
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 17

Just test what you cannot verify!1

Mike Czech2 Marie-Christine Jakobs3 Heike Wehrheim4

Abstract: Software verification is an established method to ensure software safety. Nevertheless,
verification still often fails, either because it consumes too much resources, e.g., time or memory, or
the technique is not mature enough to verify the property. Often then discarding the partial verifica-
tion, the validation process proceeds with techniques like testing.

To enable standard testing to profit from previous, partial verification, we use a summary of the ver-
ification effort to simplify the program for subsequent testing. Our techniques use this summary to
construct a residual program which only contains program paths with unproven assertions. After-
wards, the residual program can be used with standard testing tools.

Our first experiments show that testing profits from the partial verification. The test effort is reduced
and combined verification and testing is faster than a complete verification.

Keywords:combination verification and validation, conditional model checking, static analysis, test-

ing, slicing

1 Overview

Although automatic software verification and its tool support evolved in recent years, soft-

ware verification still fails. The verified property may be beyond the capabilities of a tool

or its verification requires too many resources, e.g., time and memory. Thus, verification

cannot be applied in an “on-the-fly” context in which validation should be carried out in a

small amount of time and probably on a device with restricted resources. To still gain con-

fidence in the software, after a failed verification, further validation techniques like testing

are applied which often discard the previous, partial verification results.

Within the Collaborative Research Centre SFB 901 at the University of Paderborn we

developed two orthogonal approaches to combine verification and testing [CJW15]. Our

idea is to consider the partial verification during testing and only test paths which have not

been fully verified. To use standard testing techniques we build a new program for testing,

the residual program, which contains only the non-verified paths. Both approaches start

with a verification tool that keeps track of its (abstract) state space exploration in terms

of an abstract reachability graph (ARG). If the verification tool stops with an uncomplete

verification, it generates a condition as proposed in conditional model checking [Be12].

1 This work was partially supported by the German Research Foundation (DFG) within the Collaborative Re-

search Centre “On-The-Fly Computing” (SFB 901).
2 Universität Paderborn, Institut für Informatik, Warburger Str. 100, 33098, Paderborn, mczech@mail.upb.de
3 Universität Paderborn, Institut für Informatik, Warburger Str. 100, 33098, Paderborn,

marie.christine.jakobs@upb.de
4 Universität Paderborn, Institut für Informatik, Warburger Str. 100, 33098, Paderborn, wehrheim@upb.de



18 Mike Czech, Marie-Christine Jakobs und Heike Wehrheim

This condition is related to the ARG and describes in a graph manner which program paths

are proven correct and which remain. Next, our approaches use the condition to construct

the residual program. Afterwards, the residual program is tested.

Our first approach computes its residual program via a product combination of the program

and condition, excluding paths of the condition which are proven correct. Thus, due to e.g.

loop unwindings during verification, the residual program’s structure may differ from the

original program. It is only a semantical subprogram.

Our second approach constructs a syntactical subprogram which contains all statements

that influence the assertions which have not been fully verified. These assertions are all

assertions on the unexplored paths in the condition and become the slicing criteria for

dependence based slicing. At last, dependence based slicing builds the residual program.

We can easily combine our two approaches. First, we apply the product construction tech-

nique to construct an intermediate residual program. Second, the set of all assertions in the

intermediate residual program becomes our slicing criterion. Finally, we slice the interme-

diate residual program to obtain the final residual program for testing.

In our experiments, we used the verification tool CPACHECKER [BK11] for partial ver-

ification, Frama-C [Cu12] for slicing and the concolic test tool KLEE [CDE08]. On our

small benchmark suite, the combination of verification and testing was mostly faster than

complete verification. Additionally, the two slicing based approaches reduced the test ef-

fort (number of tests and program size) but none always outperformed the other.

Our proposed combinations of verification and testing demonstrate that testing benefits

from previous partial verification.

References

[Be12] Beyer, Dirk; Henzinger, Thomas A.; Keremoglu, M. Erkan; Wendler, Philipp: Conditional
Model Checking: A Technique to Pass Information Between Verifiers. In: FSE. FSE ’12.
ACM, pp. 1–11, 2012.

[BK11] Beyer, Dirk; Keremoglu, M.Erkan: CPAchecker: A Tool for Configurable Software Veri-
fication. In (Gopalakrishnan, Ganesh; Qadeer, Shaz, eds): CAV. volume 6806 of LNCS.
Springer, pp. 184–190, 2011.

[CDE08] Cadar, Cristian; Dunbar, Daniel; Engler, Dawson: KLEE: Unassisted and Automatic Gen-
eration of High-coverage Tests for Complex Systems Programs. In: OSDI. OSDI’08.
USENIX Association, pp. 209–224, 2008.

[CJW15] Czech, Mike; Jakobs, Marie-Christine; Wehrheim, Heike: Just Test What You Cannot
Verify! In (Egyed, Alexander; Schaefer, Ina, eds): FASE, volume 9033 of LNCS, pp.
100–114. Springer Berlin Heidelberg, 2015.

[Cu12] Cuoq, Pascal; Kirchner, Florent; Kosmatov, Nikolai; Prevosto, Virgile; Signoles, Julien;
Yakobowski, Boris: Frama-C. In (Eleftherakis, George; Hinchey, Mike; Holcombe, Mike,
eds): SEFM. volume 7504 of LNCS. Springer, pp. 233–247, 2012.


