
Neues über Systeme

Translating MAGMA code to GAP

Alexander Hulpke
(Colorado State University)

hulpke@math.colostate.edu

Introduction
In a pattern that is common to mathematical software,
programs for computational group theory have gone
through several generations of design. Starting over 50
years ago with single-purpose software that might even
require recompilation to work on a different problem,
programs evolved to accept general input, became parts
of program packages in which one program could work
on the output of another, and finally became routines in
a larger system such as Cayley [6] or GAP 2 [9] that pro-
vided a general environment both in the form of a pro-
gramming language and in the provision of many basic
mathematical routines. Based on experienced shortcom-
ings in the initial designs, these systems evolved to their
current incarnations MAGMA [4] and (via the interme-
diate GAP 3 [11]) the system GAP 4 [8].

Each of these design steps often led to a fundamen-
tal re-implementation of most algorithms. Doing so
not only permitted these algorithms to work on more
general input (say, going from rationals to finite fields
and algebraic extensions), but also often incorporated
newer programming paradigms and thus resulted in bet-
ter code.

This iterative process seems to have reached a
plateau, as witnessed by the fact that the current sys-
tems, having seen first versions in the late ’90s, are now
reaching an age where a human would be considered
as “grown up.” This stabilization is a reflection of the
maturity of software design in general (and thus the di-
minishing return of changes), as well as of the enormous
cost that a re-implementation would impose. It therefore
seems likely that the fundamental engines of the current
systems will be with us for the foreseeable future.

Sophisticated algorithm packages

The availability of a broad set of functions for groups in
multiple representations made it possible to implement
more sophisticated construction and classification algo-
rithms. For example, consider the following results of

the last two decades:

• Construction of groups of small (or innocuous)
order following [2].

• Constructions of groups of order p7 based on [10].

• Lists of maximal subgroups of classical groups
based on [5].

• Composition tree for matrix groups as described
in [1].

These algorithms build on the classical routines of com-
putational group theory and share many characteristics
that distinguish them from more basic routines:

• The algorithms work inherently with groups in
different representations and thus cannot be im-
plemented stand-alone, but only in a system.

• They need to distinguish many cases, and when
re-implementing from scratch or translating ad-
hoc it would be easy to make accidental mistakes.
Indeed this has happened in the past.

• The time-critical parts of the calculation sit
mostly – far beyond even the traditional 80/20%
flip of code size versus time spent – in library rou-
tines called by the algorithm.

• The functionality provided would be useful to
have (say to check other results) in multiple sys-
tems, even if it was based on the same code.

• The time required for a re-implementation is pro-
hibitive, in particular considering that such work
currently would not be judged as an “original” re-
sult in a CV.

Because of these obstacles to a re-implementation,
C. LEEDHAM-GREEN encouraged [7] the community
to work on a translation of the matrix group composition
tree routines of [1] to GAP. This has been the motivation
for the work described here.

14

mailto:hulpke@math.colostate.edu

The purpose of this note is to introduce a translation
tool, the converter, that aids in the translation of code
from MAGMA to GAP. Besides its immediate use for
conversion of code, it might be of interest more gen-
erally to indicate possibilities and obstacles to such an
approach.

The program is available from github.com/
hulpke/mgmconvert. It consists of a single GAP
file and provides the command

MagmaConvert(infile[,outfile])

(with default output to the screen) that reads in a
MAGMA file and outputs the translation.

The Code Conversion
The purpose of the converter is as a tool to ease the
translation of code. It produces output in valid GAP
syntax that a human can modify with moderate effort
into actual runnable code, but it does not aim to pro-
duce output that will run immediately. Attempting to
do so would need to deal with different argument re-
quirements or return value conventions in library func-
tions (or the unavailability of some functions), differ-
ent paradigms for constructing objects (for example, a
permutation in MAGMA has to belong to a particu-
lar group, while in GAP it happily exists on its own),
and different paradigms for doing certain tasks (e.g. in
MAGMA one can test a matrix group for irreducibility,
in GAP this would be the property of its natural module).

In this setup the converter is fundamentally different
from “classical” compilers (such as FORTRAN to C). It
also is a reflection of the fact that it would be futile to
translate a highly optimized time-critical implementa-
tion (such as lattice reduction) one-to-one.

Instead, it still will be necessary for a competent (in
GAP as well as with understanding of the underlying
algorithm) programmer to go through and edit the pro-
duced code. In examples tried between 5 and 40% of
lines required such an edit. Crucially, however, these
edits do not involve the control structure or actual cal-
culations, but easily identified and isolated instances of
calling e.g. library or constructor functions. Compared
with re-implementing the routine from a theoretical de-
scription, this will be a magnitude faster. (The examples
below indicate the amount of work required.)

An underlying assumption is that the code to be con-
verted is itself not time-critical (but that all criticality is
in fact in the operations called by the code). It therefore
is plausible to translate control structures one-to-one
without considerations that were made to satisfy condi-
tions of internal data structures (e.g. the internal way a
matrix is stored implies the proper way to nest row/col-
umn loops), or of particular functions being available. If
this was the case a more substantial rewrite of the result-
ing code would become necessary.

The conversion process also only translates func-
tions to functions and will not try to install methods or
even declare operations – such actions require global

system knowledge and are left to the human program-
mer.

The converter itself is written in GAP, a choice as
as a high-level language (providing e.g. string and list
functions) the author is most familiar with. Clearly a
language such as Python would have been equally ap-
propriate, but neither would there have been a substan-
tial benefit in choosing an inherently third language for
this purpose.

Running the converter is a one-time task and there-
fore not time critical, nor is memory use an issue.

Basic Setup

While the syntax of GAP and MAGMA seems to be suf-
ficiently similar on first view to allow for translation by
simple string replacement, a look at more complicated
code quickly indicates that such a strategy will only go
so far. Instead, similar to what a compiler would do, the
converter reads in the MAGMA code, and translates it.

Following standard compilation techniques, in the
first step the MAGMA program is read in and fed to
a tokenizer that recognizes keywords and separates the
text of comments (which are translated into special com-
ment tokens).

The resulting token sequence then is read by a
parser and translated into a parse tree. This is the most
complicated part of the process as the MAGMA lan-
guage seems to allow the programmer a certain amount
of latitude. (Examples: declaring functions alter-
nately as myfct:=function(...) or function
myfct(...); An error if construct that dupli-
cates a normal if-not condition-then error; Using the
keyword rec also as an identifier name; A where con-
struct that assigns temporary variables within another
construction.) Indeed, the author has been unable to
find a description of the MAGMA language in BNF or
a similar format; this also prevented an approach using
standard compiler generators.

The current version of the parser can still be
stumped by very complicated constructs (such as a list
selection with two simultaneous variables). In such
cases some lines need to be treated separately by hand.
This however is only a minor issue in practice.

Every node in the parse tree is stored simply as a
GAP record with components indicating type, parame-
ters, and links to children nodes. While this is a gratu-
itous use of memory for the benefit of easy processing,
this is on modern computers not a concern for any plau-
sible input. (Similar design decisions of trading memory
for ease of coding were made e.g. when parsing expres-
sions by order of precedence.)

Finally a further routine takes this parse tree and
creates functionally equivalent GAP code from it. This
routine can use the whole tree (or even multiple trees
for files in a packages) to identify, for example, local
variables for declaration (MAGMA seems to declare
these variables implicitly, but GAP will by default treat
them as global), or identify package-local variables. The

15

github.com/hulpke/mgmconvert
github.com/hulpke/mgmconvert

MAGMA language constructs are translated to equiva-
lent (combinations of) GAP constructs, in some cases
with added comment warnings indicating that this is not
an exact equivalent. Calls to functions are translated
straightforwardly to a function call with the same argu-
ments, with only certain library function names being
replaced (such as Modexp to PowerMod). It remains
the human operator’s responsibility to either change ar-
guments and return values appropriately, or to provide
(see below) syntactic equivalents in GAP for particular
MAGMA functions.

We now describe a number of common issues and
their treatment in the following sections:

Lists-based data types

While GAP presents to the user a uniform syntax of list-
based objects that can represent homogeneous and in-
homogeneous lists, sets, ranges, as well as vectors and
matrices, MAGMA utilizes different constructs for dif-
ferent categories of objects. (Translating in the other
direction thus would be substantially harder as the com-
piler would need to deduce the appropriate list type.)
This is easily translated (namely all to the same type of
GAP-list), but it can be necessary to inform GAP, by
a separate function call, about particular properties or
storage formats such an object is supposed to possess
(such as being a set, or a finite field matrix being stored
in compact form). The general format of a list data type
also requires in GAP to make certain objects immutable
(for example lists within a larger list so that being sorted
can be stored) for efficiency reasons. In either of these
cases appropriate conversion commands (either to make
immutable or to replace an object with a copy that can
be changed) will need to be added by hand.

Object constructors and attributes

The biggest difference between systems occurs when
building new internal objects, or accessing attributes of
internal objects, as internal data types, access to such
information, and the parameters of constructors tend to
differ. In some frequent situations – for example the
construction of matrices from a description of entries or
by composing blocks – this merits the addition of util-
ity functions that provide a GAP constructor using the
MAGMA syntax. (Here again the assumption is used
that the code is not time-critical, as such a constructor
emulation will take time.)

Since MAGMA requires every object to lie in a par-
ticular domain, a frequent construct is a cast D!obj.
This is translated to obj*FORCEOne(D) – the FORCE
indicating that it is a cast that requires editing, while
a multiplication with an appropriate one would be the
GAP way of accomplishing such a cast.

A dual issue arises with substructures, whose cat-
egory (group, ring, vector space, . . .) MAGMA will
deduce from the parent structure. It also will allow
generation from any collection of structures and ele-
ments, while GAP distinguishes e.g. Ring, Group,

Subgroup and ClosureSubgroup. GAP also is
less flexible in combining, say, 3 subgroups and 5 ele-
ments as generating entities, but requires different func-
tions for different constructions. The <...> construct
therefore is translated into a generic SubStructure
with a comment TODO CLOSURE indicating that this
might need to be converted to a generation or a closure
operation.

Language-specific constructs

MAGMA has a number of language constructs that
have no direct equivalent in GAP and therefore are dif-
ficult to translate:

where allows to implicitly declare variables, as in:

[x,xˆ2] where x:=SquareRoot(y)
where y:=PrimitiveElement(GF(q));

The parser simply puts such implicit assignment af-
ter the command with a comment indicating that it
should be placed before.

select has a value depending on a condition:

a:= x eq 5 select 1 else 2;

This currently gets translated to a function call

a:=SELECT(x=5,1,2);

(an appropriate SELECT function would be easily
written). Such a construct requires the evaluation
of the if and the else branch in every case which
could potentially come at significant cost, however.
It therefore is best replaced by hand with a proper
if...then construct.

Infix operators: Infix operators in MAGMA (such as
cat, diff, or meet) are translated to appropriate
function calls in GAP. This can lead to parentheses
becoming obsolete.

Multi-argument returns: A MAGMA function may
return multiple objects, while GAP code always re-
turns only one object. This is translated into the
convention that a multi-object return happens in
form of a record with components val1 etc. (Re-
turned objects to be ignored would be assigned to
the _ variable, such assignments then simply can
be deleted.)

In some cases (such as IsSquare, which returns a
truth value and a square root) equivalent function-
ality in GAP is implemented by treating fail as
an exceptional return value. This needs to be trans-
lated by hand.

Implicit Assignments: The MAGMA exists con-
struct returns a truth value, thus is equivalent
to ForAny in GAP. But at the same time it

16

can also assign the existing value to a variable.
This is translated by making the boolean condi-
tion become an assignment to the variable: if
x:=ForAny(...), indicating the need for man-
ual intervention.

Call-by-reference: GAP holds any composite object
(an object that is neither a small integer, a finite
field element, or a boolean value) only in form of
a pointer to the actual object, i.e. universally uses
call-by-reference. In MAGMA instead, a func-
tion that is to change a list needs to be handed
a pointer to the list, in the form of the ‘∼’ op-
erator. This operator is translated (to be cautious
with translating paradigm changes) by prepending
the word TILDE, resulting in translated constructs
such as Append(TILDElist,a) that can be
quickly processed (e.g. in this example be changed
to Add(list,a)) by a text editor’s search-and-
replace facilities.

Function Declarations: A function in MAGMA may
be declared with typed input and output. This is not
required in GAP and the type part is ignored (ac-
tually the output type is moved into a comment).
Likewise, GAP does not require a declaration of a
record format, hence such a declaration is replaced
by a dummy string.

Similarly, forward declarations or particular func-
tion installations (such as intrinsic) are ig-
nored, respectively translated to simple identifier
assignments.

Package translation

When translating a package of files, often one file de-
fines a function that is used within another file, but
still is only local to the package. The command
Project(directory) assumes that a subfolder
magma contains source code that is to be translated.
It reads in all files that end in a suffix .m, uses the
information to identify which functions are provided
by the package for use within other package files, and
writes translated versions of output into a subfolder
translation. Global identifiers get a symbol @ ap-
pended to allow for use of GAP’s name space functional-
ity. The routine also provides a list of file-dependencies
that makes it easier to determine which (of many) files
would be required for a particular functionality.

A library of basic utility functions

In some cases (for example when creating objects or ac-
cessing their attributes) the data structures used by both
systems are so different that existing code would need to
be completely rewritten from scratch. A typical case is
MAGMA’s construction of matrices that allows, for ex-
ample, to provide a list of entry positions and values. If
such constructions are used frequently is makes sense to
provide GAP wrapper functions that essentially provide

an argument/data structure conversion. Included with
the MAGMA converter is a growing file util.g that
provides such routines, if function names differ this is
translated automatically by the converter.

Examples and Results
As with any utility program, the proof is in the pud-
ding: The author has so far used the converter to pro-
duce raw-translates for several contributed MAGMA
packages, containing in total about 80 source files and
50000 lines of code. It turned out that in about 1 in
1000 lines of source code constructs existed that were
not parseable (typical reasons were complicated con-
structions with iterated where; exists statements or
list constructors indexed over multiple variables simul-
taneously; or abuse of keywords such as rec as a vari-
able). All of these could be handled by minor edits of
the source code, or by an immediate hand translation.
While not (yet) universal, this shows that the parsing
process is good enough to be used in practice.

As for the GAP code produced, Example 1 shows
a straightforward case where only minor human rear-
rangement is needed, while Example 2 shows the case
where more substantial programmer interaction is nec-
essary, and displays both the auto-translated and hand-
edited results.

Further Developments

It is expected that practical use of the converter will in-
dicate further areas that merit improvements.

The step that would buy most impact in reducing the
amount of final hand-translation work would be to offer
more and better substitutes for MAGMA function calls,
for example allowing as well for different arguments or
by providing more utility functions. Doing so would
however increase the risk of accidentally overlooking
subtle differences in the declarations, respectively add
much wrapper code for the sake of avoiding minor re-
formatting of a handful of source code lines.

The author would be interested in any feedback on
using the converter and observed shortcomings.

This work was supported by the Simons’ Founda-
tion under Collaboration Grant 244502, whose support
is gratefully acknowledged.

References

[1] H. Bäärnhielm, D. Holt, C.R. Leedham-Green,
E.A. O’Brien. A practical model for computation
with matrix groups. J. Symbolic Comput., 68(part
1):27–60, 2015.

[2] H.U. Besche, B. Eick, E.A. O’Brien. A millennium
project: constructing small groups. Internat. J.
Algebra Comput., 12(5):623–644, 2002.

[3] W. Bosma, J. Cannon. Discovering Mathematics
with Magma. Springer, 2006.

17

[4] W. Bosma, J. Cannon, C. Playoust. The MAGMA
algebra system I: The user language. J. Symbolic
Comput., 24(3/4):235–265, 1997.

[5] J.N. Bray, D.F. Holt, C.M. Roney-Dougal. The
maximal subgroups of the low-dimensional finite
classical groups, volume 407 of London
Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2013.
With a foreword by Martin Liebeck.

[6] J.J. Cannon. An introduction to the group theory
language, Cayley. In Michael D. Atkinson, editor,
Computational group theory (Durham, 1982),
pages 145–183. Academic press, 1984.

[7] J. Carlson, B. Eick, A. Hulpke, E. O’Brien.
Algorithms for linear groups. final report of the
2014 workshop.

http://www.birs.ca/workshops/2014/
14w5031/report14w5031.pdf, 2014.

[8] The GAP Group,
http://www.gap-system.org. GAP –
Groups, Algorithms, and Programming, Version
4.7.4, 2014.

[9] A. Niemeyer, W. Nickel, M. Schönert, GAP -
Getting started and Reference Manual. RWTH
Aachen, 1988

[10] E.A. O’Brien, M.R. Vaughan-Lee. The groups
with order p7 for odd prime p. J. Algebra,
292(1):243–258, 2005.

[11] M. Schönert et al. GAP 3.4, patchlevel 4.
Lehrstuhl D für Mathematik,
Rheinisch-Westfälische Technische Hochschule,
Aachen, 1997.

MAGMA code:
intrinsic CSOPlus(d:: RngIntElt, q:: RngIntElt) -> GrpMat
{Conformal special orthogonal group of plus type}
local W, X, Y, Z, gens, hd;
require IsEven(d) : "Argument 1 must be even";
require IsPrimePower(q) : "Argument 2 is not a prime power";
if IsEven(q) then
if GCD(d,q-1) ne 1 then
return S where S := sub< SL(d,q) | SOPlus(d,q),
ScalarMatrix(d,wˆp) >

where w := PrimitiveElement(GF(q))
where p := (q-1) div GCD(d,q-1);
else return S where S := SOPlus(d,q);

end if;
end if;

Z := ScalarMatrix(GF(q),d,w) where w:=PrimitiveElement(GF(q));
hd := d div 2;
X := GOMinusSO(d,q,1);
Y := NormGOMinusGO(d,q,1);
//Normaliser in SL is generated by SO together with elements
//Xˆx Yˆy Zˆz with x(q-1)/2 + yd/2 + zd = 0 mod q-1
W := Matrix(Integers(),4,1,[(q-1) div 2, hd, d, q-1]);
N := Nullspace(W);
gens := [Xˆn[1] * Yˆn[2] * Zˆn[3] : n in Generators(N)];
return sub< SL(d,q) | SOPlus(d,q), gens >;

end intrinsic;

Translated GAP code, converter result:
CSOPlus:=function(d,q)
-> ,GrpMat Conformal special orthogonal group of plus type
local N,S,W,varX,Y,varZ,gens,hd,p,w;
if not IsEvenInt(d) then Error("Argument 1 must be even"); fi;
if not IsPrimePower(q) then Error("Argument 2 is not a prime power"); fi;
if IsEvenInt(q) then
if Gcd(d,q-1)<>1 then
return S;
#T WHERE -- MOVE BEFORE PREVIOUS LINE
S:=SubStructure(SL(d,q),SOPlus(d,q),#TODO CLOSURE
ScalarMatrix(d,wˆp));

#T WHERE -- MOVE BEFORE PREVIOUS LINE
w:=PrimitiveElement(GF(q));
#T WHERE -- MOVE BEFORE PREVIOUS LINE
p:=QuoInt((q-1),Gcd(d,q-1));

else
return S;
#T WHERE -- MOVE BEFORE PREVIOUS LINE
S:=SOPlus(d,q);

fi;
fi;
varZ:=ScalarMatrix(GF(q),d,w);
#T WHERE -- MOVE BEFORE PREVIOUS LINE
w:=PrimitiveElement(GF(q));
hd:=QuoInt(d,2);
varX:=GOMinusSO(d,q,1);
Y:=NormGOMinusGO(d,q,1);
Normaliser in SL is generated by SO together with elements
Xˆx Yˆy Zˆz with x(q-1)/2 + yd/2 + zd = 0 mod q-1
W:=MatrixByEntries(Integers(),4,1,[QuoInt((q-1),2),hd,d,q-1]);
N:=Nullspace(W);
gens:=List(Generators(N),n->varXˆn[1]*Yˆn[2]*varZˆn[3]);
return SubStructure(SL(d,q),SOPlus(d,q),#TODO CLOSURE
gens);

end;

Example 1: A MAGMA function from the Group/GrpMat/Classical package, file conformal.m (code
attributed to Don Taylor) and the result of the automatic translation. The only human work needed is to re-arrange the
(iterated) where constructs and to replace SubStructure by an appropriate ClosureGroup call (and to delete
the corresponding comment warnings). MatrixByEntries is a utility function that emulates the MAGMA syntax
for matrix construction in GAP. The identifier names X and Z have a special function in GAP and thus got replaced.
The translation from the infix div to the function QuoInt caused superfluous parentheses.

18

http://www.birs.ca/workshops/2014/14w5031/report14w5031.pdf
http://www.birs.ca/workshops/2014/14w5031/report14w5031.pdf
http://www.gap-system.org

MAGMA code:
EulerPhiInverse:=function(m)
mfact := Factorization(m);
if IsEven(m) then
twopows := {@ 2ˆi : i in [0..mfact[1][2]] @};

else
if m gt 1 then return []; end if;
twopows := {@ 1 @};

end if;
D := Divisors(mfact); P := [];
for d in D do
if d eq 1 then
continue ;

end if;
if IsPrime(d+1) then
Append(˜P, d+1);

end if;
end for;

S := [<SeqFact([]), m>];
for p in Reverse(P) do
for s in S do
if s[2] eq 1 then
continue;

end if;
k := 1;
d, mmod := Quotrem(s[2], p-1);
while mmod eq 0 do
if IsEven(d) or d eq 1 then
Append(˜S, <SeqFact([<p, k>])*s[1], d>);

end if;
k +:= 1;
d, mmod := Quotrem(d, p);

end while;
end for;

end for;

R := { };
for s in S do
j := Index(twopows, s[2]);
if j gt 0 then
Include(˜R, SeqFact([<2, j>] cat s[1]));
if j eq 1 then
Include(˜R, s[1]);

end if;
end if;

end for;
return Sort([Facint(nf) : nf in R]);

end function;

Example 2: A function to determine the inverse of the
Euler function, φ−1(m), for any m ≥ 1. This function is
given as an example on p. 16 of [3]. Since a more
substantial programmer interaction is needed in this
case, also the final resulting code after human
intervention is shown, with hand-edited changes in red.
Most of these changes – apart from the translation of the
“factor sequence” data type – are almost mechanical
and can be done in seconds.
The example demonstrates the translation of different list
types (though the translation of the “indexed set” into a
plain list could cause a performance penalty with huge
numbers); the case of multi-argument return values
(which in this particular case is in form of a list); and the
treatment of the ‘∼’ operation. As GAP has no “factor
sequence” data type, this was hand-translated to a list of
base/exponent pairs. The function Index has different
meanings in other contexts and is therefore not
auto-translated to Position. (Also the “failure” value
returned is not 0, but fail.)

Translated GAP code, converter result:
EulerPhiInverse:=function(m)
local D,P,R,S,d,j,k,mfact,mmod,p,s,twopows;
mfact:=Factorization(m);
if IsEvenInt(m) then
twopows:=List(# {@-list:
[0..mfact[1][2]],i->2ˆi);

else
if m > 1 then
return [];

fi;
twopows:=# {@-list:
[1];

fi;
D:=DivisorsInt(mfact);
P:=[];
for d in D do
if d=1 then continue; fi;
if IsPrime(d+1) then
Append(TILDEP,d+1);

fi;
od;
S:=[[SeqFact([]),m]];
for p in Reversed(P) do
for s in S do
if s[2]=1 then continue; fi;
k:=1;
=v= MULTIASSIGN =v=
mmod:=QuotientRemainder(s[2],p-1);
d:=mmod.val1;
mmod:=mmod.val2;
=ˆ= MULTIASSIGN =ˆ=
while mmod=0 do
if IsEvenInt(d) or d=1 then
Append(TILDES,[SeqFact([[p,k]])*s[1],d]);

fi;
k:=k+1;
=v= MULTIASSIGN =v=
mmod:=QuotientRemainder(d,p);
d:=mmod.val1;
mmod:=mmod.val2;
=ˆ= MULTIASSIGN =ˆ=

od;
od;

od;
R:=Set([]);
for s in S do
j:=Index(twopows,s[2]);
if j > 0 then
UniteSet(TILDER,SeqFact(Concatenation([[2,j]],s[1])));
if j=1 then
UniteSet(TILDER,s[1]);

fi;
fi;

od;
return Sort(List(R,nf->Facint(nf)));

end;

Resulting working GAP code:
EulerPhiInverse:=function(m)
local D,P,R,S,d,j,k,mfact,mmod,p,s,twopows;
mfact:=Collected(Factors(m));
if IsEvenInt(m) then
twopows:=List([0..mfact[1][2]],i->2ˆi);

else
if m > 1 then return []; fi;
twopows:=[1];

fi;
D:=DivisorsInt(m);
P:=[];
for d in D do
if d=1 then continue; fi;
if IsPrime(d+1) then

Add(P,d+1);
fi;

od;
S:=[[[],m]];
for p in Reversed(P) do
for s in S do
if s[2]=1 then continue; fi;
k:=1;
d:=QuotientRemainder(s[2],p-1);
mmod:=d[2]; d:=d[1];
while mmod=0 do

if IsEvenInt(d) or d=1 then
Add(S,[Concatenation([[p,k]],s[1]),d]);

fi;
k:=k+1;
d:=QuotientRemainder(d,p);
mmod:=d[2]; d:=d[1];

od;
od;

od;
R:=Set([]);
for s in S do
j:=Position(twopows,s[2]);
if j <> fail then
UniteSet(R,[Concatenation([[2,j]],s[1])]);
if j=1 then

UniteSet(R,[s[1]]);
fi;

fi;
od;
R:=List(R,nf->Product(List(nf,x->x[1]ˆx[2])));
Sort(R);
return R;

end;

19

