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Abstract: The similarity join is an important building block for similarity search and
data mining algorithms. In this paper, we propose an algorithm for similarity join on
Graphics Processing Units (GPUs). As major advantages GPUs provide extremely
high parallelism combined with a high bandwidth in data transfer to main memory. To
exploit these advantages for similarity join, we propose an index structure designed
for the specific environment of GPU. Experiments demonstrate massive performance
gains of our method over conventional similarity join on CPU and significant further
speed-up by index support.

1 Introduction

In recent years, Graphic Processing Units (GPUs) have evolved from simple chips con-
trolling the display device into powerful coprocessors supporting the CPU in various ways.
Graphics applications such as realistic 3D games are computationally demanding and re-
quire a large number of complex algebraic operations for each update of the display image.
Therefore, today’s graphics hardware contains a large number (up to some hundreds) of
simple but programmable processors which are optimized to cope with this high workload
of vector, matrix and other computations in a highly parallel way.

In terms of peak performance, the highly parallel graphics hardware has outperformed
state-of the art multi-core CPUs by a large margin. Therefore, there is a great effort in
many research communities such as life sciences [LSVMWO07, MV0S8] or data mining
[CSKO8] to use the computational capabilities of GPUs even for purposes which are not
graphics-related at all. The corresponding research area is called General Processing-
Graphical Processing Unit (GP-GPU). Vendors of graphics hardware have anticipated this
trend and developed libraries, precompilers and application programming interfaces for
this kind of programming. Most prominently, NVIDIA’s technology Compute Unified
Device Architecture (CUDA) offers a C++ programming interface in which both the host
program to be executed on CPU as well as the so-called kernel functions to be executed
in a massively parallel fashion on GPU are assembled in a single program [cud07]. An
analogous technique is also offered by ATT under the brand names Close-to-Metal, Stream
SDK, and Brook-GP.
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The similarity join is a basic operation of a database system designed for similarity search
and data mining on feature vectors. In such applications, we are given a large set D of
objects which are associated with a vector from a multidimensional space, the feature
space. The similarity join determines pairs of objects which are similar to each other. The
most widespread form is the e-join which determines those pairs from D x D which have
a Euclidean distance of no more than a user-defined radius e:

Definition 1 (Similarity Join) Ler D C R? be a set of feature vectors of a d-dimensional
vector space and ¢ € R be a threshold. Then the similarity join is the following set of
pairs:

SimJoin(D, €) = {(p,q) € (D x D) | dist(p,q) <€},

where dist(p, q) = \/(p —q)T - (p — q) is the Euclidean distance between p and .

If p and ¢ are elements of the same set, the join is a similarity self-join. Most algorithms
including the method proposed in this paper can also be generalized to the more general
case of non-self-joins in a straightforward way. Algorithms for a similarity join with near-
est neighbor predicates have also been proposed. The similarity join is a powerful building
block for similarity search and data mining. It has been shown that important data mining
methods such as clustering and classification can be based on the similarity join. Using
a similarity join instead of single similarity queries can accelerate data mining algorithms
by a high factor [BBBKOO0].

In this paper, we propose two algorithms for similarity join on the GPU. The first one
is a parallelization of the Nested Loop Join (NLJ) with particular focus on the special
demands of the graphics hardware. The second one is an indexed join algorithm which
operates on an index structure which is particularly suited for the GPU. We demonstrate the
superiority of our approach over the corresponding sequential join methods on CPU. The
remainder of this paper is organized as follows: Section 2 quickly reviews the related work
in similarity join processing and in GP-GPU processing in general. Section 3 explains the
graphics hardware and the corresponding programming model. Section 4 and Section 5
are dedicated to the non-indexed and indexed NLJ on graphics hardware, respectively.
Section 6 contains an extensive experimental evaluation of our technique, and Section 7
concludes this paper.

2 Related Work

For given multidimensional point data sets A and B similarity join operations can be
classified depending on whether a multidimensional indexing structure exists on both data
sets A and B [BKS93] or on neither [BBKKO01, DS01]. There is a wide range of data
structures that have been adopted for similarity join processing, quad-trees [DS01, KS00],
R-trees [BKS93], e-kbd trees [SSA97], hash functions [GIM99], and space-filling curves
[DS01] to name a few. Two recent methods are predicated on the application of grids to
multidimensional point data sets, namely the Epsilon Grid Order (EGO) [BBKKO01] and
the Generic External Space Sweep (GESS) method [DS01]. EGO is based on a particular
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Figure 1: Architecture of a GPU.

sort order of the data points, which is obtained by laying an equidistant grid with cell
length € over the data space and comparing the grid cells lexicographically. By an external
sorting algorithm and a particular scheduling strategy during the join phase, EGO avoids
the problem of holding large portions of the data sets simultaneously in main memory.
GESS constructs a hypercube with side length ¢ around each multidimensional input point.
The similarity join problem is thus transformed to a spatial intersection [KS00] problem.

Some recent approaches, e.g. [GGKMO06] and [GLW™04] demonstrate that important
building blocks for query processing in databases, e.g. sorting can be significantly speed
up by the use of GPUs. In [HYFT08] algorithms for relational join on GPU are presented.
Probably the most related approach to ours is [LSS08], which is to the best of our knowl-
edge the only paper on similarity join on GPU. The authors propose an algorithm based on
the concept of space filling curves, e.g. the z-order, for pruning of the search space. The z-
order of a set of objects can be determined very efficiently on GPU by highly parallelized
sorting.

3 Architecture of the GPU

Graphic Processing Units (GPUs) of the newest generation are powerful coprocessors, not
only designed for games and other graphic-intensive applications, but also for general-
purpose computing (in this case, we call them GPGPUs). From the hardware perspective,
a GPU consists of a number of multiprocessors, each of which consists of a set of simple
processors which operate in a SIMD fashion, i.e. all processors of one multiprocessor
execute in a synchronized way the same arithmetic or logic operation at the same time, po-
tentially operating on different data. For instance, NVIDIA’s GPU of the G80 series (e.g.
the graphics card Geforce 8800 GTX) has 16 multiprocessors, each consisting of 8 proces-
sors, summarizing to a total amount of 128 processors inside one GPU. The architecture
of the GPU is visualized in Figure 1: Apart from some memory units with special purpose
in the context of graphics processing (e.g. texture memory), we have three important types
of memory.
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The shared memory (SM) is a memory unit with fast access (at the speed of register access,
i.e. no delay). SM is shared among all processors of a multiprocessor. It can be used for
local variables but also to exchange information between threads on different processors
of the same multiprocessor. It cannot be used for information which is shared among
threads on different multiprocessors. SM is fast but very limited in capacity (16 KBytes
per multiprocessor). The second kind of memory is the so-called device memory (DM),
which is the actual video RAM of the graphic card (also used for frame buffers etc.). DM is
physically located on the graphics card (but not inside the GPU)), is significantly larger than
SM (typically up to some hundreds of MBytes), but also significantly slower. In particular,
memory accesses to DM cause a typical latency delay of 400-600 clock cycles (G80), but
the bandwidth for transferring data between DM and GPU (86 GB/s on G80) is higher
than that of CPU and main memory (about 10 GB/s on current CPUs). DM can be used to
share information between threads on different multiprocessors. If some threads schedule
memory accesses from contiguous addresses, these accesses can be coalesced, i.e. taken
together to improve the access speed. A typical cooperation pattern for DM and SM is to
copy the required information from DM to SM simultaneously from different threads (if
possible, considering coalesced accesses), then to let each thread compute the result on
SM, and finally, to copy the result back to DM. The third kind of memory considered here
is the main memory which is not part of the graphics card. The GPU has no access to the
address space of the CPU. The CPU can only write to or read from DM using specialized
API functions. The bottleneck of these operations is, of course, larger than DM accesses
of the GPU.

The basis of the programming model of GPUs are threads. Threads are lightweight processes
which are easy to create and to synchronize. In contrast to CPU processes, a context switch
between different threads does not cause any considerable overhead either. In typical ap-
plications, thousands or even millions of threads are created, for instance one thread per
pixel in gaming applications. The CUDA programming library [cud07] contains API func-
tions to create a large number of threads on the GPU, each of which executes a function
called kernel function. The kernel functions (which are executed in parallel on the GPU)
as well as the host program (which is executed sequentially on the CPU) are defined in
an extended C++ syntax. The kernel functions are restricted with respect to functionality
(e.g. no recursion).

On GPUs the threads do not even have an individual instruction pointer. An instruction
pointer is rather shared by several threads. For this purpose, threads are grouped into so-
called warps (typically 32 threads per warp). One warp is processed simultaneously on
the 8 processors of a single multiprocessor (SIMD) using 4-fold pipelining (totalling in 32
threads executed synchronously). To allow 4-fold pipelining, each processor contains also
four arithmetic logic units (ALUs). If not all threads in a warp follow the same execution
path, the different execution paths are executed in a serialized way.

Multiple warps are grouped into thread groups (TG). It is recommended [cud07] to use
multiples of 64 threads per TG. The different warps in a TG (as well as different warps
of different TGs) are executed independently. The threads in one thread group use the
same shared memory and may thus communicate via the SM. The threads in one thread
group can be synchronized (let all threads wait until all warps of the same group have

60



algorithm sequentialNLJ(data set D)
foreach ¢ € D do /I outer loop
foreach p € D do /l'inner loop: search all points p which are similar to ¢
if dist(p, ¢) < e then
report (p, g) as a result pair or do some further processing on (p, q)
end

Figure 2: Sequential Algorithm for the Nested Loop Join.

reached that point). The latency delay of the DM can be hidden by scheduling other warps
of the same or a different thread group whenever one warp waits for an access to DM.
To allow switching between warps of different thread groups on a multiprocessor, it is
recommended [cud07] that each thread uses only a small fraction of the shared memory
and registers of the multiprocessor.

4 Similarity Join Without Index Support

The baseline technique to process any join operation with an arbitrary join predicate is the
nested loop join (NLJ) which performs two nested loops, each enumerating all points of
the data set. For each pair of points, the distance is calculated and compared to €. The
pseudocode of the sequential version of NLJ is given in Figure 2.

It is easily possible to parallelize the NLJ, e.g. by creating an individual thread for each
iteration of the outer loop. The kernel function then contains the inner loop, the distance
calculation and the comparison. During the complete run of the kernel function, the current
point of the outer loop is constant, and we call this point the query point q of the thread,
because the thread operates like a similarity query, in which all database points with a
distance of no more than e from ¢ are searched. The query point ¢ is always held in a
register of the processor.

Our GPU allows a truly parallel execution of a number p of incarnations of the outer loop,
where p is the total number of ALUs of all multiprocessors (i.e. the warp size 32 times the
number of multiprocessors). Moreover, all the different warps are processed in a quasi-
parallel fashion, which allows to operate on one warp of threads (which is ready-to-run)
while another warp is blocked due to the latency delay of a DM access of one of its threads.

The threads are grouped into thread groups, which share the SM. In our case, the SM is
particularly used to physically store for each thread group the current point p of the inner
loop. Therefore, a kernel function first copies the current point p from the DM into the
SM, and then determines the distance of p to the query point q. The threads of the same
warp are running perfectly simultaneously, i.e. if these threads are copying the same point
from DM to SM, this needs to be done only once (but all threads of the warp have to
wait until this relatively costly copy operation is performed). However, a thread group
may (and should) consist of multiple warps. To ensure that the copy operation is only
performed once per thread group, it is necessary to synchronize the threads of the thread
group before and after the copy operation using the API function synchronize(). This API
function blocks all threads in the same TG until all other threads (of other warps) have
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algorithm GPUsimpleNLJ(data set D) /I host program executed on CPU
deviceMem float D’[|[] := D[][]; // allocate memory in DM for the data set D
#threads := | D|; /I number of points in D
#threadsPerGroup := 64;
startThreads (simpleNLJKernel, #threads, #threadsPerGroup); /I one thread per point
waitForThreadsToFinish();

end.

kernel simpleNLJKernel (int threadid)
register float gq[] := D’[threadid][] ; /I copy the point from DM into the register
/I and use it as query point ¢
/I index is determined by the thread-id
fori:=0..n—1do /I this used to be the inner loop in Figure 2
synchronizeThreadGroup();
shared float p[] := D'[i][]; Il copy the current point p from DM to SM
synchronizeThreadGroup(); /I Now all threads of the thread group can work with p
if dist(p, q) < e then
report (p, g) as a result pair using synchronized writing
or do some further processing on (p, ¢q) directly in kernel

end.

Figure 3: Parallel Algorithm for the Nested Loop Join on the GPU.

reached the same point of execution. The pseudocode for this algorithm is presented in
Figure 3.

If the data set does not fit into DM, a simple partitioning strategy can be applied. It must
be ensured that the potential join partners of an object are within the same partition as the
object itself. Therefore, overlapping partitions of size 2 - € can be created.

5 An Index Structure to Support the Similarity Join on GPU

The performance of the NLJ can be greatly improved if an index structure is available.
On sequential processing architectures, the indexed NLJ leaves the outer loop unchanged.
The inner loop is replaced by an index-based search retrieving candidates that may be join
partners of the current object of the outer loop. The effort of finding these candidates and
refining them is often orders of magnitude smaller compared to the non-indexed NLJ.

When parallelizing the indexed NLJ for the GPU, we follow the same paradigm as in the
last section, to create an individual thread for each point of the outer loop. It is beneficial
to the performance, if points having a small distance to each other are collected in the same
warp and thread group, because for those points, similar paths in the index structure are
relevant. We will see later how this grouping of similar points is easily achieved.

Our index structure needs to be traversed in parallel for many search objects using the ker-
nel function. Since kernel functions do not allow any recursion, and as they need to have
small storage overhead by local variables etc., the index structure must be very simple
as well. To achieve a good compromise between simplicity and selectivity of the index,
we propose a data partitioning method with a constant number of directory levels. The
first level partitions according to the first dimension of the data space, the second level
according to the second dimension, and so on. Therefore, before performing the join,
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Points

Figure 4: Index Structure for GPU.

some transformation technique should be applied which guarantees a high selectivity in
the first dimensions (e.g. Principle Component Analysis, Fast Fourier Transform, Discrete
Wavelet Transform, etc.). Figure 4 shows a simple, 2-dimensional example of a 2-level
directory (plus the root node which is considered as level-0), similar to [KRHT89, LEL97].
The fanout of each node is 8. In our experiments in Section 6, we used a three-level di-
rectory with fanout 16. Our algorithm now changes only a little bit. Before starting the
actual join processing, our simple index structure must be constructed in a bottom-up way
by fractionated sorting of the data: First, the data set is sorted according to the first dimen-
sion, and partitioned into the specified number of quantile partitions. Then, each of the
partitions is sorted individually according to the second dimension, and so on. The bound-
aries are stored using simple arrays which can be easily accessed in the subsequent kernel
functions. In principle, this index construction can already be done on the GPU, because
efficient sorting methods for GPU have been proposed [GGKMO06]. Since bottom up in-
dex construction is typically not very costly compared to the join algorithm, our method
performs this preprocessing step on CPU. After index construction, we have not only a
directory in which the points are organized in a way that facilitates search. Moreover, the
points are now clustered in the array, i.e. points which have neighboring addresses are
also likely to be close together in the data space (at least when projecting on the first few
dimensions). Both effects are exploited by our join algorithm displayed in Figure 5.

Instead of performing an outer loop like in a sequential indexed NLJ, our algorithm now
generates a large number of threads: One thread for each iteration of the outer loop (i.e.
for each query point ¢). Since the points in the array are clustered, the corresponding query
points are close to each other, and the join partners of all query points in a thread group
are likely to reside in the same branches of the index as well. Our kernel method now
iterates over three loops, each loop for one index level, and determines for each partition
if the point is inside the partition or, at least no more distant to its boundary than e. The
corresponding subnode is accessed if the corresponding partition is able to contain join
partners of the current point of the thread. When considering the warps which operate in
a fully synchronized way, a node is accessed, whenever at least one of the query points of
the warps is close enough to (or inside) the corresponding partition.

For both methods, indexed and non-indexed nested loop join on GPU, we need to address
the question how the resulting pairs are processed. The most general technique is to report
the results to the CPU where they can be further processed and permanently stored if
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algorithm GPUindexedJoin(data set D)
deviceMem index idx := makelndexAndSortData(D); // changes ordering of datapoints
int #threads := | D|, #threadsPerGroup := 64;
for i = 1 ... (#threads/#threadsPerGroup) do
deviceMem float blockbounds|[:][] := calcBlockBounds(D, blockindex);
deviceMem float D'[|[] := D[][];
startThreads (indexedJoinKernel, #threads, #threadsPerGroup); // one thread per datapoint
waitForThreadsToFinish ();
end.

algorithm indexedJoinKernel (int threadid, int blockid)

register float [] := D’ [threadid](] ; I/ copy the point from DM into the register

shared float myblockbounds[] := blockbounds|[blockid][];

for z; := 0 ... indexsize.z do

if IndexPagelntersectsBoundsDim1(idx,myblockbounds,z ;) then
for y;, := 0 ... indexsize.y do
if IndexPagelntersectsBoundsDim2(idx,myblockbounds,z;, ;) then
for z; := 0 ... indexsize.z do
if IndexPagelntersectsBoundsDim3(idx,myblockbounds,z;, y;, z;) then
for w := 0 ... IndexPageSize do
synchronizeThreadGroup();
shared float p[] :=GetPointFromIndexPage(idx,D’, =;, y:, zi, w);
synchronizeThreadGroup();
if dist(p, g) < e then
report (p, ¢) as a result pair using synchronized writing

end.

Figure 5: Algorithm for Similarity Join on GPU with Index Support.

required. This is easily possible by a buffer in DM which can be copied to the CPU after
the termination of all kernel threads. The result pairs must be written into this buffer in a
synchronized way to avoid that two threads write simultaneously to the same buffer area.
The CUDA API provides atomic operations (such as atomic increment of a buffer pointer)
to guarantee this kind of synchronized writing. Buffer overflows are also handled by our
similarity join methods. If the buffer is full, all threads terminate and the work is resumed
after the buffer is emptied by the CPU.

6 Experimental Evaluation

To evaluate the performance of similarity join on GPU, we compare four different variants
for performing similarity join: (1) nested loop join on CPU, (2) NLJ on CPU with index
support, (3) NLJ on GPU and (4) NLJ on GPU with index support. All variants have been
implemented in C++. The index structure described in Section 5 was used in variant (2)
and (4). The experiments have been performed on a workstation with Intel Core 2 Duo
CPU E4500 2.2 GHz and 2 GB RAM which is supplied with a NVIDIA 8500GT GPU (2
multiprocessors each consisting of 8 processors) with 512MB VRAM.

We generated three §-dimensional synthetic data sets of various sizes (up to 10 million
points) with different data distributions: Data set DS1 contains uniformly distributed data.
DS2 consists of 5 Gaussian clusters which are randomly distributed in feature space. Sim-
ilar to DS2, DS3 is also composed of 5 Gaussian clusters, but the clusters are correlated.
The threshold e was selected to obtain a join result where each point was combined with
one or two join partners on average.
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Figure 6: Experimental Results: Runtime in seconds on different data volumes ranging from 250,000
(0.25 M) to 11.8 (11.8 M) million points.

Figure 6 displays the runtime in seconds of all four variants for similarity join in log-
arithmic scale. The time needed for data transfer from CPU to GPU and back as well
as the (negligible) index construction time has been included. NLJ on GPU with index
support performs best in all experiments. Note that, due to massive parallelization, NLJ
on GPU without index support outperforms CPU without index by a large factor (15.9
on 180 MByte of uniform data). The GPU algorithm with index support outperforms
the corresponding CPU algorithm (with index) by a factor of 4.6. The overall improve-
ment of the indexed GPU algorithm over the non-indexed CPU version is 246. This result
demonstrates the potential of boosting performance of database operations with design-
ing specialized index structures and algorithms for GPU. Further experiments (varying
dimensionality, join selectivity (e¢) and fanout and number of levels of the index) were
conducted but must be left out due to space limitations. The speedup of the GPU versions
over the corresponding CPU versions was always in the same order of magnitude like in
the experiments shown here.

7 Conclusions

In this paper, we have addressed the question, how similarity join algorithms can be effi-
ciently executed on Graphics Processing Units (GPU). We have proposed an index struc-
ture which is particularly suited to be held in the Device Memory of the GPU and which
can be accessed by kernel functions of the GPU in an efficient way. Since graphics proces-
sors correspond to a highly parallel architecture consisting of up to some hundreds of
single programmable processors, we have also shown how similarity join algorithms can
be parallelized. We have proposed two efficient similarity join algorithms, one based on
the nested loop join and the other based on the indexed nested loop join. Both algorithms
are particularly dedicated for GPU processing and outperform the sequential algorithms
by a large factor.
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