of PDF files for most processor platforms. Every pro-
cessor platform has its own integrated GPU. However,
multiple processor platforms share the same generation
of GPUs. Therefore some processor platforms only have
a configuration chapter. This chapter contains informa-
tion needed to access the GPU. Everything else is kept
the same and can be found in the processor platform
documentation, where the GPU generation was first in-
troduced. As a whole, the most recent Ice Lake platform
5https://01.org/linuxgraphics/documentation

contains 14 different volumes. Each volume describes a
different part of the GPU. For instance, the first volume
lists all instructions, registers and structures of the GPU.
Following volumes deal with the GPUs memory or dif-
ferent engines. The GPGPU functionality is part of the
rendering engine and can be found in Volume 9: Render
Engine. In total, the 7020 pages of documentation look
quite detailed. Nevertheless, there are some issues with
the documentation, as we show in Chapter 6.
AMD published their GPU documentation on their web-
site6. It can be found under the heading: Open GPU Doc-
umentation. There, we can find some Reference Guides
and one Programming Guide. The documents are dated
to the year 2013 and older. Therefore, no documenta-
tion of up-to-date GPUs can be found. Reference Guides
contain register definitions and the Programming Guide
contains additional information of the R5xx GPU genera-
tion. As a whole, we would have to use the Programming
Guide (dated to June 2010) and one of the Reference
Guides to write a driver for a modern GPU. The over-
all concept of a GPU might not have changed a lot
since 2010, but the register definitions can not be used.
In total, the Programming Guide contains 288 pages,
which does not have enough detail to write a custom
driver. Necessary parts of the GPU such as the GPUs
memory are not explained. Therefore we can say that
writing a custom driver with just this information is
nearly impossible. However, the website also lists an
email address, where driver developers can ask for help.
We used this opportunity and got useful answers, but
more detailed documentation does not seem to exist.
Additionally, AMD has a second website called GPU
Open7, but this website only offers documentation for
APIs or GPU instruction sets.
Nvidias documentation can be found in one of their Git
repositories8. There, we can find a lot of text files and
C++ headers. They mostly contain a list of values and
some explanation. Some text files also includes figures
created by text symbols. It seems like the Ampere, Turing
and Volta architectures are documented, but some parts
of the repository are unordered, and we do not know to
which architecture they belong. The Ampere architecture
is Nvidias newest generation of GPUs. Documentation
for computing GPUs, like the Nvidia Quadro seems to
be missing. Because of the quality of the documentation
and the lack of detail, it seems like creating a custom
driver for Nvidia cards is a difficult task - if not entirely
impossible.
6https://developer.amd.com/resources/developer-guides-
manuals/
7https://gpuopen.com/documentation/
8https://github.com/NVIDIA/open-gpu-doc

3

https://01.org/linuxgraphics/documentation
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/
https://gpuopen.com/documentation/
https://github.com/NVIDIA/open-gpu-doc


FGBS ’21, March 11–12, 2021, Wiesbaden, Germany Marcel Lütke Dreimann and Daniel Kessener

In addition to the official resources, some alternative
resources are useful too. For example, the Rendering-
pipeline website9 has a good summary of all documen-
tation available. Furthermore, the X.Org Foundation
documentation 10 has listed some of the official, but also
some additional documents.

5 CHALLENGES OF GPU DRIVER
PROGRAMMING

This chapter shows some challenges of developing a bare
metal GPGPU driver. Most of the problems during de-
velopment are related to problems with GPU documen-
tation, which was reviewed in Chapter 4. The challenges
can be summarized as following:

(1) hardware as a black box
(2) lack of information
(3) complexity of hardware and open source drivers
(4) speed of GPU development

The first challenge comes with the hardware itself. The
feedback of the hardware device is limited. It can be
seen like a black box, where we do not know what it
does. For instance, the GPU could wait for a specific
driver code to finish or it could hang and stop working if
the driver code did something wrong. Outside the black
box we do not know what happened and what error may
have occurred. To look into the black box some kind of
hardware debugger would be required. However, we are
not aware of any publicly available hardware debuggers.
Furthermore, the documentation provided by the manu-
facturer is not sufficient for writing a driver (see Chapter
4,). Therefore, open source drivers are necessary to an-
alyze and understand. Furthermore, dedicated GPUs
specifically are complex and the open source driver code
is complex too. This is the case because a GPU is nearly
its own computer, plugged into a computer. The device
has its own memory, processing unit with instruction set
and IO ports. Even more complexity appears, when the
open source driver supports multiple GPUs of different
GPU generations. This leads to a lot of hardware-specific
code. For example, there are multiple files in the amdgpu
driver, which have the same name, but end with a dif-
ferent version identifier. Each file belongs to a part of
the GPU driver and is intended for specific generations
of AMD GPUs. In addition, the kernel modules contain
a lot of code for the graphics part of the GPU. This
code is not necessary for a GPGPU driver. However, it
is hard to distinguish which code is needed for graph-
ics and which code is part of the initialization and is
9http://renderingpipeline.com/graphics-literature/low-level-gpu-
documentation/
10https://www.x.org/docs/

therefore also important for the GPGPU driver. In some
cases graphics code is indeed required for GPGPU appli-
cations to run, because graphics and computing is not
completely separated. As seen in Chapter 3 there are
no pure compute drivers. The compute drivers depend
on the graphics drivers. The last and maybe biggest
challenge comes with the development speed of GPUs.
Especially Nvidia and AMD release multiple GPUs ev-
ery year11. If research prototype drivers want to stay
relevant, they have to support state of the art GPUs.
As we saw earlier in this paragraph, driver development
can be a hard task and therefore needs its time. But if
GPUs are released that frequently, it is hard for scientific
teams to keep up with their drivers. The amdgpu driver
has about 670.000 lines of code changes in their driver
every year12. Intels i915 driver has about 130.000 lines of
code changes12. And these are only changes in the kernel
modules. The total amount of changes with ROCm and
NEO are even higher. With an estimation of 10.000 lines
of code a scientist can write every year, it would need 67
scientists to keep up with the driver development for an
AMD GPUs kernel module. For most scientific working
groups this will not be possible to do.

6 EXAMPLE: INTEL GPGPU DRIVER
(VS. AMD GPGPU DRIVER)

This chapter shows some issues by example. Additionally,
we present the results of our driver projects. At first, we
will look at the driver for the integrated Intel GPUs of
the Intel UHD 600 generation and at last we investigate
a driver for the AMD Polaris generation.

Intel
The Intel driver was part of a bachelor thesis [4]. There-
fore the driver was developed by one person in a time of
approximately 3 months.
The first problem occurred already at the beginning of
the development. The GPU is in a sleep state by default
to reduce the power consumption if it is not used. One of
the first things the driver has to do, is to wake the GPU
up. This step is crucial for using the GPU, because with-
out waking it up, the GPU will not react to any register
changes. The documentation however does not explain
this step. A trace of the i915 kernel module suggested
writing some values into special GPU registers. These
GPU registers are called Force Wake Registers and are
responsible for waking up the GPU. Not only is this step
not mentioned in the documentation, even the list of

11https://vintage3d.org/dbn.php
12Average value calculated with git diff over the years 2015 to
2021.

4

http://renderingpipeline.com/graphics-literature/low-level-gpu-documentation/
http://renderingpipeline.com/graphics-literature/low-level-gpu-documentation/
https://www.x.org/docs/
https://vintage3d.org/dbn.php


Developing Bare-Metal GPGPU Drivers From Scratch FGBS ’21, March 11–12, 2021, Wiesbaden, Germany

Figure 4: Example makespan for processing units in 𝜇𝑠
Source: [7]

registers omits these important registers. With just the
information of the documentation it would be impos-
sible to start using the GPU. In older documentation,
we found the Force Wake Registers in the register list,
which suggests that the registers were either removed or
forgotten in the newer documentation. There are more
examples of this kind of issue, but the required informa-
tion is sometimes also missing in older documentation.
This shows what kind of problem can occur and how
erroneous the Intel documentation is. Nevertheless, in
retrospect after the AMD driver development, the Intel
documentation is still the best documentation for GPUs
out there.
At the end of the bachelor thesis, we managed to have a
working driver13 with less than 2000 lines of code. How-
ever, it was way slower than the Linux driver. This was
fixed after the bachelor thesis. Again, it was a missing
step of initialization, because another register was miss-
ing in the documentation. Now, the driver can compete
with the Linux driver. [7] used this driver to evaluate a
design concept for parallel data processing on heteroge-
neous hardware. The results suggest, that a combination
of CPU and GPU computing power can improve the
performance in computing tasks (see figure 4). Never-
theless, the driver is still not perfect. Some programs do
not run and result in a GPU hang. It takes further work
to investigate and fix these issues.

AMD
The AMD driver was part of a students project and was
developed by a single person again, like the Intel driver.
However, this driver had about one year of development
time. Because we already developed the Intel driver,
some parts of the AMD driver were similar and therefore
easier to implement. Nevertheless, the AMD GPU is a
dedicated GPU and has a lot more complexity.
The documentation issues are way more problematic
than in the case of the Intel driver. Where the Intel doc-
umentation misses some registers or details, the AMD

13Driver source can be found at: https://ess.cs.uos.de/git/software/
uos-intel-gpgpu

documentation misses complete chapters. It states noth-
ing concerning the access to the GPUs memory or any
type of initialization. Therefore, we had to use the open
source driver as the main source of information. How-
ever, as we saw in Chapter 3, the open source driver has
about double the size of the Intel driver. Additionally,
the PCI part of the driver is more complicated, because
the GPU is connected to a different PCI bridge than the
CPU. Furthermore, access to the GPUs memory also has
to deal with the different PCI bridge and PCI Express
functions. Further, the GPU needs a special initialization
executed by an Atom BIOS. The BIOS can be found in
the Expansion ROM field of the PCI header. The BIOS
however, is no executable code. It has to be interpreted
by the driver. At this point, a complete interpreter was
necessary. We decided to port this part of the amdgpu
driver. Nevertheless, to get the Atom BIOS running it
took about one month. After the execution of the Atom
BIOS the screen becomes black, because the BIOS seems
to disable some of the textmode parts of the GPU.
The current state of the driver is still stuck in the ini-
tialization phase of the GPU and the compute part is
still missing, yet. AMDs friendly email support gave us
important hints, but we still have not had the break-
through.

7 SUMMARY AND OUTLOOK
To sum up, the main cause for the lack of GPU driver de-
velopement in the scientific community is related to the
fast development of GPUs. Because of the mostly poor
documentation and the hardware complexity it takes a
lot of time and effort to develop even a special purpose
driver. Integrated Intel GPUs age not as fast as dedi-
cated GPUs from AMD or Nvidia. Furthermore, Intels
documentation is the most useful and the GPU itself is
not as complex as a dedicated one. Therefore a driver
for Intel GPUs is feasible and may be also extendable
for newer generations. Dedicated GPUs, on the other
hand, age very fast. Even if we could develop a working
driver, it is likely to be outdated as soon as it is finshed.
At first, our Intel and AMD drivers have to be developed
further and issues have to be solved. A possible solution
could be an open source GPGPU driver with a simple
interface, so that a research operating system can use
the driver. Furthermore, Intel plans to release dedicated
XE GPUs14 with focus on GPGPU computing power.
This could be a good GPU for research if Intel provides
documentation in the same detail like their integrated
GPU documentation. An alternative to the Intel XE

14https://newsroom.intel.com/wp-content/uploads/sites/11/
2020/11/SC20-Keynote-Slides.pdf

5

https://ess.cs.uos.de/git/software/uos-intel-gpgpu
https://ess.cs.uos.de/git/software/uos-intel-gpgpu
https://newsroom.intel.com/wp-content/uploads/sites/11/2020/11/SC20-Keynote-Slides.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2020/11/SC20-Keynote-Slides.pdf


FGBS ’21, March 11–12, 2021, Wiesbaden, Germany Marcel Lütke Dreimann and Daniel Kessener

GPU could be an open source GPGPU like the MIAOW
project, that offers an open source RTL implementation
of a GPGPU (see [2]). Our hope is to draw more atten-
tion to this topic, so that GPU manufacturer will show
more interest in good hardware documentation or even
publish additional open source implementations, that
are easy to use in research operating systems.

Acknowledgements The work on this paper has been
supported by Deutsche Forschungsgemeinschaft (DFG)
under grant no. SP 968/9-2.

REFERENCES
[1] David M Airlie and Open Source Contractor. 2006. Open

Source Graphic Drivers-They Don’t Kill Kittens. In Proceed-
ings of the Linux Symposium, Vol. 1. 19–26.

[2] Raghuraman Balasubramanian, Vinay Gangadhar, Ziliang
Guo, Chen-Han Ho, Cherin Joseph, Jaikrishnan Menon,
Mario Paulo Drumond, Robin Paul, Sharath Prasad, Pradip
Valathol, and Karthikeyan Sankaralingam. 2015. Enabling
GPGPU Low-Level Hardware Explorations with MIAOW: An
Open-Source RTL Implementation of a GPGPU. ACM Trans.
Archit. Code Optim. 12, 2, Article 21 (June 2015), 25 pages.
https://doi.org/10.1145/2764908

[3] Feras Daoud, Amir Watad, and Mark Silberstein. 2016. GPUr-
dma: GPU-Side Library for High Performance Networking
from GPU Kernels. In Proceedings of the 6th International
Workshop on Runtime and Operating Systems for Supercom-
puters (Kyoto, Japan) (ROSS ’16). Association for Com-
puting Machinery, New York, NY, USA, Article 6, 8 pages.
https://doi.org/10.1145/2931088.2931091

[4] Marcel Lütke Dreimann. 2019. Ein Treiber für die native
Codeausführung auf Intel GPUs für den MxKernel. (2019).

[5] José Duato, Francisco D. Igual, Rafael Mayo, Antonio J.
Peña, Enrique S. Quintana-Ortí, and Federico Silla. 2010.
An Efficient Implementation of GPU Virtualization in High
Performance Clusters. In Euro-Par 2009 – Parallel Processing
Workshops, Hai-Xiang Lin, Michael Alexander, Martti Forsell,
Andreas Knüpfer, Radu Prodan, Leonel Sousa, and Achim
Streit (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
385–394.

[6] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott
Brandt. 2012. Gdev: First-Class GPU Resource Management
in the Operating System. In 2012 USENIX Annual Technical
Conference (USENIX ATC 12). USENIX Association, Boston,
MA, 401–412. https://www.usenix.org/conference/atc12/
technical-sessions/presentation/kato

[7] Michael Müller, Thomas Leich, Thilo Pionteck, Gunter Saake,
Jens Teubner, and Olaf Spinczyk. 2020. He..ro DB: A Concept
for Parallel Data Processing on Heterogeneous Hardware. 82–
96.

[8] Michael Müller and Olaf Spinczyk. 2019. Mxkernel: rethinking
operating system architecture for many-core hardware. In
9th Workshop on Systems for Multi-core and Heterogenous
Architectures.

[9] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips. 2008. GPU Computing. Proc. IEEE 96,
5 (2008), 879–899. https://doi.org/10.1109/JPROC.2008.
917757

[10] Christopher J. Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. 2011. PTask: Operating
System Abstractions to Manage GPUs as Compute Devices.
In Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles (Cascais, Portugal) (SOSP ’11).
Association for Computing Machinery, New York, NY, USA,
233–248. https://doi.org/10.1145/2043556.2043579

[11] A. J. Younge, J. P. Walters, S. Crago, and G. C. Fox.
2014. Evaluating GPU Passthrough in Xen for High Per-
formance Cloud Computing. In 2014 IEEE International
Parallel Distributed Processing Symposium Workshops. 852–
859. https://doi.org/10.1109/IPDPSW.2014.97

[12] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li,
Keren Zhou, and Mingyu Chen. 2017. Understanding the
GPU Microarchitecture to Achieve Bare-Metal Performance
Tuning. SIGPLAN Not. 52, 8 (Jan. 2017), 31–43. https:
//doi.org/10.1145/3155284.3018755

6

https://doi.org/10.1145/2764908
https://doi.org/10.1145/2931088.2931091
https://www.usenix.org/conference/atc12/technical-sessions/presentation/kato
https://www.usenix.org/conference/atc12/technical-sessions/presentation/kato
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1145/2043556.2043579
https://doi.org/10.1109/IPDPSW.2014.97
https://doi.org/10.1145/3155284.3018755
https://doi.org/10.1145/3155284.3018755

	Abstract
	1 Introduction
	2 Related Work
	3 GPGPU Drivers on Linux
	4 Hardware Documentation
	5 Challenges of GPU driver programming
	6 Example: Intel GPGPU Driver (vs. AMD GPGPU Driver)
	7 Summary and Outlook
	References

