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Abstract: Model-driven software development using language workbenches like JetBrains MPS
provide many advantages compared to traditional software development. Base languages can be
incrementally extended to increase the abstractness up to domain-speciĄc languages (DSLs). Changes
can be performed more efficiently in problem-oriented language extensions or DSLs, than in a
base language. In addition, formal analysis can be performed on abstract models. To beneĄt from
the model-driven approach, non-model-based legacy code has to be reusable and transformable
to language extensions and DSLs. For the development of embedded systems, mbeddr provides a
C99-like base language and extensions for MPS, such as mathematical symbols and state machines.
This paper presents a case study that shows how many legacy C code fragments of three automotive
series projects could be replaced by mbeddr language extensions. Furthermore, a proof of concept
shows the feasibility of fraction and foreach loop refactorings. This work is a Ąrst approach for future
language extension refactorings.
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1 Introduction

While the software architecture of automotive embedded systems is commonly modeled
using UML, different implementation techniques exist. Code generation from UML models
and/or graphical modeling tools, such as Matlab/Simulink, hides implementation details
from the developer, and thus raises the level of abstraction. To gain transparency and control
[Gr05] over registers, memory, runtime and synchronization, especially time-critical software
and basic software modules are typically implemented using a low-level programming
language, such as C. However, the implementation of architectural and domain-speciĄc
concepts is time-consuming and error-prone in such languages. Therefore, during the past
few years there have been efforts to bridge the gap between abstract modeling and low-level
programming using extensible languages that provide multiple levels of abstraction within
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the same program. An important step in this direction has been taken with the Jetbrains
Meta Programming System (MPS)4 and mbeddr5, which will be described in the following.

Traditional integrated development environments (IDEs) provide an editor to modify the
source code of a program as plain text as shown in Fig. 1a [Ca16]. To support advanced
IDE features, such as refactoring and navigation, the source code is divided into tokens that
are further parsed to build up abstract syntax trees (ASTs) in a similar way as compilers
work. A build system invokes a compiler to build the executable output.

In contrast to traditional IDEs, JetBrains MPS enables model-driven software development
(MDSD). Instead of modifying text Ąles, the user directly edits the ASTs of the program
using a projectional editor (see Fig. 1b). An editor deĄnition for each AST node deĄnes,
how the node is presented using a concrete syntax. Different editor deĄnitions for the same
AST nodes can provide textual or graphical views and reveal different information of the
same model without the need of a tokenizer or parser.

MPS is a language workbench [Vo14] that provides a general purpose base language.
This language can be incrementally extended by user-deĄned language extensions that
abstract common and domain-speciĄc code fragments. Different abstraction levels right
up to domain-speciĄc languages (DSLs) can be realized within the same program. During
the build process, a generator transforms the DSLs and language extensions into the base
language that is further transformed to text, such as Java code or XML. A build system can
invoke a compiler to build executable code.

(a) Traditional IDE

(b) MPS IDE

Fig. 1: WorkĆows of traditional IDEs and the MPS IDE.

The open source project mbeddr [Vo12] (primarily developed by itemis and fortiss) is based
on MPS and provides a base language, which is similar to C99, for the development of
embedded systems. The language extensions supplied with mbeddr, such as mathematical
symbols and physical units, can be further extended by user-deĄned languages and DSLs

4 https://www.jetbrains.com/mps/
5 http://mbeddr.com/
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to close the gap between high-level modeling and low-level programming languages. For
instance, the language extension for state machines of mbeddr uses the full power of
projectional editing. It now serves as an introductory example:

State machines can be modeled graphically, textually or as a table. The graphical projection
of a state machine is shown in Fig. 2a. On reception of the evtWrite event, a transition to the
Writing state is performed. On entry of that state, a function is called that writes the passed
byte 12u via a universal asynchronous receiver/transmitter (UART). The state machine rests
in the Writing state until the event evtTxISR is received. Fig. 2b shows the textual projection
of this state machine.

(a) Graphical (b) Textual

swi tch ( s t a t e ) {

case I d l e :

i f ( event == ev tWr i te ) {

UART_Write (12u ) ;

s t a t e = Wr i t i ng ;

}

break ;

case Wr i t i ng :

i f ( event == evtTxISR ) {

s ta t e = I d l e ;

}

break ;

}

(c) Legacy C Code

Fig. 2: The graphical and textual projections of an mbeddr state machine focus on the
problem to be solved and hide implementation details.

Introducing mbeddr into the embedded software domain offers several advantages compared
to traditional software development processes [Vo13b]:

• Projectional editors allow syntax that cannot easily be parsed by a traditional text-based
IDE, such as mathematical symbols, tables and diagrams.

• The language extensions supplied with mbeddr can be further extended. The modular
approach allows the combination of languages from different abstraction levels within
the same program and even translation unit. For example, the C-like base language
can be used for the deĄnition of state machine actions (see Fig. 2a).

• Changing the structure of a software is simpler using higher-level abstractions than
changing low-level C code, because implementation details are hidden.

• Automated domain-speciĄc C veriĄcation [MVR14] closes the gap between C
veriĄcation tools, such as CBMC [CKL04], and domain-speciĄc language extensions,
such as state machines and decision tables.
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• Specifying requirements and unit tests using mbeddr allows the creation of links to
achieve traceability between requirements, code fragments and veriĄcations.

For an automotive company like Behr-Hella Thermocontrol GmbH (BHTC), it is common
practice to reuse legacy C code in new projects, because redevelopment would be too
expensive and time-consuming. The company itemis6 developed a commercial importer
based on TypeChef [Kä11] that allows the import of legacy C code into mbeddr. However,
the imported code makes primarily use of the C99-like base language. To beneĄt from the
advantages of the model-driven approach, legacy C code fragments have to be replaced
by corresponding language extensions after the import. For example, the legacy C code
shown in Fig. 2c should be replaced by an mbeddr state machine (see Fig. 2a). This would
improve maintainability because the states, transitions and actions for different events could
be modiĄed without thinking about how state transitions and event handling are realized. In
addition, automated veriĄcations could be applied to the state machine.

To avoid time-consuming and error-prone manual replacements of base language code with
language extensions, refactorings have to be developed. The complexity of such refactorings
depends on the gap between the base language and the corresponding language extension in
terms of abstraction levels. Regarding state machines, several implementation techniques
exist, such as using switch (see Fig. 2c) statements or complex frameworks [Sa09]. The
refactoring of language extensions with a small abstraction gap may be fully automated,
while approaches with user interaction or machine learning may be required for extensions
with larger abstraction gaps, such as state machines.

Language extension refactorings could also help developers to learn how and when to use
language extensions. For example, when a developer writes a code fragment and the IDE
would propose to replace that fragment with more abstract code using a language extension,
the developer would learn when to use that language extension without the need of reading
the language manual.

As languages evolve over time, it is likely that new language extensions will be added to
mbeddr in the future. In addition, new language extensions can be developed by the user.
Semi-automatic language extension refactorings could help to modify existing mbeddr code
to use the new language extensions.

This paper presents a case study that shows the amount of code fragments in automotive
legacy C code that could be replaced by language extensions supplied with mbeddr to assess
the importance of language extension refactorings. We also provide a proof of concept to
show that, at least in many cases, fully automated refactorings are possible.

The case study and the examined language extensions are introduced in Sect. 2. The proof
of concept is shown in Sect. 3. After the presentation of related work in Sect. 4, we conclude
and show future work in Sect. 5.

6 https://www.itemis.com/
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2 Case Study

The goal of this case study is to investigate the actual number of code fragments where our
automotive series projects could beneĄt from the language extensions provided by mbeddr.
Only handwritten C code in .c and .h Ąles is part of this study. Generated code, such as
from Matlab/Simulink models, is out of the scope of this case study, because refactoring
such code should be done in Matlab/Simulink instead of the generated code. We introduce
the analyzed projects in Sect. 2.1 before we present the applied method in Sect. 2.2. The
examined language extensions are introduced in Sect. 2.3 and the results are discussed in
Sect. 2.4.

2.1 Context

Our case study comprises three automotive projects with different characteristics as shown
in Tab. 1. Project A contains the software for the main controller of a human-machine
interface (HMI) control panel featuring a touch screen, capacitive buttons and acoustic
feedback. Project B contains the software for the main controller of a center infotainment
display (CID) featuring a touch screen, force sense and acoustic feedback. Project C contains
the software for a CID slave controller that processes a tactile feedback.

Tab. 1: Automotive series projects analyzed in this case study.

Project Status Microcontroller Standard Files Analyzed Files Analyzed SLOC

A Series 32 bit, 80 MHz AUTOSAR 1,189 707 (289 .c and 418 .h) 238,651

B Pre-Series 32 bit, 80 MHz AUTOSAR 1,194 734 (283 .c and 451. h) 222,203

C Development 16 bit, 32 MHz non-AUTOSAR 287 253 (101 .c and 152 .h) 15,390

Projects A and B are developed according to AUTOSAR [AU14]. The development phase of
project A is Ąnished, whereas project B is in the pre-series development phase. Both target a
32 bit microcontroller running at 80 MHz. For project A, we analyzed 707 handwritten .c
and .h Ąles containing 238,651 source lines of code7 (SLOC). For project B, we analyzed
734 handwritten .c and .h Ąles containing 222,203 SLOC. The software for project C is
not developed according to AUTOSAR. The target is a 16 bit microcontroller running at
32 MHz. This project is under rapid development and currently comprises 253 handwritten
.c and .h Ąles containing 15,390 SLOC that we analyzed.

2.2 Method

To Ąnd code fragments that could be replaced by mbeddr language extensions in the source
code of the analyzed projects, a semi-automatic approach has been chosen. In the Ąrst step,
we had to select all handwritten .c and .h Ąles from the projects to be analyzed. We did

7 According to Count Lines of Code (CLOC), http://cloc.sourceforge.net/
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this by scanning the Ąles for speciĄc keywords in the comment header of each Ąle that are
typical for handwritten and generated Ąles. Only a few Ąles had to be classiĄed manually.
The second step was to deĄne code patterns for each mbeddr language extension. A code
fragment is considered to be replaceable with a language extension, if the corresponding
pattern matches. We used Coccinelle [Pa08] to match the patterns against the examined
legacy C code. We could not specify exact patterns for all language extensions because of
their complexity. That is why we had to verify and post-Ąlter some of the results manually
to avoid false positives.

List. 1 shows an excerpt of a Coccinelle pattern that Ąnds all for loops in the analyzed code
that fulĄll the following requirements: In the initialization, an identiĄer has to be initialized
with an arbitrary expression. This identiĄer has to be less than an arbitrary expression to
enter the loop body. The same identiĄer has to be incremented on each iteration. The loop
body may contain arbitrary statements. As i is a meta variable of Coccinelle the identiĄer
can have an arbitrary name.

@ @ i d e n t i f i e r i ; @ @

∗ f o r ( i = . . . ; i < . . . ; i ++)

{

. . .

}

List. 1: Excerpt of the Coccinelle pattern that we used to Ąnd code fragments that could be
replaced by for range loops.

2.3 Language Extensions

An overview of the examined language extensions is presented in Tab. 2. We give only a
small introduction while Voelter et al. [Vo13a] present more details. The second column
shows the language extensions as they can be edited in MPS. The third column shows
examples of legacy C code in MPS that could be replaced by the corresponding extension.
Except for error handling, which is explained later, the examples shown in the legacy C
code column are conceptually similar to the code generated by MPS. We have subdivided
the extensions into three categories:

Syntactic Sugar: The projectional editor allows mbeddr to provide language extensions
for graphical mathematical symbols. We grouped them to fractions, mathematical functions
as well as products (of sequences) and sums. Fractions can be used as an alternative syntax
for divisions. To Ąnd code fragments replaceable by fractions, we used a Coccinelle pattern
that looks for expressions that are divided by another expression.

Symbols for mathematical functions encapsulate calls to functions such as abs, log, pow

and sqrt for calculating absolute values, logarithms, powers and square roots. To Ąnd code
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Tab. 2: Screenshots of mbeddr language extensions and corresponding legacy C code in the
MPS IDE.

Lang.
Ext.

mbeddr Extension Code Legacy C Code

Fraction

Math.

Function

For

Range

Foreach

Product

and Sum

Phys.

Unit

Error

Handling

State

Machine
See Fig. 2a See Fig. 2c
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fragments that could be replaced by such symbols, we looked for calls to functions with
identiĄers that contain abs, log, pow and sqrt. This also includes variants such as labs and
user-deĄned implementations with a similar naming.

Enriched Syntax: To simplify for loops that are incremented or decremented by 1 on each
iteration, mbeddr provides for range loops as shown in Tab. 2. Only the counter variable
name, the minimum and the maximum (exclusive) have to be speciĄed. The type of the
counter variable, the compare operator in the condition as well as the increment of the
counter variable are omitted. The ++ can be replaced by −− to iterate backwards over the
speciĄed range. To Ąnd code fragments replaceable by for range loops, we looked for for

loops that assign an arbitrary expression to a counter variable. This variable has to be used
in the condition with an appropriate greater-than or less-than comparison. In addition, it has
to be incremented or decremented in the iteration by 1. Since we analyzed projects using
C90 that requires the deĄnition of the counter variable at the start of a block (e.g., a function
body) instead of in the for loop itself, we further had to analyze the usage of the variable
before and after the for loop.

The foreach language extension of mbeddr can be used to iterate through arrays. The it

expression can be used to read or write the current array element. Tab. 2 shows an example
of a foreach loop that iterates over the frame array with an array length of FRAME_SIZE. In the
body, the current element it of the array is added to the checksum variable. To Ąnd code
fragments that could be replaced by foreach loops, we looked for for loops where a counter
variable is set to 0, compared within an appropriate condition and incremented by 1. In
addition, the counter variable has to be used in the body as an index to an array. It can be
used multiple times, but only for the same array. Furthermore, calculations such as adding
an offset to the counter variable must not be performed. As for for range loops, we had to
analyze the context of the for loop, because the analyzed projects use C90.

Products and sums are expanded to for loops during the code generation. In the analyzed
code, we looked for for and while loops that add or multiply an expression to an identiĄer
using statements, such as x = x + ...; or the short form x += ...; .

Enriched Semantic: The physical units extension allows the annotation of types and
literals with unit information. The force F in newton (N) is deĄned as F = m · a. Annotating
the type of the variable f with the unit N requires assigned expressions to evaluate to the
corresponding unit. Trying to assign an expression that evaluates to another unit, e.g., kg,
leads to an error message in the IDE as shown in Tab. 2. Units are evaluated in the model and
do not add any overhead to the generated C code. As shown in the legacy C code column,
developers sometimes append a suffix containing the unit to the identiĄers. To Ąnd code
fragments that could be annotated with physical units, we looked for macro and variable
deĄnitions containing identiĄers that contain us, ms, clk, Hz, freq, etc. and further analyzed
the context.
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The common way in AUTOSAR to inform the caller of a function about an error is to return
a value of the type Std_ReturnType [AU15] as shown in the simpliĄed example in the legacy C
code column of Tab. 2. The standard values are E_OK for success and E_NOT_OK for errors.
These can be extended by user-deĄned values. The caller has to evaluate the return value
and perform an error handling. As a consequence, call-by-reference has to be used to get
values from functions like getter functions.

As shown in Tab. 2, mbeddr provides sophisticated error handling in the style of Java or
C++ exceptions. The example shows a getter function that is annotated with the errors that
are thrown in the function body using the error statement. The getter function is called in a try

block. The execution of the statements in the try block is aborted as soon as a function throws
an error, which is catched in the corresponding when block. During the code generation,
this error handling is expanded to goto statements and an error function argument (call by
reference). Therefore, the overhead is comparable to the AUTOSAR approach. To identify
code fragments replaceable by mbeddr error handling, we looked for functions that return a
value of type Std_ReturnType.

State machines are also examined but not shown in the table, because they have already
been introduced in Sect. 1. To Ąnd state machines in the analyzed C code, we focused
on switch and if statements. We further examined these constructs manually with typical
implementations of state machines [Sa09] in mind, such as using a variable that holds the
current state (see Fig. 2c).

The presented language extensions have been ordered by their level of abstraction. Syntactic

sugar language extensions are simple alternative syntactic representations compared to
the respective legacy C code. They do not provide notable abstractions but still improve
readability. Enriched syntax language extensions provide in-place substitutions to simplify
compound expressions or statements. They provide simple abstractions that hide implemen-
tation details and possibly provide declarative Ćavor. Enriched semantic language extensions
extend the type system, provide meta information, abstract data or control Ćow or have a
cross-cutting character. Members of all categories can make use of graphical representations
to further improve readability and maintainability.

2.4 Results

The results of this case study are presented in Tab. 3. Each row contains the number of
code fragments that could be replaced by the different mbeddr language extensions of
one analyzed project. Except for the mathematical functions, products and sums, we got
two-digit and three-digit numbers of possible replacements. The larger projects A and B

generally contain more replaceable code fragments than the smaller project C. The details
for the different language extensions are discussed in the following.
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Tab. 3: Number of possible replacements of C code fragments with mbeddr language
extensions in three automotive series projects.

Project
Frac-
tion

Math.
Func.

For
Range

For-
each

Pro-
duct

Sum
Physical

Unit
Error

Handling
State

Machine

A 150 0 483 112 6 2 54 323 58

B 243 0 462 86 6 2 45 191 75

C 16 0 40 24 0 6 69 87 21

The MISRA C:20128 rule 12.1 advises to use parentheses to make the operator precedences
of C expressions explicit [MI13]. In practice, this leads to extensive use of functionally
unnecessary parentheses to reduce possible human mistakes with the precedence rules of
C. An example of the analyzed code is shown in Fig. 3. The Ąrst line shows a simpliĄed
version of a statement of the analyzed code with parentheses around the divisions to meet
the MISRA C:2012 rule 12.1. The second line shows the same statement using fractions.
This statement is much more readable and, in our opinion, the parentheses around the
fractions can be omitted, because the precedence is obvious due to the graphical notation.
In the generated C code, parentheses are inserted to meet the MISRA rule.

Fig. 3: A statement without and with using fractions in MPS.

The small amount of code fragments replaceable by symbols for mathematical functions,
products and sums can be explained by the systematic use of Matlab/Simulink for signal
processing in the analyzed projects. The code generated by Matlab/Simulink is not part of
the analysis. The found code fragments replaceable by sums are used to calculate simple
checksums for inter-processor-communications. The calculations of products are used to
convert raw bus signals to SI values and vice versa.

For projects A and B, the for range loop is the most usable language extension. The
abstraction gap of for range loops is pretty small and the use of a for loop with a loop variable
that is incremented or decremented by 1 is very common.

Some of the found for loops that could be replaced by foreach loops could also be replaced by
sums. An example is the primitive checksum calculation over an array (e.g., bytes received
via a serial communication) as shown in Tab. 2. As we further analyzed non-matching
for loops, we found loops that iterate over multiple arrays at the same time as shown in a
simpliĄed version in Fig. 4a. These arrays store different information for the same entity. In
this example, one array stores the information whether each UART peripheral is enabled
and another array stores the current state of each UART peripheral. The counter variable of

8 Guideline for the use of the C language in critical systems published by the Motor Industry Software Reliability
Association (MISRA).
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the for loop is used as an index for both arrays. In addition, the counter variable is passed to
the SendByte function that uses the argument to access other arrays that store information
about the UART peripherals.

(a) Without OO (b) With OO

Fig. 4: A for loop without and a foreach loop with object-oriented Ćavor in MPS.

The attributes of all UARTs could be restructured from multiple arrays of primitive data
types to one array of structures. Each structure could hold all attributes of a UART in an
object-oriented way. The result would be a for loop that iterates over one array. This loop
could be replaced by a foreach loop as shown in Fig. 4b. The attributes of the iterated UARTs
could then be accessed using the it expression and a reference to it could be passed to a
function that could access the attributes of the UART in a convenient way.

We did not include this kind of for loops in the results, because more sophisticated analyses
would be necessary. Further replacements by foreach loops would be possible looking for
while and do ... while loops with appropriate data Ćow analysis to match the preconditions for
the counter variable incrementation.

More code fragments could be replaced by physical units, if signal processing would not
be done in Matlab/Simulink. However, physical units do not only make sense in signal
processing but also in basic software, e.g., for calculations of times and frequencies. It is
notable that more physical units could be used in the small non-AUTOSAR project C than
in the larger AUTOSAR projects A and B. This can be explained by the workĆow of code
generators that directly calculate register values to conĄgure the hardware in the AUTOSAR
projects. To allow a convenient hardware conĄguration in project C despite the lack of code
generators, calculations of register values are done in C code to allow the speciĄcation of
the hardware conĄguration parameters in physical units, such as Hz and ms.

A variety of approaches exist to implement state machines [Sa09]. In the analyzed code,
we found primarily simple approaches, which use switch or if statements to determine the
current state using a state variable. Depending on the state, corresponding actions are
implemented and the state variable is reassigned to switch to the next state. We also found
more sophisticated approaches using tables as well as code fragments that were not designed
with a state machine in mind that could be restructured to get a well-designed state machine.

Although we used complex patterns to compensate implementation variations, such as using
switch or if for state machines, the results shown in Tab. 3 are pessimistic. More relaxed
patterns in combination with program and data Ćow analysis would reveal more refactoring
possibilities. For example, we assumed that the power is calculated using the pow function.
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However, programmers also use multiplications, such as x = y ∗ y, that may even be split into
multiple statements.

Tab. 4 shows the minimum and maximum SLOC of C code that we found in the examined
projects that could be replaced with language extensions. To replace divisions by fractions
and for loops by for range loops, only one line of code has to be modiĄed. Especially for
fractions, multiple divisions may occur in one line. The replacement of for loops with foreach

loops requires the modiĄcation of the loop header and each array access using the loop
variable in the body. The code fragments of the examined projects that could be replaced by
products or sums are similar to the legacy C code outlined in Tab. 2.

The number of affected SLOC for replacements with physical units, error handling and state
machines have been determined statistically using three exemplary translation units. For
physical units, we considered the deĄnition (e.g., of a variable) and the usages. For the
context of each usage, we recursively analyzed which identiĄers and literals are involved
and how appropriate units can be applied to them. The SLOC for error handling is the
sum of lines to be modiĄed in the function that emits an error and the error handling of
all calling functions. For state machines, we counted the lines of code required for the
deĄnition and implementation of the states and transitions.

Tab. 4: Minimum and maximum SLOC of C code replaceable with mbeddr language
extensions in three automotive series projects.

Project
Frac-
tion

Math.
Func.

For
Range

For-
each

Pro-
duct

Sum
Physical

Unit
Error

Handling
State

Machine

A 1 0 1 2 . . . 10 4 4 1 . . . 16 2 . . . 9 36 . . . 215

B 1 0 1 2 . . . 10 4 4 1 . . . 22 2 . . . 30 18 . . . 187

C 1 0 1 2 . . . 4 0 4 1 . . . 28 2 . . . 9 67 . . . 161

In general, larger abstraction gaps between language extensions and the base language
require more complex patterns to Ąnd possible replacements. For example, the most complex
Coccinelle pattern for the examined syntactic sugar language extensions took seven lines of
code and no manual post-Ąltering was needed. In contrast to that, the enriched semantic

language extensions required up to 234 lines of Coccinelle pattern and manual post-Ąltering.

3 Proof of Concept

As a proof of concept, we implemented refactorings that transform divisions to fractions
and for loops to foreach loops in MPS. We used a simple approach that relies on the MPS
base language with predeĄned extensions for model queries and transformations. The
applicability of a refactoring is determined recursively using a set of preconditions. If
all preconditions match, a model transformation is performed to replace divisions with
fractions or for with foreach loops keeping the required properties and child elements.
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Fig. 5 shows a statement for the calculation of the USART baudrate register of an Atmel
ATmega8 microcontroller. Performing the refactoring for fractions on this statement replaces
the division with a fraction bar. In addition, the parentheses around the fraction and around
the denominator are removed because they are not required anymore.

Fig. 5: Screenshots of the ATmega8 USART baudrate register calculation before and after
the fractions refactoring in MPS.

An example for the foreach refactoring is shown in Fig. 6. The for loop is replaced with a foreach

loop. The upper bound UARTS of the condition is reused in the new loop and all occurrences
of an array indexed by the loop variable are replaced by the it expression. The number
of preconditions to be checked for this refactoring is very large compared to the fractions
refactoring, because many variations can occur. For example, one precondition ensures that
the loop index is incremented by 1 on each iteration. To check this single precondition,
multiple variations of the incrementation, such as i++, ++i and i = i + 1, have to be considered.
Using data and control Ćow analysis could additionally enable the replacement of while and
do..while loops.

Fig. 6: Screenshots of a for loop before and after the refactoring to a foreach loop in MPS.

4 Related Work

Several case studies exist regarding the use of model-driven software development with
mbeddr for embedded software. One case study deals with programming Lego Mindstorms
robots based on an OSEK operating system [VKa] using appropriate language extensions
with relevance beyond the Lego use case. Another case study approaches the Ąrst real-world
project using mbeddr [VKb]. Further case studies show how language extensions affect the
complexity, testability and runtime overhead of embedded software using mbeddr. They also
show the effort for engineering a new project [Vo15, Vo17]. Vinogradov et al. [VOR15]
describe the experience of using mbeddr in the railway domain including the integration of
the model-driven approach into the traditional product lifecycle. All of these case studies
conclude that language extensions and DSLs simplify reviews and the implementation of
changes. Our case study is the Ąrst approach to evaluate the extent of applicability of mbeddr
language extensions in existing automotive series projects.

Refactorings have been a research topic for several years [MT04] and most modern IDEs
support basic refactorings. These traditional refactorings primarily focus on the structure of
a software and improve it by restructuring, e.g., by moving statements into a new function
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[FB13]. In contrast, language extension refactorings focus on the behavior and purpose of
code fragments (considering different implementation techniques) and the replacement by
more abstract language extensions.

Like the presented approach, reverse engineering aims at the automated comprehension
of software to enhance development efficiency and maintainability. While classic reverse
engineering creates representations at a higher level of abstraction without modifying the
software [CC90], language extension refactoring transforms software fragments to a higher
level of abstraction retaining the external behavior. Reverse engineering and design recovery
techniques are a promising approach for the realization of language extension refactorings.
However, language extension refactoring should not only recover design but also support
the developer in improving the design and implementation which may require additional
semantic analysis and input of domain-speciĄc knowledge by the developer.

5 Conclusion and Future Work

Model-driven software development using mbeddr closes the gap between the programming
language C, which is close to the hardware, and modeling languages, such as UML. Several
case studies show the advantages of using mbeddr for the development of embedded software.
Siemens PLM Software made use of these advantages and released the commercial LMS
Imagine.Lab Embedded Software Designer (ESD) [Si] that is based on mbeddr.

The case study presented in this paper reĆects the usefulness of the language extensions
supplied with mbeddr in the automotive domain. It evaluates the number of possible
replacements of legacy C code fragments by mbeddr language extensions in three automotive
series projects. The extensions for products, sums and mathematical functions could rarely
or not at all be applied. All other examined language extensions (e.g., fractions, for range
loops and error handling) could be applied with a moderate to high degree. We could not
specify sufficient preconditions to cover all the language extensions shipped with mbeddr,
because of the high complexity of some of the language extensions, namely decision tables,
interfaces and components. The missing extensions could be part of future case studies.

Since a refactoring must not alter the external behavior of a program while improving the
internal structure [FB13], two major challenges have to be addressed for future language
extension refactorings. The Ąrst challenge is to determine the applicability of a refactoring on
a speciĄc code fragment to ensure that the refactoring does not change the external behavior.
The second challenge is the model-to-model transformation that replaces code fragments
with more abstract language extensions. As a proof of concept, we implemented refactorings
that transform divisions to fractions and for loops to foreach loops. Our implementation uses
a simple approach that is sufficient for small abstraction gaps between the base language
and the language extensions. However, further research is needed for refactorings of more
abstract language extensions, such as state machines.
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