
 199

New Software Technology in Space: BOSS – a Dependable
Open Source Embedded Operating System

Sergio Montenegro
FhG FIRST

Kekulestr 7, 12489 Berlin
www.first.fhg.de/~sergio

sergio@first.fhg.de

Abstract: BOSS targets a principle which the world forgot a long time ago:
Simplicity. BOSS is an embedded real time operating system for safety critical
applications. Our experience shows that the first enemy of safety is the
complexity. If you need safety, use only what you can understand. This was the
philosophy creating BOSS. First: build every thing as simple as possible. Second:
use modern framework technology to reduce the complexity of the applications.
Third: use component technology to be able to handle the remaining complexity.
The result is very promising. BOSS is already working for years without
interruptions, for example in space (Satellite BIRD [BIRD0]), in medical devices,
protocol tester and other Applications [ROD03]. Furthermore BOSS is open-
source, so you can look inside, adapt it and move to other platforms/hardware.

1 Introduction

BOSS was designed as a framework to be a dependable real time embedded operating
system which can be easily certified and verified. Due to the fact, that complexity is the
first enemy of safety [MONT99], BOSS is intended to be as simple as possible, so, it is
easier to understand, to review, to verify, to use etc. The kernel can be printed in a few
pages.

Some parts of BOSS are being verified mathematically and formally using model
checker and theorem prover. The basic components -- list management and
communication buffers -- were verified using the VML and SPIN model checkers
[SPIN], [VERIFUN]. Now we are working in the verification of more complex
components using the theorem prover ISABELLE [ISABELLE]. With the current state
of the art on formal verification, complex systems cannot be verified formally, but BOSS
can be. BOSS is based on very few and simple basic functions, which can be proofed
very faithfully, and these functions are used for almost every operation of the kernel.

 200

2 An example: Satellite BIRD

Small satellites have to meet a big challenge: to answer high performance requirements
by means of small equipment and especially of small budgets. Out of all aspects the cost
aspect is one of the most important drives for small satellite missions. To keep the costs
within the low-budget frame the demonstration of new and not space-qualified
technologies for the spacecraft is one key point in fulfilling high performance mission
requirements [BIRD1]. Taking this into account the DLR micro-satellite mission BIRD
(Bi-spectral Infra-Red Detection), which mission is to find fire all around the world,
[BIRD0] has to demonstrate a high performance capability of spacecraft bus by using
and testing new technologies including modern software technology. The control system
of BIRD relays on BOSS. The spacecraft bus is controlled by the redundant dependable
board computer. To achieve a high dependability, safety and lifetime, the board
computer is formed of four identical computers (see picture 1) [MONT00].

Picture 1: Bird control system.

Each of the nodes is able to execute all control tasks. One node (the worker) is
controlling the satellite while a second node, the monitor, is supervising the correct
operation of the worker. The two other node computers are spare components and are
disconnected. If an anomaly of the worker node is detected, the supervisor becomes the
worker and takes over the control of the satellite. The old worker node is enforced to
execute a recovery function and, if there is no permanent error, it becomes the role of the
monitor. If the recovery procedure fails or if a permanent hardware error is detected, the
faulty node computer will be switched off and replaced by one of the spare nodes. By
this strategy up to 3 permanent node failures can be tolerated while the board computer
stays operable.

The applications running on top of BOSS are implemented by using object oriented
technology, resulting in a highly modular application software. We defined a software
backplane which consists of two software buses. Each application implements an
interface to each software bus. One software bus is used to distribute commands. The
second collects status information of the applications. The principle of a software
backplane allows us to easily configure the system by simply plugging the software
components in or out of the back plane.

 201

3 BOSS Description

BOSS characteristics are: multithreading, pre-emptive priority managed scheduling; real
time support; fault tolerance support; communication support ; OO-design and
implementation; C++ interface; Time resolution 1 microsecond; Thread switch time 3
microseconds PPC at 48 Mhz.; Reaction time: under 3 microseconds PPC at 48 Mhz;
Boot time from Flash: under 1/2 Second.

Currently there are 3 implementations of BOSS on different platforms: powerPC, x86
and an on-top-of-LINUX. Applications written on BOSS can run without changes on
any of these platforms. The on-top-of-LINUX implementation helps the developer to
work locally on his workstation without having to use the target system. To move to the
target he/she needs only to recompile the code. The behavior will be the same except for
timing and time resolution which on LINUX can not be as exact as in the target systems.

4 Development environment

The application development can be done on a LINUX workstation using the on-top-of-
LINUX BOSS implementation. Devices can be simulated on LINUX or on BOSS. For
the execution on the target system we provide a debugger interface and serial
connections to load and debug the system. Using LINUX as front-end to the target
system, the implementation/debug can be done remotely using internet. It is possible to
capture log files of the activities in BOSS in order to visualize and to verify timings
automatically (still in work).

5 Macro structure

BOSS is structured in layers from
hardware up to the final application, each
providing a virtual view of the lower
layer. This virtual view is always the
same even if the lowest layers are
substituted. The bottom layer is the target
hardware CPU, IO devices and other
Hardware units or even a LINUX-
platform. The bottom layer is for the
kernel and applications transparent and
can be changed very easily. The second layer is the only hardware dependent layer. This
layer implements the functionality which is different on each platform, e.g. load/store of
CPU registers, low level Hardware-Drivers and basic interrupt management.

 202

To move from one platform to another, only this layer has to be rewritten. The third
layer is the kernel, it implements the interface to the applications and manages threads,
time and resources.

6 BOSS Kernel

The Kernel is so simple that it can be explained in one page. The basic class is Thread.
Threads are executable objects with context, stack and own data. They can be executed
(run), suspended, reactivated (resumed) and they react to time, and to internal and
external events.

The basic operation is lists-management. All resources are managed (sorted) in chained
lists. No element can be in two lists at the same time. Before inserting an element in any
list, it will be removed from any other list. The kernel lists are:
Ready list: list of threads which are ready to use the CPU. It is sorted by priorities. The
first thread in the list has the CPU - is running now. All others are waiting. If the list is
empty the idle-thread gets the control and consumes the free CPU time.
Timer list, IOLists: list of threads which are waiting for a time point, a time event or an
I/O event/interrupt/signal. It is sorted by time or by priority. The next Thread to be
resumed is at the front of the list.
Semaphores: list of threads sorted by priority. Semaphores are used to implement
monitors, to protect exclusive sections and to implement synchronisation.
Messages and communication lists: messages from one thread to other are inserted in a
list of messages sorted by priorities or time. A thread attempting to read from an empty
Messagebox will be suspended.

7 Literatur

[BIRD0] www.dlr.de/bird
[BIRD1] www.first.fhg.de/~sergio/public/IAA2003_BIRD_Technol.html
[MONT00] http://www.first.gmd.de/~sergio/public/bird-iaaa.html
[MONT03] http://www.sciencedirect.com/, Sergio Montenegro, Wolfgang

Baerwald, PowerBird - Modern Spacecracrt Bus Controller, Acta
Astronoautica 52 (2003) 957-963

[MONT99] S. Montenegro, Sichere und Fehlertolerante Steuerungen , Hanser
Verlag, Sept. 1999, ISBN: 3-446-21235-3

[ROD03] Rodionow, Montenegro, Behr, BOSS for Hyperspectral Analyse (IAA
2003), http://www.first.fhg.de/~sergio/public/iaa2003.pdf

[SPIN] Spin model checker netlib.bell-labs.com/netlib/spin/whatispin.html
[VERIFUN] www.inferenzsysteme.informatik.tu-darmstadt.de/verifun
[ISABELLE] Isabelle Theorem Prover: http://isabelle.in.tum.de/

http://www.first.gmd.de/~sergio/public/bird-iaaa.html
http://www.sciencedirect.com/
http://www.first.fhg.de/~sergio/public/iaa2003.pdf
http://isabelle.in.tum.de/

