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Abstract: Gait recognition is a technique that identifies or verifies people based upon their

walking patterns. Smartwatches, which contain an accelerometer and gyroscope have recently

been used to implement gait-based biometrics. However, this prior work relied upon data from

single sessions for both training and testing, which is not realistic and can lead to overly optimistic

performance results. This paper aims to remedy some of these problems by training and evaluating

a smartwatch-based biometric system on data obtained from different days. Also, it proposes an

advanced feature selection approach to identify optimal features for each user. Two experiments

are presented under three different scenarios: Same-Day, Mixed-Day, and Cross-Day. Competitive

results were achieved (best EERs of 0.13% and 3.12% by using the Same day data for

accelerometer and gyroscope respectively and 0.69% and 7.97% for the same sensors under the

Cross-Day evaluation. The results show that the technology is sufficiently capable and the signals

captured sufficiently discriminative to be useful in performing gait recognition.
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1 Introduction

Billions of mobile devices are being used globally having a wide variety of applications

(e.g., e-commerce and banking). The use of mobile devices has inherently raised security

concerns and there exists a prevalent requirement to secure these devices. Smartwatches

have been steadily increasing in popularity and this trend is expected to continue as the

technology improves. Therefore, wearables could be used to enhance mobile security in

a more effective way. Recent studies have demonstrated that both smartphones

[DNBB10, MM14, NWB12] and smartwatches [JW15, SMS16, ACDL16] can provide

gait-based biometric authentication service by using various sensors. However, the

majority of prior research either used a limited dataset or trained and tested the system

on data that was collected on the same day (which is not a realistic model for a real

world application as the user would be required to enroll on the system every day). To

this end, this paper explores the use of smartwatches for transparent authentication based

upon gait recogntion. The main contributions of this study are demonstrated as follows

 To the best of the author’s knowledge, this is the biggest dataset for smartwatch-

based gait authentication, which contains gait data of 60 users over multiple days.

 A comprehensive feature set was extracted in the time and frequency domains and

analyzed to highlight their impact on system performance.

 The novel feature selection method utilised a dynamic feature vector for each user

and successfully reduced the feature vector size with better performance.

 Identifying the optimal source sensor for the authentication task.

 The results of this study outperform the prior biometric accelerometer –based studies.
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The rest of the paper is organized as follows: Section 2 reviews the state of the art in

transparent and continuous authentication that specifically uses accelerometer (Acc) and

gyroscope (Gyr) sensors. Data collection and feature extraction are outlined in Section 3.

Sections 4, 5 and 6 present the experiment design, feature selection approach, results and

discussion. Section 7 presents the conclusions and future research directions.

2 Related Work

Gait-based biometric systems have an advantage over password-based systems in that

impersonation is much more difficult to accomplish even video footage of someone

walking on a treadmill (to match the victim’s pace) is not sufficient to mimic a user
[GSB07]. Verifying people based on their walking patterns is an unobtrusive mechanism

that does not require explicit user interaction and provide continuous authentication.

Recently, increased interests are shown in mobile gait authentication; and performance

rates vary considerably depending upon feature extraction methods and types of

classifiers utilised. A comprehensive analysis of the prior studies on gait authentication

using smartwatch and mobile sensors is summarized in Table 1.

Tab 1. Comprehensive Analysis on Gait Authentication using Mobile and Smartwatch Sensors
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[DNBB10] C TD DTW 20.1 (EER) 51 120/MD M

[NDBB11] C TD DTW 21.7 (EER) 48 1200/CD M

[MM14] C TD DTW 19 (EER) 35 240/CD M

[KWM10] S TD NN 100 (CCR) 10 300-600/SD M

[NB11] S FD HMM 6.15 (EER) 48 1200/CD M

[HN12] S FD SVM 10 (EER) 36 1200/CD M

[NWB12] S FD KNN 8.24 (EER) 36 1200/CD M

[CLB15] S TD BN 96.27(CCR) 44 400/SD M

[NBB11] S TD SVM 10 (EER) 51 120/CD M

[JW15] S TD RF 1.4 (EER) 59 300-600/SD SW

[WTGYS16] S TD RF 94.2 (CCR) 17 2160/SD SW

[CAM16] S TD KNN 2.9 (EER) 15 - / SD SW

[SMS16] S TD RF 2.6 (EER) 18 350/CD SW

[KPR16] S TD & FD KNN 95 (CCR) 40 240/SD SW

[ZYCWS17] S TD & FD NN 0.5 (EER) 9 - / SD SW

Legend: C: Cycle-based; S: Segment-based; TD: Time Domain; FD: Freqency Domain; DTW: Dynamic

Time Warping; HMM: Hidden Markov Model; SVM: Support Vector Machine; KNN: k-nearest neighbours;

RF: Random Forest; NN Neural Network; EER: Equal Error Rate; CCR: Correct Classification Rate;

M: Mobile; SW: Smartwatch; SD: Same Day; , CD: Cross Day

Two main approaches can be used to extract gait features, namely cycle and segment-

based. Cycle extraction attempts to segment the data into pairs of steps. This offers a

very exciting opportunity where if such a system is implemented effectively. Howeover,

the literature shows high EERs (ranging from 19% [MM14] to 21.7% [NDBB11]). This

is most likely the result of the complicated and unclear nature of cycle extraction. In
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contrast, the performance of the segment based methods, which focus on fixed-length

blocks of data, appearing to be more effective and stable, with studies reporting EERs

between 1.4% and 10 % [JW15, NBB11]. With respect to features, several studies in the

domain have used both time domain (TD) and frequency domain (FD) features but little

attention has given to measure the impact of these features on the system performance.

As illustrated in Table 1, the most recent studies used a smartwatch device to collect the

Acc and Gyr gait data for transparent authentication systems (TAS). However, in [JW15,

WTGYS16, CAM16, ZYCWS17] the gait data was obtained on the SD and the dataset is

considered limited ranging from 9 to 18 users (apart from JW15). In addition, the authors

did not carry out any particular study on feature selection in order to identify the most

discriminative features. In contrast, a feature selection mechanism was conducted by

[KPR16] and reported 95% CCR by using the SD scenario. However, the system

performance was reduced to 86.8% CCR (with a limited dataset of 13 users only) when

the CD scenario was applied. This can be attributed that the proposed approach is not

sophisticated enough to identify a unique feature set for individuals that work over time.

3 Data Collection and Feature Extraction

The Acc and Gyr data was captured from the Microsoft Band 2 at a rate of 32 samples

per second for the x, y and z-axes and automatically sent to a smartphone residing in the

user’s pocket via Bluetooth. In total, 60 users participated in the data collection; each

user was required to walk on a predefined route in two sessions on two different days

(within a time frame of 3 weeks between the sessions). Every session consisted of three

walks trails from each user. In each trail, the user was asked to walk at a natural speed on

flat ground for 2 minutes with few turns. For a more realistic scenario, the subject had to

stop in order to open a door. Moreover, no other variables, such as type of footwear or

clothing, are controlled. Once the data collection was completed, the signal processing

phase was undertaken- a brief description of the steps is as follows

 Time interpolation: as the Microsoft Band 2 sensors were not able to record data at a

fixed sample rate, time interpolation was required to make sure that the time period

between two successive data points was always equal

 Filtering: a low pass filter was designed in order to enhance the accuracy of the

signal. This was carried out with several settings (i.e. 0.1, 0.2, 0.3, 0.4 and 0.5) and

the cut-off frequency of 0.2Hz achieved the best accuracy.

 Segmentation: the tri-axial raw format for both Acc and Gyr signals were segmented

into 10-second segments by using a sliding window approach with no overlapping.

Therefore, in total 36 samples were collected for each user per day.

A feature extraction process is carried out on both the Acc and Gyr data segments of

each user. In total, 140 features were extracted based upon prior work identified in gait

recognition studies. Features were extracted from both the time and frequency domains

on Acc or Gyr data. Since most features are generated on a per-axis basis and each

sensor has 3 axes, most features are represented by a multiple of three values. The

number of generated features and their types are presented in Table 2. Details of these

features (e.g., how they are calculated) can be found in [KWM10, JW15].
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Tab 2. List of the extracted TD and FD features

Feature Type NF TD FD Feature Type NF TD FD

Difference 3 √ √ Skewness 3 √ √
Variance 3 √ √ Average 3 √ √
Median 3 √ √ Kurtosis 3 √ √

Maximum 3 √ √ Minimum 3 √ √
Energy 3 - √ Entropy 3 - √

Time Between Peaks 3 √ - Standard Deviation 3 √ √
Correlation Coefficients 3 √ √ Root Mean square 3 √ √

Cosine Similarity 3 √ - Covariance 3 √ -

Interquartile range 3 √ √ Binned histogram 30 √ -

Peaks Occurrence 3 √ - Percentile 25,50 6 √ √
Average Absolute

Difference
3 √ √ Average Resultant

Acceleration
1 √ √

4 Experimental Methodology

Biometric authentication or verification is a binary classification problem, where the aim

is to determine if a system can identify a genuine user correctly or as an imposter. A

separate model is generated for each user. The reference and testing templates were

created under three different scenarios for SD, MD and CD. For SD and MD, the data

was divided into two sets: 60% of the data for training and the remaining 40% for

testing; also training samples were extracted from both days for the MD scenario. For

the CD scenario, the first day’s data was used for training and the second day data was

employed for testing. Also, the Feedforward Multi-layer Perceptron (FF MLP) neural

network was used as the default classifier due to its reliable performance [KWM10].

The feature selection step is important for biometrics based studies in order to reduce the

potentially large dimensionality of input data. By selecting an optimal feature set for

individuals, the system performance could be potentially enhanced. Also, it will be

easier to manipulate and calculate smaller feature subsets on digital devices. Majority of

gait recognition systems select common features for all the population; this could be

useful if the system is based on identifying the genuine user only. However, a balance

between security and usability needs to be taken. Therefore, this study focused on

creating a dynamic feature vector that contains distinctive features for each user. As a

result, the feature subset for each user very different from each other (e.g., the reference

templates could be created by using features 1, 2, and 7 for user 1 while features 3, 4,

and 5 for user 2). This can be achieved by calculating the mean and Standard Deviation

(STD) for each feature of all users and then compares the authorized user’s results
against impostors to select the feature set with the minimal overlap. In other words, for

each feature, a score is calculated based upon the following condition:

 If the mean of imposter’s activity is not within the range of the mean +/- STD of

genuine, add 1 to the total score.

 Dynamically select the features according to their score order from high to low. The

highest score means less overlap between imposters and genuine user (see Fig 1 (A)).

Fig 1 shows an example of applying the proposed feature selection method on two

different features for user 1. Based upon the overlap percentage, it is clear from Fig 1

that the Kurtosis feature has lowest overlap score compared to the Covariance feature.
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As a result, the Kurtosis feature was selected to form the feature vector of user1, while

the second feature (i.e. Covariance) was neglected. This procedure is repeated for each

individual and each feature resulting in a bespoke and prioritized feature set.

Fig 1: the effect of the dynamic feature selection approach

In order to evaluate the proposed system, several consecutive experiments were

undertaken that include:

 Analysis and highlighting the impact of the time and frequency domain features on

the system performance.

 The discriminative features were evaluated and the reference and test templates were

created by selecting an optimal feature set for each user independently.

 The results cover the three evaluation scenarios (SD, MD, and CD), the two different

sensors (Acc and Gyr), and one classification algorithm (FF MLP neural network).

5 Results

According to the plan, the first expermient was to highlight the impact of the time and

frequency domains features on the system performance and the results are presented in

Table 3(using the SD scenario).

Table 3: EER of Using All Features, Time and Frequency Domains

Feature type NF EER (%)

Acc Gyr

All Features 140 0.13 3.37

Time domain 88 0.15 3.73

Frequency domain 52 3.09 12.69

It is clear that good performances were achieved by using the TD features and all feature

sets; and little difference in results is observed between the two sets. By using the FD

features alone, reasonable performance is obtained; but its performance is far less

promising in comparison with the results of using TD features alone, suggesting FD

features add little contribution towards the classification process. Given the fact that

detecting redundancies features makes the system more efficient, therefore, only the TD

features (i.e. 88 features) were used in subsequent experiments as it shows low EER.
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Further analysis was conducted to reduce the extracted TD features by applying the

proposed dynamic feature selection method. Table 4 shows the impact of feature

selection under the SD, MD and CD scenarios and two sensors. It can be concluded that

the feature selection mechanism has a positive effect on the performance by minimizing

the number of features and maximizing the discriminative information. In addition, as

expected the system performance of the SD and MD scenarios exceeded the CD

evaluation for both sensors.

Tab 4: Impact of the dynamic feature selection technique upon the performance in detail.

Evaluation

Scenario
Sensor

Number of Selected Features

10 20 30 40 50 60 70 80 88

SD Acc 1.13 0.78 0.24 0.26 0.27 0.13 0.20 0.16 0.15

SD Gyr 6.6 4.88 3.63 3.74 3.12 3.58 3.48 3.43 3.73

MD Acc 2.22 0.82 0.42 0.22 0.25 0.20 0.22 0.16 0.28

MD Gyr 7.63 4.81 3.85 3.80 3.53 3.51 3.24 3.25 3.35

CD Acc 4.68 2.39 1.43 0.9 0.84 0.83 0.69 0.77 0.93

CD Gyr 11.09 9.76 8.62 8.49 8.94 8.53 8.42 7.97 8.29

As shown in the Table 4 vastly good results were achieved with best EERs of 0.13% for

Acc and 3.12% for Gyr by utilizing the SD scenario (compared to 2.9%, 1.4% and 0.5%

of EERs by [CAM16, JW15, ZYCWS17] and CCR of 95% and 94% by [WTGYS16,

KPR16]. Moreover, high performances with EERs of 0.78% and 4.88% can still be

achieved by using only 20 features for Acc and Gyr accordingly. Comparing to the SD

scenario, no significant difference was found in the MD scenario where the best EERs

are 0.16% for Acc and 3.24% for Gyr, as the training set contained samples from both

days. However, these results outperform the outputs (i.e. EER ranging from 6.1% to

21.7%) of previous studies [NB11, NBB11] under the MD scenario.

As shown in Table 4, the best performance of the CD scenario are EERs of 0.69% (for

Acc) and 7.97% (for Gyr). As expected the system performance is droped under the CD

test as the human’s behaviour does change over time. Nonetheless, the presented CD
results are still very promising (i.e. 0.69% EER) in comparison with the prior work that

reported EERs in the range of 2.6% - 21.7% [NDBB1, MM14, NB11, HN12, NWB12,

NBB11, SMS16] . In addition, the CD test does not require the user to re-enrol in the

system on a daily basis.

With the aim to understand how individual user performed, results on each user’s Acc

for both SD and CD scenarios are presented in Figure 2. As shown in Figure 2 high level

of performance (i.e. in the range of 0-2% EER) were obtained for 90% of users, (apart

from users 31, 37, 38, 42, 48, and 51) for both SD and CD scenarios. This suggests that

users have a consistent and distinctive set of ccA pattern characteristics.

With respect to the feature subset size, as shown in Table 4 the SD test requires less

features (i.e., 60 features) than the CD (i.e., 80 features) to produce the lowest EER. This

could be explained because the user’s gait pattern could vary or be inconsistent over time

due to many factors (e.g., shoes, clothes, and mood), hence more features are required

for individual to be identified. Moreover, creating a dynamic feature vector size for each

user independently might greatly reduce the EER (e.g., the refrence template can be

constructed by using 20 features for user 1 while 40 features will be used for user 2)
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Fig 2: The Acceleration Results of Both Scenarios Separated by Users

6 Discussion

As shown in the previous section, the presented results reveal that smartwatch based gait

recognition is highly efficient and recommended to be used for verifying users in a

transparent and continuous manner. The best results were EERs of 0.13% and 0.69% for

SD and CD scenarios respectively by using Acc signals. However, the results were

obtained in controlled conditions, so, further investigation is required by collecting the

user’s data during the entire day over multiple days in order to find the influence of

collecting real life data on the system performance. Although features were extracted

from both time and frequency domains, the findings in Table 2 support the use of time

domain features alone as a better decision especially for mobile devices. For the realistic

test, the EER was slightly increased from 0.13% to 0.69% when the Acc reference and

test templates were created from the data of two different days. Because the obtained

Acc results were very strong, the fusion of data from both sensors was not necessary.

Further influencing factors on the biometric system performance is the selected feature

subset; selecting unique features for each user would improve the results and reduce the

complex computations on the smart devices which have limited processing resources.

Therefore, a feature selection approach of any mobile-based biometric system needs to

be sophisticated enough before the classification phase takes place. As expected, the

proposed feature selection approach in this study, which was based on creating a

dynamic feature vector for each user, successfully reduced the user’s feature vector size

and resulted in lower EER’s of 0.13% and 0.69% for the SD and CD tests respectively
(compared to 0.15% and 0.93% when the whole features were used). However, further

investigation is required to reduce the number of the optimal features for each user

independently which might offer better accuracy/error rates.

7 Conclusions and future work

Based on the performance in this study, smartwatch-based gait recognition shown to be

effective and can be used with in TAS. The paper also presents an analysis of the feature

set to examine the impact of features upon performance, which has resulted in proposing

a dynamic feature set. The proposed system was evaluated by collecting the motion data

from 60 users and analysed the feature set to determine its uniqueness. However, more

experimental work should be carried out to investigate the impact of the dynamic feature

vector size for each user.

Further work will also explore examining a wider range of different activities (e.g., fast
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walking and typing on smartphone touch screen) to expand the technique from merely

gait recognition to activity recognition. A future study will aim to remove the one factor

that is explicitly controlled in all previous studies – the nature of the controlled data

collection and instead look to understand what the performance of the approach is with

real life data over a prolonged period of time. As the nature of the real life signals is

likely to be noisy, an appraoch will be used in order to predict the user’s activity.
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