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Coordinated Omission in NoSQL Database Benchmarking

Steffen Friedrich! Wolfram Wingerath,2 Norbert Ritter?

Abstract: Database system benchmark frameworks like the Yahoo! Cloud Serving Benchmark
(YCSB) play a crucial role in the process of developing and tuning data management systems. YCSB
has become the de facto standard for performance evaluation of scalable NoSQL database systems.
However, its initial design is prone to skipping important latency measurements. This phenomenon is
known as the coordinated omission problem and occurs in almost all load generators and monitoring
tools. A recent revision of the YCSB code base addresses this particular problem, but does not
actually solve it. In this paper we present the latency measurement scheme of NoSQLMark, our
own YCSB-based scalable benchmark framework that completely avoids coordinated omission and
show that NoSQLMark produces more accurate results using our validation tool SickStore and the
distributed data store Cassandra.
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1 Introduction

In recent years, a lot of new distributed database management technologies broadly classi-
fied under the term NoSQL databases have emerged for large data intensive applications.
Since the NoSQL landscape is very diverse [Gel6], decision makers have to rely on per-
formance benchmarks in addition to functional requirements to select the appropriate data
management solution for their application needs. Traditional relational database systems are
evaluated with industry standard benchmarks like TPC-C [Tr05] and TPC-E [Tr07]. These
are distinguished by the fact that they model particular applications and run workloads with
queries and updates in the context of transactions, whereas the data integrity is supposed to
be verified during the benchmark. Because NoSQL databases sacrifice consistency guar-
antees, transactional support and query capabilities, a new benchmark, the Yahoo! Cloud
Serving Benchmark (YCSB) [Co10], has become the de facto standard, which does not
model a real-world application, but examines a wide range of workload characteristics with
customisable mixes of read/write operations. To support any NoSQL database, YCSB is
limited to a CRUD interface only.

Nowadays, almost every new research on the NoSQL domain has been experimentally
evaluated with the help of YCSB and there have been many extensions developed for
it [Fr14]. Often overlooked was the underlying system model of its load generator, until
recently when the coordinated omission problem attracted great interest among practitioners.
The problem was named by Gile Tene, CTO and co-founder at Azul Systems, who describes
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it in his talks on "How not to measure latency" [Te16]. We explain the coordinated omission
problem in Section 2. Its great attention led to an extension of YCSB that tries to counteract
the problem. Therefore, in addition to the normal latency values, corrected, intended latency
values are computed. We describe this correction in Section 2.1 and explain how we can
avoid the problem at all with our scalable benchmark framework NoSQLMark in Section 3.
To investigate the effect of the coordinated omission problem, we extend our database
system SickStore in Section 4 and evaluate how the intended latency values differ from
those with coordinated omission avoidance in Section 5. We finish the paper with a summary
and concluding remarks in Section 6.

2 The Coordinated Omission Problem

The Java code snippet in Listing 1 shows how YCSB generates load and measures response
times. To issue requests with a given target throughput, the required wait time between
two operations is computed (1). After measuring the latency for one request (5-8), the
measurement thread sleeps until the computed deadline is reached (12-16). Since the call to
the database system under test is done synchronously, this methodology only works well as
long as the response time falls within the desired time window. For illustration, consider
the example measurements depicted in Figure 1.

1 _targetOpsTickNanos = (long) (1_000_000_000 / target)

2 1long overallStartTime = System.nanoTime();

3 while (_opsdone < _opcount) {

4 long startTime = System.nanoTime () ;

5 Status status = _db.read(table,key,fields,result);

6 long endTime = System.nanoTime();

7 _measurements .measure ("READ",
(int) ((endTime -startTime) /1000)) ;

8

9 _opsdone ++;

10

11 long deadline = overallStartTime + _opsdone *
_targetOpsTickNanos;

12 long now = System.nanoTime () ;

13 while ((now = System.nanoTime()) < deadline) {

14 LockSupport.parkNanos (deadline - now);

15 }

16

List. 1: A code snippet, similar to YCSBs source code, that shows how load generators typically
measure latency.

To illustrate the problem, we run a workload with one client thread, a target throughput
of 10 ops/sec and configure our database SickStore (introduced in Section 4) to simulate
a hiccup (disruptions and delays caused by garbage collection, context switches, cache
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buffer flushes to disk, etc.) of one second after 10 seconds run time. According to Listing 1,
we want the client thread to issue one request each 100 milliseconds. Request 1 to 9 take
less than 50us each, request 10 takes one second. The subsequent request again takes only
around 50us because it does not happen at its designated time. In this manner, the database
system under test delays requests that would have been made during the synchronous call,
which leads to the coordinated omission of relevant measurements such that the overall
measurement results do not reflect database hiccups very well. This obscuration becomes
worse if the results are reported as the mean latency only.
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Fig. 1: Measurements that illustrate the coordinated omission problem.

According to Schroder et. al. [SWHBO06], YCSB follows a closed system model: There is
some fixed number of users that repeatedly request the system, receive the response and
then "think" for some amount of time. A new request is only sent after the completion of
the previous one. However, YCSB focuses on workloads web applications place on cloud
data systems. Therefore, we actually want to measure the response time for user requests
that appear independently such that requests arrive in an unbounded fashion even if the
database system stalled for a longer period of time. This corresponds to an open system
model, where users arrive with an average arrival rate A and a new request is only triggered
by a new user arrival, independently of request completions.

Kece.tve.

er\d New Arrivals

(a) Closed system model (b) Open system model

Fig. 2: Illustrations of the closed and open system models.
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We assume that many developers do not consciously take this design difference into
account. Schroder et. al. came to a similar conclusion and found that most of the benchmark
systems that they investigated, including the relational database system benchmarks TPC-
C and TPC-W, follow a closed system model. But developers in general often do not
mention anything about the underlying system model in their documentations. An exception
is Sumita Barahmand who states in her PhD thesis on benchmarking interactive social
networking actions [Bal4] that her framework BG implements a closed system model, even
though she, too, considers the open model more realistic for a social networking site (or
websites in general). But she leaves this implementation open for future research.

2.1 Coordinated Omission Correction in YCSB

With the release 0.2.0 RC1 of YCSB in June 2015, some changes regarding the coordinated
omission problem were introduced by Nitsan Wakart”. First of all, the histogram library
called HdrHistogram® was added. In contrast to the standard histogram implementation with
a fixed number of buckets, the HdrHistogram can measure a dynamic range of measurement
values with configurable value precision. Additionally, the library provides a loss-free
compressed serialization which allows the reconstruction of the complete histogram, for
example to export data for plotting percentile curves. However, to overcome the coordinated
omission problem the most important change is the implementation of the intended mea-
surement interval. The idea is to correct the latency values by setting the measurement start
time to the designated time of the request. Consider again Listing 1, the intended latency of
the actual request can be measured by using the deadline of the preceding request as start
time:

measure ("Intended-READ", (int) ((endTime - _precedingDeadline)/1000));

This may appear to solve the problem, but the database is still able to influence the actual
time of the request which may affect the measurement results. Because all pending requests
(i.e. their calculated deadlines lie in the past) are sent immediately after a delayed response,
a very high load is generated temporarily. The big difference to an open system model is
that the requests are queued on the client side, whereas in the open model a request could
be sent to and processed by the database, even if the database is still processing the previous
one (e.g. due to multithreading or load balancing across multiple nodes). Intuitively, we
would therefore suspect that the corrected latency values tend to be higher than with an
open system model. We examine this hypothesis experimentally in Section 5.

3 Coordinated Omission Avoidance in NoSQLMark

During our research on staleness-based consistency measurement methods [Wil5], we
decided to develop our own benchmarking framework NoSQLMark on top of YCSB, to

2 Changes in YCSB regarding the coordinated omission problem:
https:/github.com/brianfrankcooper/Y CSB/blob/0.2.0-RC1/core/CHANGES.md
3 HdrHistogram library for Java: https:/github.com/HdrHistogram/HdrHistogram
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overcome several of it’s shortcomings. NoSQLMark is written in Scala with the Akka
toolkit and thus allows to easely scale a workload on different benchmark nodes. You no
longer have to start YCSB manually on different servers nor do you have to aggregate
the different measurement results by your own. Since Java libraries can be used directly
in Scala code we can depend on YCSB to support all of its database bindings as well.
Furthermore, the actor model allows us to implement more complex workloads that require
communication between actors like for example in our proposed consistency measurement
method [Fr14]. To avoid coordinated omission, we implement an open system model by
sending our requests in an asynchronous fashion. The Scala code snippet in Listing 2 shows
how an actor generates load and measures latency.

I implicit val executionContext = context.system.

2 dispatchers.lookup("blocking-io-dispatcher")

3

4 case DoOperation => {

5 val operation: Operation = workload.nextOperation

6 val startTime = System.nanoTime

7 val future = Future {

8 sendRequest (operation)

9 }

10 future.onComplete {

11 case Success(status) => {

12 val endTime = System.nanoTime

13 measurementActor ! Measure(operation.name,
status, (endTime - startTime) / 1000)

14 }

15 case Failure(ex) => {

16 log.error(ex, "Error occured during operation
{}", operation.name)

17 }

18 }

19 _opsdone += 1

20 if (_opsdone < _opcount) scheduleNextOperation ()

21 else supervisor ! WorkIsDone(workerID, jobID)

22 %

List. 2: Scala code snipped for asynchronous load generation to implement an open system model
in NoSQLMark.

Since an actor processes information by means of handling asynchronous messages, each
Akka actor has to implement the receive method which should define a series of case state-
ments that defines which messages an actor can handle. Thus the code snippet shows how
our actor (called worker) handles the message of type DoOperation. The critical difference
to Listing 1 is that we use a scala Future to send the actual request asynchronously (7-9).
Note that we create a dedicated execution context for blocking i/o and have tried various
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executor implementations / configurations* (1-2). Next, we register a callback on the future
by using the onComplete method, which is applied to the value of type Success [Status]
if the future completes successfully, or to a value of type Failure [Throwable] otherwise
(10-18). If successful, we send the computed latency to the measurement actor (11-14). The
scheduleNextOperation method schedules a new message of type DoOperation to be
send to the actor himself (20). Thus, the actor remains more or less reactive for another
message, e.g. an abort message by the user. At the end, a WorkIsDone message is sent to
the supervisor actor (21), who still have to wait for the outstanding measurements by the
measurement actor. The entire source code will be released in open source and we will
publish further details on NoSQLMark’s architecture and future development at the official
project page>.

4 Designing SickStore for Coordinated Omission

We introduced SickStore, the single-node inconsistent key-value store to validate existing
staleness benchmarks [Wil5]. For this purpose, SickStore’s design enables it to simulate
a replica set consisting of multiple virtual storage nodes that produce stale values, but at
the same time, it provides consistent knowledge about the system state at any point in time.
This is simplified by running the server in a single thread. Nevertheless, in order to allow
the simulation of latencies, the server returns the calculated latency values to the client
library, which blocks the calling thread for the corresponding remaining time.

In order to investigate the problem of coordinated omission, we have extended SickStore to
simulate a maximum throughput A,,,, and database hiccups, both configurable per virtual
node. Again, the server process should not really be slowed down or stopped. Therefore, we
simulate a request queue by introducing a counter C for the number of outstanding requests
in the system. Let

t; = timestamp at which request i was received by the server;
A; j =t; —t; the time period between request i and j where #; <1;;
C(#;) = the number of outstanding requests at time 7;;.

T; = the waiting time of request 7 in the system
In order to simulate the maximum throughput, for each request i we compute
C(t;) =max(0, C(ti—1) — Amax X Ai—1i) » (D)
where i — 1 is the direct predecessor to i. Note if i is the first request then C must be equal to

0. Then we compute T; = C(t;) / Amax and finally add one to the counter C before returning
T; to the client library. To also simulate a hiccup, we only have to increase the counter C by

4 We ended up with a similar configuration as suggested in the Akka docs, but with a high pool-size-factor
instead of a fixed-pool-size, to get a cached thread pool with a high limit and an unbounded queue: http:
/doc.akka.io/docs/akka/current/scala/dispatchers.html#More_dispatcher_configuration_examples

5 NoSQLMark can be obtained from http:/nosqlmark.informatik.uni-hamburg.de/
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the appropriate number of requests. Let

t, = the desired start time of the hiccup;
H = the desired hiccup duration.

Then equation (1) becomes
Clt) = max(0, C(ti—1) — Amax X Ai—1,i+ Amax X H), ift; <ty <=1t 2)
! max(0, C(ti—1) — Amax X A1), otherwise

Finally, each calling client thread has to pause for the duration / 4 7;, where [ is the
calculated network latency by SickStore’s latency generator.

5 Experimental Evaluation

We proceed to experimentally demonstrate that the latency values corrected by the intended
measurement interval in YCSB greatly differ from those measured by our implementation
of an open system model. This is confirmed by the exemplifying simulation of a hiccup
with SickStore, as well as in our experiments with Cassandra.

5.1 Coordinated Omission Simulation with SickStore

To get an insight into how the measurement results behave in a hiccup situation, we have
conducted a series of micro-benchmarks with SickStore. For the simulation, we used one
machine with 2.60 Ghz Quad-Core Intel i7-6700HQ processor and 16 GB memory.We
run a workload with a target throughput of 1000 ops/sec, 90000 operations and configure
SickStore to simulate a hiccup of one second after 30 seconds run time. Thus, each micro-
benchmark runs 90 seconds, which is sufficient for each run to stabilize the latency values
to a level as before the hiccup. In the first series of experiments we increase the number of
YCSB client threads and set the maximum throughput at SickStore to 1250 ops/sec. The
two time series plots in Figure 3 illustrate how the number of YCSB client threads affects
the measurement behavior. We see that with NoSQLMark, the latency values are exactly
stabilized at the point as we would expect with the configured maximum throughput and
hiccup duration. For YCSB, the number of requests during the hiccup is limited by the
number of threads and many latency values are omitted, which are finally to be corrected
by the intended measurement interval. Surprisingly, the intended measurements stabilize
very late for 4 threads, which is already much better with 16 threads. In Figure 4(a), we see
some percentiles and mean values for the latencies with different YCSB thread numbers.
Even if the number of threads increases further, the intended values are higher than those of
NoSQLMark. This is particularly true for the mean value and the 90-percentiles, which are
approaching up to 128 threads ever closer to the results of NoSQLMark but increase again
as of 256 threads. It is noticeable that the uncorrected mean value approaches the mean
value of NoSQLMark with increasing thread count as well. In addition, as the number of
threads increases, the corrected and uncorrected latency values of YCSB approach each
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Fig. 3: Time series plots of two runs with different numbers of YCSB threads.

other, which becomes even more apparent when viewing the entire percentile spectrum in
Figure 4(b). Incidentally, it also shows that the latencies of the lower percentiles are one
order of magnitude higher than those of NoSQLMark. Next, we set the number of threads
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Fig. 4: Simulation with different numbers of YCSB threads.

to 128 and vary the maximum throughput. Figure 5 shows again the overview and the entire
percentile spectrum for two selected experiments. For all three measurement approaches, it
can, of course, be observed that the latency values increase with higher system load. But
in principle, the measurement results differ considerably, even when the system is under
different load conditions. In Figure 5(b) one can see how all percentile curves shift to the
upper left corner of the spectrum, with higher system utilization. Although the difference in
the 90th and higher percentiles appears to be smaller, it is significant for smaller percentiles
(e.g. 200ms in the 80th percentile between NoSQLMark and YCSB Intended). In summary,
our simulation of a single hiccup shows that the fundamentally different system models

of load generation also result in a completely different percentile spectrum of the latency
values.
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Fig.5: Changing SickStore’s maximum throughput.

5.2 Elasticity Benchmark with Cassandra

Kuhlenkamp et. al. have recently repeated scalability and elasticity experiments of previous
research with YCSB [KKR14]. Since their results do not include the intended latency
values of YCSB, it is a good idea to repeat an experiment to see the difference between the
two system models of the load generators and the intended latencies. We performed the
benchmark with a simpler configuration by running the workload on a single Cassandra
node and adding another node to the cluster after 5 minutes. For each node, we used
instances of our private OpenStack cloud with 4 vCPUs and 16 GB of memory and one
instance with 6 vCPUs and 63 GB memory for the benchmark. Each instance runs on a
separate server (2,1 GHz Hexa-Core Intel Xeon E5-2620v2, 15MB Cache, 64 GB memory,
6 disk RAID-0 array and gigabit ethernet). The Cassandra node is initially loaded with
10 million rows, i.e., the node manages 10 GB. We perform the experiments with YCSB
workload A with a Zipfian request distribution and add the second node to the cluster after 5
minutes of runtime without a data streaming throughput limit. At a target throughput of 10
000 ops/sec, the second node starts serving after roughly 5 minutes, i.e. after 10 minutes run
time the latency stabilizes, which is why we run each experiment for a maximum duration
of 15 minutes.

Figure 6 shows the results at a glance, (a) for an increasing number of threads (adapted to
6 cores) with a target throughput of 10k ops/sec, and (b) for 48-thread increasing target
throughput. 15k ops/sec was the maximum throughput that could be achieved. We can again
observe that the measurement results of YCSB and YCSB Intended are becoming more
and more similar with increasing number of threads. The intended latency values for the
represented percentiles even fall below the values of NoSQLMark, starting at 96 threads.
However, 10k ops/sec is also only 66.6% of the maximum achievable load. On the other
hand, we see that the difference between the three approaches increases drastically as the
load increases. Nevertheless, the same observations as in our simulation with SickStore are
also reflected in these results.
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Fig. 6: Percentiles and mean value for the elasticity benchmark with Cassandra.

6 Concluding Remarks

In this paper, we described the coordinated omission problem and how it relates to the
system model of load generators. Just about all benchmark frameworks are based on a
closed system model and thus have the coordinated omission problem. We described how
YCSB tries to correct the latency values by introducing the intended measurement interval.
Afterwards we showed how an open system model was implemented in NoSQLMark and
how we extended the simulation tool SickStore to investigate the coordinated omission
problem. Finally, we conducted several experiments which showed that the different system
models lead to completely different measurement results, even the intended latency values
greatly differ from those of the open system model.

From our results, we conclude that developers of a benchmark framework should be more
concerned about the underlying system model, because the type of load generation can not
be corrected afterwards. For this reason, we plan to refine the load generator of NoSQLMark
in the future, by generating the load using different distributions such as Possion.
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