
Energy-Efficient Code by Refactoring

Marion Gottschalk, Jan Jelschen, Andreas Winter

Carl von Ossietzky Universität, Oldenburg, Germany

{gottschalk, jelschen, winter}@se.uni-oldenburg.de

Abstract

The rising number of mobile devices increase the
interest in longer battery durations. To increase bat-
tery duration, researchers try to improve e.g. different
hardware components, such as processors and GPS
for lower energy consumption. Frequently, software
optimization possibilities to save energy are forgot-
ten. Hence, an approach is shown to reduce energy
consumption of applications by reengineering. There-
for, energy-wasteful code in applications is searched
by code analysis and then restructured to optimize
their energy consumption. Energy savings are vali-
dated by different energy measurements techniques.

1 Motivation

The scope of mobile devices is increasing, due to
new user requirements, more powerful processors, and
diversity of applications. Mobile devices are used for
many tasks, and thus, users carry their smartphone
with them the whole day. Hence, batteries of these
devices need to endure this time. The Blackberry Z10
shows the contrary [1]: First tests showed that bat-
teries of Z10s are empty after about five hours. These
are only 21 % of a day which does not match users ex-
pectation’s of at least one day uptime. Blackberry’s
solution is an external battery which loads the main
battery to lengthen its operating time. This is not
acceptable for most users to use two batteries. There-
fore, manufacturers should be interested in energy-
efficient software to extend devices’ battery duration.

To improve batteries’ duration by software opti-
mization, software evolution techniques are used: Re-
verse Engineering produces an abstract view of com-
ponents and relationships inside on applications and
provides to analyze for energy wasting software be-
havior [2]. Reengineering is applied to improve ex-
isting applications regarding their energy consump-
tion, in which the intended application behavior is not
changed. Therefor, code analyzing and restructuring
are used to obtain more energy-efficient code. Both
steps describe refactoring which is concerned with de-
tecting and restructuring inefficient code (code smells)
without changing its behavior [3].

This paper is structured as follows: First, some
energy code smells which have been validated to be
energy-wasteful by measurement are presented in Sec-
tion 2. Next, the process of identifying and restruc-
turing of energy code smells is described in Section 3.
Section 4 shows a validity of the energy consumption
of applications before and after reengineering. Section
5 concludes this paper with an outlook.

2 Energy Refactoring

Energy refactorings contain energy code smells
which are energy-wasteful parts of code. These en-
ergy code smells and their restructurings are defined
and described similar as the code smells of Fowler [3].
Two such energy code smells are Binding ressources
too early and Third party advertising [4].

Binding ressources too early: When applica-
tions are binding resources it could be that applica-
tions request a resource too early. This means that re-
sources, like GPS and WiFi, are started and consume
energy before they are really needed by the applica-
tion. Detecting Binding resources too early requires
to identify the position of methods in which hard-
ware resources are started. At this point, program-
mers have to check the program behavior to decide
whether hardware resources are really required or not.
Unnecessary method calls must be moved to a more
appropriate position, so that hardware resources start
only when they are really needed. It has be consid-
ered that other code parts may also have to be shifted
together with the code, e.g. dependents statements.

Third party advertising: Another aspect are
advertisings in free Android applications. Pathak et
al. [5] show that third party advertising is often the
biggest energy consumer of an application, even so it
is not necessary to execute the application. The en-
ergy consumption may be, e.g. due to WIFI connec-
tions, which updates the advertising every few min-
utes. This energy code smell can be detected when it
is known which API for adverts is used. If source code
for advertising is detected and no legal constraints ex-
ist, it can simply be removed.

More energy code smells and its restructurings are
defined in Gottschalk et al. [4].

3 Reengineering Process

Reengineering towards energy-efficient code is a
process which forms the basics for a semi-automatize
reengineering process to save energy in applications.
The four steps parse, reverse engineering, restructur-
ing, and unparse are shwon in Figure 1.

Figure 1: Model based Reengineering Process

Softwaretechnik-Trends 33:2, Mai 2013 23



Firstly, code must be parsed into a higher unified
abstraction (reverse engineering) to enable an efficient
code analysis. Therefor, a graph structured reposi-
tory which conforms to a meta model are used (cf.
e.g. Ebert et al. [6]). The meta model defines a clear,
precise, and targeted structure and documentation of
underlying data structures which enable code analysis
on different applications [7]. Secondly, the abstracted
code is analyzed, e.g by static code analysis which has
proved in software evolution, to identify energy code
smells when methods, such as methods to display ad-
vertisings, are known. Thirdly, the energy-wasteful
parts are changed by a restructuring on the reposi-
tory to remove the energy code smells. Lastly, the
graph is unparsed to code so that it can be executed
as application on mobile devices. During this process
it is also possible to visualize the abstracted code.

The first and fourth steps are realized by the
SOAMIG parser [8], and hence, these steps do not
need further attention in this case. Due to the us-
age of the SOAMIG parser, TGrpahs which conform
to a Java meta model are generated and saved into
the repository. TGraphs are directed graphs, whose
nodes and edges are typed, attributed, and ordered
[9]. Techniques of the TGraph approach are used
for the second and third step to execute queries and
instructions on TGraphs. Both steps represent the
above described refactoring which must be imple-
mented. The TGraph approach contains amongst oth-
ers GReQL (Graph Repository Query Language) [9]
and GReTL (Graph Repository Transformation Lan-
guage) [9] which are applied in this process. The im-
plementation of both is realized by the JGraLab API
[10]. GReQL is used for the second step to identify
energy code smells on TGraphs. In third step GReTL
is used to transform the TGraph so that more energy-
efficient code can be generated in the last step.

4 Validation

To check the benefits of energy refactorings the en-
ergy measurement by Schröder [11] is used. First mea-
surements are made with the application GPSPrint
[12] regarding to the energy code smell Binding re-
sources too early. This reengineering was done partly
manually so that first results of energy saving are vis-
ible. One energy measurement is shown in Figure 2.

Figure 2: Energy measurement

This measure shows that approximately 405 J in
1:30 h were saved after reengineering (fixed graph).
The energy measurement based on Android API
methods which deliver different values about the bat-
tery status. To calculate the energy consumption

three measuring techniques were realized: Delta-B,
analysis of system files, and energy profiles [11]. Delta-
B compares changes of battery charge level with bat-
tery capacity to measure energy. Energy profiles are
provided by devices manufacturer who saves energy
information of hardware components in an internal
XML-file. In Figure 2 analysis of system files is used.
This measure saves information about battery status
in a readable system file of Android devices. Due to
that, the actually battery voltage and discharge rate
per minute are known, and the energy consumption
can be calculated. This energy measure which reads
an system file are not as exactly as a directly mea-
surement on hardware, so that this results give only a
trend of energy savings [11]. Also, it must be consid-
ered that reading a XML-file costs energy so that the
number of accesses should be small as possible.

5 Outlook

First results show that it is possible to save energy
by software optimization. In next steps, the energy
refactoring Third party advertising is going to be im-
plemented, and then, new energy measurements are
going to be executed. Thereby, more measurements
of same use cases are going to be made to identify the
average energy savings of applications. At the end,
a refactoring catalog and more energy measure tech-
niques are developed.

References

[1] M. Kremp. (2013, January) Blackberry Z10
im Test: Handy mit Nottank. Spiegel online.
http://www.spiegel.de/netzwelt/gadgets/angefasst-der-
blackberry-z10-im-test-a-880411.html

[2] E. J. Chikofsky, J. H. Cross, “Reverse Engineering and
Design Recovery: A Taxonomy,” Software, IEEE, 1990.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,
Refactoring: Improving the Design of Existing Code, Ad-
dison Wesley, 2002.

[4] M. Gottschalk, M. Josefiok, J. Jelschen, A. Winter, “Re-
moving Energy Code Smells with Reengineering Services,”
in Lecture Notes in Informatics. GI, 2012.

[5] A. Pathak, Y. Charlie Hu, M. Zhang, “Fine Grained En-
ergy Accounting on Smartphones with Eprof,” in Eu-
roSys’12, 2012.

[6] J. Ebert, V. Riediger, A. Winter, “Graph Technology in
Reverse Engineering, The TGraph Approach,” in 10th
Workshop Software Reengineering, GI, 2008, pp. 67–81.

[7] D. Jin, J. R. Cordy, T. R. Dean, “Where’s the Schema? A
Taxonomy of Patterns for Software Exchange,” in IWPC,
2002, pp. 65–74.

[8] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kaiser,
V. Riediger, W. Teppe, “Model-Driven Software-Migration
- Process Model, Tool Support and Application,” in Mi-
grating Legacy Applications: Challenges in Service Ori-
ented Architecture and Cloud Computing Environment,
Hershey, PA: IGI Global, 2012.

[9] T. Horn, J. Ebert, “The GReTL Transformation Lan-
guage,” in Theory and Practice of Model Transformations
- 4th International Conference, ICMT 2011. Zurich,
Switzerland: Springer, Jun. 2011, pp. 183–197.

[10] J. Ebert, D. Bilderhauer, V. Riediger, and T. Horn.
(2012) Graphenlabor (GRALAB). http://www.
uni-koblenz-landau.de/koblenz/fb4/institute/IST/
AGEbert/MainResearch/Graphentechnologie/GraLab.

[11] M. Schröder, “Erfassung des Energieverbrauchs von An-
droid Apps,” Diploma thesis, Carl von Ossietzky Univer-
sity Oldenburg, 2013.

[12] Robotmafia.org. (2012) GPS Print. https://play.google.
com/store/apps/details?id=com.tyfon.gpsprint&hl=en.

24 Softwaretechnik-Trends 33:2, Mai 2013


	Energy-Efficient Code by Refactoring
	Abstract
	1 Motivation
	2 Energy Refactoring
	3 Reengineering Process
	4 Validation
	5 Outlook
	References




