SQLScript: Efficiently Analyzing Big Enterprise Data in
SAP HANA

Carsten Binnig, DHBW Mannheim
carsten.binnig @dhbw-mannheim.de

Norman May, SAP AG Walldorf
norman.may @sap.com

Tobias Mindnich, SAP AG Walldorf
tobias.mindnich@sap.com

Abstract: Today, not only Internet companies such as Google, Facebook or Twitter do
have Big Data but also Enterprise Information Systems store an ever growing amount
of data (called Big Enterprise Data in this paper). In a classical SAP system landscape
a central data warehouse (SAP BW) is used to integrate and analyze all enterprise data.
In SAP BW most of the business logic required for complex analytical tasks (e.g., a
complex currency conversion) is implemented in the application layer on top of a stan-
dard relational database. While being independent from the underlying database when
using such an architecture, this architecture has two major drawbacks when analyzing
Big Enterprise Data: (1) algorithms in ABAP do not scale with the amount of data and
(2) data shipping is required.

To this end, we present a novel programming language called SQLScript to effi-
ciently support complex and scalable analytical tasks inside SAP’s new main-memory
database HANA. SQLScript provides two major extensions to the SQL dialect of SAP
HANA: A functional and a procedural extension. While the functional extension al-
lows the definition of scalable analytical tasks on Big Enterprise Data, the procedural
extension provides imperative constructs to orchestrate the analytical tasks. The major
contributions of this paper are two novel functional extensions: First, an extended ver-
sion of the MapReduce programming model for supporting parallelizable user-defined
functions (UDFs). Second, compared to recursion in the SQL standard, a generalized
version of recursion to support graph analytics as well as machine learning tasks.

1 Introduction

Today, not only Internet companies such as Google, Facebook or Twitter do have Big Data
but also Enterprise Information Systems of companies in other industries store an ever
growing amount of mainly structured data (called Big Enterprise Data) that needs to be
analyzed. For example, large SAP systems hold more than 70TB of structured data in a
single database instance. Moreover, looking at complex system landscapes with multiple
SAP systems the total data volume that needs to be analyzed is even much higher while
the total amount of data is constantly growing.

In a classical SAP system landscape a central data warehouse (SAP BW) based on a stan-

363

dard off-the-shelf relational database is used to integrate and analyze all enterprise data.
In SAP BW most of the business logic for complex analytical tasks (e.g., a complex cur-
rency conversion) is implemented in the application layer on top of the database using the
imperative language ABAP in order to be independent from a certain database product.
However, this architecture has two major drawbacks when analyzing Big Enterprise Data:
First, algorithms implemented in ABAP do not automatically scale with the amount of
data that needs to be analyzed. Second, data transfer time is growing with the amount of
data that needs to be transferred from the database into the application layer.

In order to implement scalable data warehousing solutions today, MapReduce, in particular
its open-source implementation Hadoop [DGO08, HAD12], is often used instead of a clas-
sical data warehouse on top of a relational database. A major reason for the wide adoption
of Hadoop is its simple but scalable programming model consisting of two higher-order
functions (i.e., map and reduce), that allow complex user-defined functions that can be
parallelized efficiently. High-level programming languages for composing MapReduce
programs (e.g., Hive [TSJT10], PigLatin [ORST08]) as well as further extensions for
iteration and recursion (e.g., HaLoop [BHBE10]) further quelled arguments in favor of
Hadoop.

However, compared to relational databases Hadoop is inherently inefficient:

e First, Hadoop does not natively support efficient relational operations such as par-
allel joins in an efficient manner. Instead it supports only a strict sequence of map
and reduce functions. This often leads to complex workarounds (e.g., for expressing
joins).

e Second, Hadoop always executes full table-scans and does not provide indexes to
selectively read data.

e Third, Hadoop does not provide sophisticated cost-based optimizations as relational
databases typically do. Instead analytical tasks are often executed as implemented
by the user instead of re-ordering operations in the execution plan.

e Finally, Hadoop has an inefficient execution model which materializes and re-partitions
all intermediate results even if this is not required in many cases.

In this paper, we present a novel programming language called SQLScript that is cur-
rently provided by SAP HANA to support complex analytical tasks inside the database.
In contrast to other existing work (e.g., HadoopDB [ABPA*09], Hadoop++ [DQRJT10])
which mainly focuses on fixing the above mentioned shortcomings of Hadoop by integrat-
ing ideas from the database world into Hadoop, we directly integrate complex scalable
analytical functions into a commercial main-memory database system (SAP HANA) by
extending its query language SQL. Thus, we can directly benefit from the maturity of the
database and its efficient query optimization and execution techniques.

In its current version that is commercially available SQLScript [SQL12] provides two ma-
jor extensions to the SQL dialect of SAP HANA: A functional and a procedural extension.
The functional extension allows the definition of optimizable (side-effect free) functions
which can be used to express and encapsulate complex data flows on Big Enterprise Data.

364

The procedural extension provides imperative control flow constructs like cursors or ex-
ceptions as they are defined for SQL stored procedures. While the functional extension is
designed to be highly optimizable and parallelizable to efficiently analyze large amounts
of enterprise data, the procedural extension is designed to implement orchestration logic
(i.e., to pre- and post-process data for the execution of analytical tasks).

As the main contributions, this paper presents two novel language constructs of the func-
tional extension of SQLScript that are currently available as an internal prototype: First, we
present the integration of a more flexible and efficient version of the MapReduce program-
ming model into SQLScript for supporting parallelizable user-defined functions (UDFs)
which avoids the above-mentioned drawbacks of its original version in Hadoop. Second,
we present an extension to support a generalized version of recursion when compared to
recursion in the SQL standard. These two extensions help to implement complex but scal-
able business functions inside the database. Both extensions are driven by real world use
cases to support complex data analytics for Big Enterprise Data. We show an experimental
evaluation based on these use cases to show the efficiency of SQLScript.

The outline of this paper is as follows: Section 2 introduces the novel programming lan-
guage of SAP HANA called SQLScript. Section 3 then presents the integration of an ex-
tended version of the MapReduce programming model into SQLScript to support efficient
and parallelizable UDFs. Section 4 discusses the second novel extensions to SQLScript to
support recursion. Finally, the remaining two Sections show an experimental evaluation
using two use cases of SAP and discuss related work.

2 SQLScript
2.1 Main Idea

As already mentioned in the introduction, in this paper we present a language called
SQLScript which integrates complex scalable analytical functions into a SAP’s main-
memory database system HANA. Therefore, we first discuss why the existing program-
ming models of relational databases (i.e., SQL and SQL stored procedures) are not well
suited for analyzing Big Enterprise Data.

Relational databases traditionally offer two approaches to ship its code to the data: (1)
declarative SQL statements or (2) stored procedures implemented using a dialect of SQL
stored procedures (e.g. PL/SQL or T-SQL) which embed SQL statements for accessing the
data. While SQL statements without SQL stored procedures do not allow to implement
complex business logic, imperative language extensions such as SQL stored procedures
cannot be efficiently optimized and parallelized.

In order to tackle the before-mentioned issues, SQLScript provides two major extensions
to the declarative SQL dialect of SAP HANA: A functional and a procedural extension.
While the functional extension allows the definition of declarative and optimizable (side-
effect free) functions' to analyze Big Enterprise Data, the procedural extension provides

I Created as read-only procedures in the database.

365

imperative constructs to implement orchestration logic (i.e., to pre- and post-process data
for the execution of an analytical task). Consequently, procedures in SAP HANA are either
typed as functional (i.e., as read-only) and have a bag-oriented semantics or they are of a
procedural type (i.e, with side-effects) and have a tuple at a time semantics [SQL12].
While procedural code is allowed to call functional code in SQLScript, this is not allowed
vice versa (see Figure 1). The reason is that the functional extension is designed to be
scalable to work on large amounts of data (see Section 2.2) while the procedural extension
supports more complex language constructs which do not scale as well. Thus calling pro-
cedural code from the functional code would mitigate the scalable execution of functional
procedures.

Client

SQLScript
(Procedural)

§QLScript
(Functional)

Enterprise Data

SAP HANA

Figure 1: SQLScript: functional and procedural extension

The procedural extension provides control flow constructs as they are defined for SQL
stored procedures including conditional statements as well as loops over result sets. More-
over, data definition and data manipulation statements (i.e., inserts, updates, deletes) are
supported in the procedural extension.

The functional extension supports the definition of declarative read-only procedures (i.e.,
the side-effect free functions). Such a procedure can have multiple input and output pa-
rameters which can either be of a scalar type (e.g., INTEGER, DECIMAL, VARCHAR) or
of a table type (as defined in the database catalog). Basic language constructs inside a pro-
cedure are single assignments and calls to other read-only procedures. Single assignments
can be used to bind the result of a SQL statement (i.e., a table type) or a SQL expression
(i.e., a scalar type) to a variable.

Figure 2 shows an example of a read-only procedure, which has two scalar input param-
eters and returns two output tables (of types tt_publishers and tt_years) to the
caller. The underlying database schema is a simple star schema with a fact table called
orders and a dimension table called books.

The first statement in the procedure assigns a list of identifiers of publishers that publish
more books as given by the input parameter cnt to the variable big_pub_ids. This list
of publishers is then used to select those orders of books that have a publisher which is in
the given list of big publishers. The result is assigned to the variable big_pub_books.
Finally, the two final assignments compute the results for the two output parameters: the
revenue by publisher output _pubs as well as the revenue by year out put_years (for

366

the last 10 years).

A complete reference of the current version of SQLScript as it is available in the commer-
cial version of SAP HANA can be found in [SQL12].

CREATE PROCEDURE analyzeSales (IN cnt INTEGER, IN year INTEGER,

OUT output_pubs tt_publishers , OUT output_year tt_years)
LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN

big_pub_ids = SELECT pub.id FROM books — Query QI

GROUP BY pub_id HAVING COUNT (isbn) > :cnt;

big_pub_books = SELECT o.price, o.year, o.pub_id — Query Q2

FROM :big_pub_ids p, orders o
WHERE p.pub_id = o.pub.id;

output_pubs = SELECT SUM(price), pub_id — Query Q3

out

FROM :big_pub_books
GROUP BY pub_id;

put_year = SELECT SUM(price), year — Query Q4
FROM :big_pub_books
WHERE year BETWEEN :year —10 AND :year
GROUP BY year;

Figure 2: SQLScript: functional extension

The functional extension of SQLScript addresses the following drawbacks of the SQL
dialect in HANA which also hold for many other SQL dialects in relational databases:

Decomposing an SQL query can only be done using views. However when decom-
posing complex queries using views, all intermediate results are visible and must be
explicitly typed. Moreover SQL views cannot be parameterized which limits their
reuse. SQLScript supports decomposition by assignments and parameterization.

An SQL query can only return one result at a time. As a consequence the computa-
tion of related result sets must be split into separate, for the database independent,
queries which prevents optimization potentials. SQLScript supports multiple input
and output parameters.

Purely declarative SQL queries do not have features to express complex business
logic (e.g. the currency conversion of SAP). Only calls to UDFs in a SQL query
(as defined in the SQL standard) enable complex business logic. However, these
procedures are implemented using imperative SQL stored procedures and thus can
not be optimized and parallelized efficiently. The functional extension of SQLScript
is declarative and thus supports efficient optimization and parallelization.

Moreover, the functional extension of SQLScript also addresses the following shortcom-
ings of MapReduce programs in Hadoop: The declarative nature of SQLScript allows
for optimizations inside the database which are not available for Hadoop programs. More-
over, the integration of SQLScript into a relational database provides a streaming execution
model instead of an always materializing execution model with efficient relational opera-
tors as well as index structures for selectively reading data from tables. Details about the

367

optimization and execution of SQLScript read-only procedures of the functional extension
are discussed in the following Section.

2.2 Optimization and Execution

For execution, a read-only procedure is compiled into a data-flow graph (consisting of
relational operators) and optimized. For optimization, novel rules have been added to the
rewriting phase of the optimizer of SAP HANA to rewrite graph-based plans instead of
tree-based plans only (see [BRFR12] for more details). An execution plan for the example
of Figure 2 is shown in Figure 3 (left hand side). For simplification, the plan shows boxes
which represent the individual query fragments of the procedure instead of single relational
operators.

partitioned partitioned partitioned partitioned
by pub_id by year by pub_id by year

— 3
output_pubs output_years output_pubs output_years
(part 1) (part1) (part 2) (part 2)

o
output_pubs output_years

Query 2

pah Aq
pauonyind-qgns

d Aq
pauonind

pign

Figure 3: SQLScript: execution plan of a read-only procedure

During the execution, SAP HANA materializes intermediate results that are consumed by
more than one operator. In the example before, the intermediate result produced by Query
Q2 gets materialized since it is consumed by the operators of Query Q3 and Query Q4.
Materialization in SAP HANA is also used to re-partition data for better parallelism.
Assume, that the tables book and orders in the example before are co-partitioned by
the attribute pub_id. In this case, all queries (Query Q1, Query Q2 and Query Q3 shown
in Figure 3 on the right hand side) can be executed in parallel using the same partitioning
scheme. However, Query Q4 needs to repartition its input by the attribute year. There-
fore, the intermediate result of Query Q2 is materialized using a partitioning scheme which
partitions the result by pub_id and sub-partitions each partition by the attribute year. If
the plan is executed on different nodes (as in the example), Query Q3 can read all local
sub-partitions from one node while Q4 must read sub-partitions from different nodes (see
Figure 3 on the right hand side).

368

3 Generalized MapReduce
3.1 Main Idea

MapReduce is a programming model introduced by Google to analyze big data [DGO8].
MapReduce is often applied in use cases with unstructured and semi-structured data (e.g.,
log analysis) but can also be found as a replacement for classical warehouse solutions on
structured data. Originally, the interfaces of both functions map and reduce are defined as
follows:

map(ki,v1) — list([ke, va])
reduce(ka, list([v2)]) — list([ks,v3])

Logically, both functions map and reduce work on tuples with a key and a value. The map
function processes each incoming tuple [k;, v;] separately and produces a list (i.e., a table)
of tuples [k, v3]. Therefore, each individual map call could be executed in parallel without
synchronizing. In a subsequent shuffle step, the output of the map function is grouped by
the distinct key values of k5. This step is implicitly executed by the framework. The
result is then passed as input to the reduce function. Finally, the reduce function typically
aggregates the values in list([v2)] with the same group key k2 and returns one or a several
tuples [k3, v3] as output (i.e., again a table).

In SAP HANA, we use the MapReduce programming model only for structured data (i.e.,
tables). Thus, we define the interfaces based on structured table types instead of key-value
pairs. The table types define the structure of the input and output data. Moreover, to allow
parameterization we extend the original interface definitions of both functions to support
multiple input tables as well as multiple scalars (e.g., this enables the implementation of
joins in both functions). Thus, in SAP HANA both functions map and reduce are logically
defined as follows:

map(P, [Ty, ..., Tk, [s1, -, s1]) = Q
reduce(R GROUP BY a1, ..., a.), [T], ..., 0], [81, -y 50]) — S

oy Sp

The map function gets a table P (with a given table type) as input and applies the user-
defined map function to each tuple p € P individually. For each tuple p, the map function
can append multiple tuples to the output table) (with a given table type) . The reduce
function gets a table R (with a given table type) as input and applies the user-defined
reduce function to each group in table R. The grouping specification is given by a list of
group-by attributes [a1, ..., a,]. For each group, the reduce function can append multiple

tuples to its output table S (with a given table type).

As mentioned before, compared to the classical MapReduce framework, the map and the
reduce function has additional input parameters: (1) a list of input tables [T7, ..., T] re-
spectively [T7,...,7),] and (2) a list of scalar values [sy, ..., s;] respectively [s], ..., s]]

ttr Y n

369

that can be used to parameterize the code. While the input table P of the map function
is processed row-wise and the input table) of the reducer is processed group-wise, the
additional input tables can be read completely by both functions. A typical example of
such an additional input table 7; is a currency conversion table that is be used to lookup
exchange rates inside the map function for each row in P.

Another major difference to the classical programming model of the MapReduce frame-
work is that there is no strict sequence of map and reduce functions (i.e., the output of a
map function does not need to be consumed by a reduce function in SQLScript). Instead,
any arbitrary sequence of operations can be used (e.g., the output of a map function could
be used by another map function or an SQL query). Thus, complex user-defined functions
expressed as mappers or reducers can be mixed with any other SQL statements. Thus a
mapper can also be seen as a row-level UDF in SQL with the difference that it can take
additional parameters as input.

An example which extends the function in Figure 2 by a map and a reduce function is given
in Figure 4 and Figure 5. The call of the map function in Figure 4 calculates a currency
conversion (before the aggregations in Q3 and Q4). The map function in Figure 5 is de-
fined as a separate read-only procedure which has a special type (i.e., type MAPPER). The
map function is applied to each tuple of its input table big_pub_books and the output
is assigned to the output parameter big_pub_books_conv. Additionally, the function
gets a constant input table conv_rates and a constant scalar value target_curr to
implement a currency conversion. The reduce function (which replaces aggregation Query
Q4) is defined in a similar way as type REDUCER in Figure 5.

CREATE PROCEDURE analyzeSalesConv (
IN cnt INTEGER, IN conv_rates tt_convrates
OUT output_pubs tt_publishers , OUT output_year tt_years)
LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN
big_pub_ids = SELECT pub_.id FROM books — Query QI
GROUP BY pub_id HAVING COUNT (isbn) > :cnt;
big_pub_books = SELECT o.price, o.year, o.pub_id, o.curr
FROM :big_pub_ids p, orders o
WHERE p.pub_id =o.pub_id;

Query Q2

CALL mapConv (: big_pub_books, [:conv_rates], ["EUR”], :big_pub_books_conv)

output_pubs = SELECT SUM(price), pub_id — Query Q3
FROM :big_pub_books_conv
GROUP BY pub_id;

CALL reduceBooksByYear (: big_pub_books_conv GROUP BY year ,
coutput_year); — Query Q4
END;

Figure 4: SQLScript: calling a map and a reduce function
Logically the user-defined code which is implemented by the mapper refers to one tuple

in the input table big_pub_books (by calling the method currentTuple ()). The
additional constant input table conv_rates is referred as a complete table. In a similar

370

CREATE PROCEDURE mapConv (IN big_pub_books tt_big_-books ,
[IN conv_rates tt_conv_rates], [IN target_curr CHAR(3)],

OUT big_pub_books_conv tt_big_books_conv)

LANGUAGE C++ TYPE MAPPER AS

BEGIN
// Pseudo code
string srcCurr = big_pub_book.currentTuple (). getColumn(”currency”);
decimal price = big_pub_book.currentTuple (). getColumn(”price”);
decimal rate = getRate(conv_rates, srcCurr, target_curr);
Tuple big_pub_book_conv = new Tuple();
big_pub_book_conv.setColumn(”convPrice”, pricexrate);

// set other columns

big_pub_books_conv.appendRow (big_pub_book_conv);
END;

CREATE PROCEDURE reduceBooksByYear(
IN big_pub_books_conv tt_big_books_conv GROUP BY year, [], [],
OUT books_by_year tt_years)
LANGUAGE C++ TYPE REDUCER AS
BEGIN
// Pseudo code
decimal price = 0;
int year = —1;
for (Tuple big_pub_book_conv: big_pub_books_conv.currentGroup ()){
price += big_pub_book_conv.getColumn(”price”);
if (year==—1)
year = big_pub_book_conv.getColumn(”year”);

}

Tuple books_by_year = new Tuple ();

books_by_year.setColumn (" price”, price);

books_by_year.setColumn(”year”, year);

books_by_year.appendRow (book_by_year);
END;

Figure 5: SQLScript: map and reduce function

way, the user-defined code which is implemented by the reducer in the example refers
to one group of tuples in the input table big_pub_books_conv with the same values
for the group-by attribute year. However, as described in the next Section, the physical
execution of both functions is different.

3.2 Optimization and Execution

For compilation a call to a map or a reduce function is translated into a map or a re-
duce operator in the plan. Figure 8 shows the compiled plan for the function in Figure 5.
Compared to the logical execution of a map function, a map operator physically does not
process a tuple at a time as input of its input table P. Instead, the map operator processes
partitions of its input table P (i.e., a bag of tuples) and applies the map function to each

371

input tuple in its partition separately. Each input partition of table P can be processed in
parallel by separate map operators. A map operator can produce multiple output tuples for
each input tuple that are appended to its output.

A similar execution model is used for the reduce operator. Instead of processing only one
input group of its input table () at a time, the reduce operator gets an input partition which
can contain multiple groups. Before execution, the reduce operator thus groups its input
by the given grouping attributes. The reduce operator then applies the given user-defined
code to each group individually. The reduce operator can also produce multiple output
tuples for each input group that are appended to its output.

For both functions, the additional input parameters (i.e., the tables and scalar values) are
logically replicated to all operators which process an input partition of table P and table
Q. If the two operators which refer to the same input parameter are executed on the same
node, no physical replication is necessary. In this case, both operators refer to the same
input data. However, if two operators which refer to the same input parameter are executed
on different nodes, the data must by physically replicated.

Figure 6 shows the execution of a map operator and a reduce operator which result from
the procedures in Figure 5. In this example we see two instances of the map operator that
are applied in parallel to each row of the two different input partitions. We do not show the
two additional input parameters (i.e., the currency conversion table and the target currency)
for simplicity. These two input parameters are logically replicated to all instances of the
map and reduce operator.

Moreover, on the right hand side of Figure 6, we see one instance of the reduce operator
which processes the union of the two output partitions of the two map instances. The
reduce operator has to group its input by the attribute year and then processes the two
resulting groups separately producing one output tuple per group.

price year ‘ pub_id curr price year pub_id curr price year
11.99 2011 1 EUR 9.84 2011 2 EUR
999 2012 1 EUR | [12.99 2011 2 EUR |
620 2012 1 EUR | [578 2012 2 EUR |

Reduce

price year curr year curr 9.84 2011 2 EUR
1545 2011 1 usb 3399 2011 2 LTL 12.99 2011 EUR
9.99 2012 1 EUR 12.99 2011 2 EUR 11.99 2011 EUR
7.99 2012 1 usb } 1999 2012 2 LTL 5.78 2012 EUR
9.99 2012 EUR
6.20 2012 EUR

zdnos8 1 dnoss

BN NI}

Figure 6: SQLScript: execution model for the map and the reduce operator

For the parallel execution, SQLScript allows annotations to define a partitioning specifica-
tion for the input and output tables of both operators. Figure 7 shows an example of this
annotations for both types of functions. The semantics of this partitioning specification
is as follows: If the input of a map or a reduce operator is partitioned by the annotated
partitioning specification, then the output is guaranteed to satisfy the given output parti-
tioning specification as well. This helps to avoid irrelevant repartitioning in the plan which
is expensive in a parallel distributed execution environment.

For example, if the input of the map function in Figure 7 is partitioned by the attribute

372

© ® 9 U B W o —

pub_id then the operator guarantees that the output satisfies the same partitioning spec-
ification. Defining the partitioning specification for a map or a reduce is optional. For
the reduce operator, the partitioning schema must be compatible to the given grouping
attributes (i.e., it has to guarantee that groups with the same group value are in the same
partition).

CREATE PROCEDURE mapConv (

IN big_pub_books tt_big_-book PARTITIONED BY pub_id,

IN conv_rates table_conv_rates , IN targetCurr STRING,

OUT big_pub_books_conv tt_big_-books_conv PARTITIONED BY pub_id)
LANGUAGE C++ TYPE MAPPER AS

CREATE PROCEDURE reduceBooksByYear (

IN big_pub_books tt_big_books_conv GROUP BY year PARTITIONED BY year,
OUT books_year tt_big_-books_year PARTITIONED BY year)

LANGUAGE C++ TYPE REDUCER AS

Figure 7: SQLScript: partitioning specification for a map and a reduce function

Using this partitioning specification, the optimizer can dynamically detect the need to
re-partition the input tables of a map or a reduce operator. Consequently, the implicit
grouping step which is executed in the original MapReduce framework before each reduce
step can be avoided in SQLScript if the partitioning specification of the output of the
previous step matches the input partitioning specification. The number of partitions as well
as the partitioning method (e.g., by hashing) that are actually used for query processing is
determined by the optimizer and depends on several factors (e.g., the partitioning scheme
of the input tables, the degree of parallelism, the intermediate result sizes).

In Figure 8, we see a parallelized execution plan for the procedure in Figure 5. In this
example, the input tables are partitioned by the attribute pub_id into two partitions. This
partitioning scheme is kept for the input of the map operator. Thus, the output of the
map operator is also partitioned by the attribute pub_id (as defined by the interface).
This output can be consumed directly by Query Q3 without repartitioning. However, be-
fore the output can be consumed by the reduce operator (i.e., Query Q4) it must be re-
partitioned since Q4 needs to group its input by the attribute year. This re-partitioning
can be achieved either by a simple union of both output partitions or by sub-partitioning
the output partitions by the attribute year (as described in Section 2 before).

Currently, no other optimizations (like selection-pushdown) are applied for a map or a
reduce operator. However, additional annotations could help to find out which rewrite
rules can be applied to these operators. Adding annotations for the rewriting phase is one
avenue of future work.

373

partitioned partitioned partitioned partitioned
by pub_id by year by pub_id by year

output_pubs
(part 1)

i ———
R — e

—
conv_rates

(replicated)

output_years
(part 1)

output_pubs
(part 2)

output_years
(part 2)

1pah Aq
pauonnupnd-gns

—
conv_rates

(replicated)

d Aq
pauonniod

orders
(part 1)

piqn:

Node 1 Node 2

Figure 8: SQLScript: execution plan including a map operator

4 Generalized Recursion
4.1 Main Idea

Recursion enables different kinds of use cases in data analytics such as graph analysis and
machine learning tasks. Major use cases for Big Enterprise Data include the ability to
traverse hierarchical data (e.g., hierarchies of product groups, employee hierarchies) and
to process graph algorithms (e.g., shortest paths or convex hulls). Moreover, algorithms
for machine learning (e.g., k-means) are also require this language construct to examine
enterprise data.

Compared to the classical definition of recursion in the SQL standard, SQLScript supports
a generalized version of recursion. In the SQL standard the definition of a recursive view
(usingaWITH RECURSIVE-statement) is not parameterizable and does not support mul-
tiple output parameters. In SQLScript, recursion is defined on the procedure level (i.e.,
read-only procedures can call themselves) instead on the statement level. Thus, scalars
and tables can be used as input parameters and a recursive procedure can produce multiple
output parameters. Iterative problems can often be re-formulated using recursion. Thus,
in the functional extension, we currently do not explicitly support a language construct
for iteration. However, the procedural extension of SQLScript [SQL12] supports iteration
(e.g., loops over result sets).

Inside a recursive procedure any other read-only procedure (i.e., also map or reduce func-
tions) can be called. Thus, iterative machine learning algorithms as supported by HalL.oop
[BHBE10] are supported directly in SQLScript by calling map functions and reduce func-
tions inside the recursion.

The recursive call in SQLScript is implemented using a IF-ELSE statement at the end of
a function (i.e., we support only tail-recursive calls). The termination condition is given

374

by the predicate of the IF clause. The recursive call must be the first statement in the
IF clause while the subsequent statements must assign results to all output parameters
(using a simple assignment, a UNION or a UNION ALL statement). The ELSE block is
executed if the termination condition holds. That block is only allowed to assign results
to the output parameters (again using a simple assignment, a UNION or a UNION ALL
statement).

Figure 9 shows an example table which describes the connections between customers (e.g.,
in a CRM system). A typical task on this graph structure is to compute a list of customers
that are connected to a key customer only by edges which have a weight which exceeds
a certain threshold. A possible input parameter to such a procedure is the depth, i.e., the
distance of customers in the graph that are analyzed when using one certain customer as a
starting point.

Frm To Weight
1 2 3
1 3 2
2 4 3
2 5 1
2 6 4
3 6 2
6 7 5

Figure 9: Table CustomerConnections

This task can be implemented in SQLScript using a recursive read-only procedure as the
one shown in Figure 10. The procedure has the following input parameters: the maximal
depth (parameter depth), the current depth (parameter currDepth) and a list of con-
nections (parameter current) that resulted from the last recursion step (i.e., a table with
a from and a to column). In the first call of the procedure, the parameter current
holds the customer which is used as starting point.

The first assignment of the procedure filters the relevant connections that exceed a certain
threshold on the weight attribute. This intermediate result is an invariant for all recursion
steps. The intermediate result table relevant is then used to calculate a list of customers
that are connected to the given list of customers (i.e., to the input table current). If the
maximal depth is reached, the recursion stops. Otherwise the list of customers for the next
depth in the graph is calculated.

4.2 Optimization and Execution

A recursive procedure is compiled into a cyclic data flow graph as already described in
[BRFR12]. Figure 11 shows the data flow graph of the recursive procedure in Figure 7
(left hand side).

In order to optimize recursion, our extension to SAP HANA supports the following rewrites:

e Materialize Invariants: Invariants (i.e., partial plans that create intermediate results
which are static over different recursion steps) are separated and executed only once.

375

CREATE PROCEDURE convexHull (IN depth INTEGER, IN currDepth INTEGER,
IN current tt_fromto , OUT hull tt_fromto)
LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN
relevant = SELECT Frm, To — Query QI

FROM CustomerConnections
WHERE weight >= 2;

temp = SELECT c.Frm, r.To — Query 02

FROM : current ¢, :relevant r
WHERE ¢ .To = r.Frm;

currDepth = currDepth + 1;

IF (currDepth < depth) — Recusive Call C3

CALL convexHull(depth, currDepth, temp, temp2)
hull = :temp UNION :temp2;

ELSE

hull = :temp;

Figure 10: SQLScript: recursive procedure

This optimization is shown in Figure 7 on the right hand side: the invariant which
is stored in the intermediate result relevant is computed by a partial plan only
once. Compared to HalLoop materializing invariants is not implicitly hidden in the
execution model by caching but explicitly applied during the optimization phase.

e Internal Rewrites: Inside a recursive procedure, we can use all normal rewrites

such as selection- and projection-pushdown.

e Cross-Procedure Rewrites: If the results of a recursive procedure are consumed

by other procedures, we can apply the following rewrites: selection- and projection-
pushdown of the calling procedure are supported if the respective operator can be
pushed over the complete recursive procedure over an input table which is defined
recursively. For example, if in Figure 7 a selection c . frm=1 is executed on top of
the result hul1l then this selection can be pushed over the input current.

For parallelization, we analyze the plan dynamically for possible partitioning schemes and

add repartitioning operations into the plan as described before.

5 Experimental Evaluation

In this Section, we present the experimental evaluation of the two novel functional exten-
sions for SQLScript based on use cases of SAP: the generalized versions of MapReduce
as well as recursion. Both ideas are implemented at SAP as a prototype in SAP HANA to

extend the commercially available version of SQLScript.

As hardware we used a single machine with 512GB of main memory and four Intel Xeon

376

Procedure: Procedure:
convexHull convexHull

Query 2

current

relvant

e
Customer
Connections

current

Query 1

Customer
Connections

Figure 11: SQLScript: execution plan of a recursive procedure

Procedure:
convexHull
(invariant)

X7560 processors each with eight cores (i.e., 32 cores in total). The software stack con-
sisted of SUSE Linux 11 running a database instance of SAP HANA.

5.1 Experiment: Currency Conversion
The first experiment is based on the Shipping Priority Query (Q3) of the TPC-H bench-

mark [TPC12] which returns the first 10 selected rows. This query retrieves the unshipped
orders with the highest value. Figure 12 shows the original Query Q3:

© ® a9 L B W —

11

=)

SELECT
l_orderkey , o_orderdate, o_shippriority
SUM(1_extendedpricex(l—1_discount)) as revenue,
FROM customer, orders, lineitem
WHERE c_mktsegment = ’[SEGMENT]’
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date ’[DATE]’
and l_shipdate > date ’[DATE]’
GROUP BY 1_orderkey , o-orderdate, o_shippriority
ORDER BY revenue desc, o_orderdate
LIMIT 10;

Figure 12: TPC-H: query Q3

For the experiment, we extended this query to use a simplified version of the SAP currency
conversion before the aggregation on the attribute extended_price. Therefore, we
first pre-aggregated the data using the currency as an additional group-by attribute. Then,
we applied the currency conversion using different implementations (as described below).

377

Finally, we post-aggregated the result removing the currency from the group-by attribute.

The simplified version of the SAP currency conversion is based on a currency conversion
table as shown in Figure 13.

SCurreny ‘ TCurrency RefDate ‘ Rate
EUR usD 2012-10-15 1,3

usb EUR 2012-10-15 0,769
LTL EUR 2012-10-15 0,289

Figure 13: Table CurrConv

The currency conversion is based on the date of the conversion (i.e., the attribute RefDate)
and has three cases:

e Direct Conversion: There exists a conversion rate from the given source to the
target currency (e.g., as from EUR to USD or vice versa).

e Inverted Conversion: There exists only a conversion rate from the given target to
the source currency. Thus, the inverted rate is used (e.g., as from EUR to LTL).

e Indirect Conversion: There does neither exist a direct nor a inverted conversion.
In this case the conversion must be done using a reference currency (e.g., from LTL
to USD we have to use EUR as reference currency).

For the experiment, we executed the Shipping Priority Query (Q3) of the TPC-H bench-
mark in three variants. (1-SQL: No currency conversion) the original version of Q3 using
one SQL query, (2-SQLScript: Generalized MapReduce) a variant of Q3 including the
currency conversion implemented as a map function which takes the currency conversion
table as an additional input parameter and (3-SQLScript: Procedural) a variant of Q3 in-
cluding the currency conversion implemented using SQLScript procedural code which is
called for each row on the pre-aggregated result. Version (1) and (3) thus represent the
baselines (lower and upper limit).

For the variant (2) and (3), we extended the original 1ineitem table in the TPC-H
schema by a currency column curr and used the attribute o_orderdate as reference
date for the conversion. We generated additional data for the new column curr in the
table 1ineitem such that each case of the currency conversion must be executed with
the same probability. Additionally, we generated a currency conversion table (as shown in
Figure 13) holding information for all currencies and reference dates in the 1ineitem
table. As target currency for the function call, we used EUR.

Figure 14 shows the result of the execution of the three variants mentioned before on
different scaling factors (SF) for the TPC-H benchmark (up to SF 25). The variants (1)
and (3) have been executed using 32 threads. For variant (2) which uses the map operator
for the currency conversion, we used 16 and 32 threads (while all other operators of Q3
were still using 32 threads).

As we can see in Figure 14, the variant with the map operator is much faster than the pro-
cedural SQLScript implementation. The reason is that the procedural SQLScript variant

378

issues multiple SQL queries for the currency conversion while variant (2) only requires one
(complex) user-defined map operator which internally builds a hash index on the currency
conversion table to do fast lookups of the exchange rates. As a result, the complex user-
defined function implemented as a mapper adds only 200ms with 32 threads and 250ms
with 16 threads to the runtime of @3 for each scaling factor (since the pre-aggregated re-
sult has the same size for all scaling factors). The SQLScript procedural extension adds
additional 13s to the runtime of (3.

T T T
SQLScript: Procedural (32 Threads) ---+---
SQLScript: Generalized MapReduce (16 Threads) —¢— 7|
SQLScript: Generalized MapReduce (32 Threads) —=—

SQL: No Currency Conversion (32 Threads) «-- &)+

18000

16000

1000 —+

12000 —

10000 —

Time (ms)

8000 —

6000 B

4000 q

2000

o LB : ‘ |
’ ° 10 s - |

Scale Factor (SF)

Figure 14: TPC-H query Q3 with and without currency conversion

5.2 Experiment: Graph Analysis

For this experiment we used a recursive procedure which is similar to the one shown
in Figure 10 already. As data we used the table Customer of the TPC-H benchmark
and a table Livejournal (which has a similar schema as the table in Figure 9). The
table Live journal comes from the Stanford Network Analysis Project [Les12] which
provides data from social networks. The table Live journal has approximately 68m
entries with approx. 5m distinct nodes. For the table Customer, we used the SF 35 (i.e.,
approximately 5m customers) .

In order to select relevant entries from the table L.ive journal we join this table with the
table Customer based on the customer key. Moreover, we select customers from certain
nations only to reach a selectivity from 10% to 80% of the Livejournal table. The
result of this join corresponds to the table relevant in Figure 10.

We executed the recursive procedure with a maximal depth of 3 using different optimiza-
tion variants?: one variant which materializes invariants and another variant without this
optimization (i.e., the invariant is computed for each iteration). Moreover, we also varied
the number of partitions used from 1 to 8 for each of these variants to exploit parallelism
(while each operator was configured to use at most 8 threads). Figure 15 shows the runtime
for the different variants using selectivities from 10% to 80% for the selection operator on
the table Customer.

2We also executed the procedure with a maximal depth of 5 and 7 but the results looked similar.

379

500

T T T
1 Partitions (w/o materialization) ———
8 Partitions (w/o materialization) —>¢—
1 Partitions (w materialization) --£3---
2 Partitions (w materialization) ---€-
4 Partitions (w materialization) ---A---
400 - 8 Partitions (w materialization) ---%7---

300 —

Time (ms)

200} |

100

<>

0
10

40 50 60 70 80
Selected Rows (%)

Figure 15: Recursive query with and without materialization of invariants

As we can see in Figure 15, the runtime (of the variants which do not materialize the
invariant) is dominated by the redundant execution of the sub-plan which produces the in-
variant. Moreover, partitioning the plan (on one machine) speeds-up query processing due
to parallelism. The results when using 4 and 8 partitions (for the variants with materializa-
tion of the invariant) does not show a huge difference since the CPUs of the machine were
already saturated using 4 partitions (i.e., 8 threads per partition have been used). Thus,
increasing the parallelism to 64 threads on 8 partitions did not show a huge difference in
the resulting runtime.

6 Related Work

Most related to SOLScript are extensions to Hadoop to tackle its inefficiencies of query
processing in Hadoop in different areas such as new architectures for big data analytics,
new execution and programming models but also in the field of integrating systems like
MapReduce and databases.

HadoopDB [ABPA109] turns the slave nodes of Hadoop into single-node database in-
stances. However, HadoopDB relies on Hadoop as its major execution environment (i.e.,
joins are often compiled into inefficient map and reduce operations). Only in its commer-
cial version [BPASP11], HadoopDB presents a component called SideDB, which replaces
the Hadoop execution environment by a database to execute operations like joins more
efficiently.

Hadoop++ [DQRJ™10] and Clydesdale [KST12] are just two out of many other systems
also trying to address the shortcomings of Hadoop, by adding better support for structured
data, indexes and joins. However, like other systems, Hadoop++ and Clydesdale cannot
overcome Hadoop’s inherent limitations (e.g., not being able to execute joins natively).
PACT [ABE*10] and ASTERIX [BBC™11] suggest new execution models, which provide
a richer set of operators than MapReduce (i.e., not only two unary operators) in order to
deal with the inefficiency of expressing complex analytical tasks in MapReduce. Although

380

promising, SQLScript explores a different design, by focusing on existing databases and
novel query optimization techniques.

HaLoop [BHBEI10] extends Hadoop by recursive and iterative analytical tasks and im-
proves Hadoop by certain optimization (e.g, caching loop invariants instead of produc-
ing them multiple times). SQLScript supports a more general version of recursion than
HaLoop while optimizations are not implicitly hidden in the execution model (by caching)
but explicitly applied during the optimization phase.

In the area of programming languages for big data analytics there are a lot of proposals as
well. For example, Hive [TSJT10] and PigLatin [ORS™08] have been proposed as high-
level programming languages for defining map-reduce jobs in Hadoop. Those programs
are optimized and then executed using Hadoop as execution environment. SQLScript ex-
tends these approaches for a better UDF support in databases so that the data-flow graphs
including user code can be holistically optimized.

Moreover, major database vendors currently include Hadoop as a system into their soft-
ware stack and optimize the data transfer between the database and Hadoop e.g. to call
MapReduce tasks from SQL queries. Greenplum and Aster Data are two commercial
database products for analytical query processing which support MapReduce natively in
their execution model. However, to our knowledge they do not support the extended ver-
sion as we do.

Finally, there has also been a lot of research work on the field of recursion in the con-
text of SQL. In this paper, we extend many known techniques for single SQL queries to
procedures with multiple in- and output parameters. For example, we extend the optimiza-
tion rules presented in [Ord05] (i.e., selection pushdown) to work for recursive SQLScript
procedures with multiple in- and output parameters.

7 Conclusions and Outlook

In this paper, we presented a novel programming language called SQLScript to support
complex analytical tasks in the distributed in-memory database SAP HANA. SQLScript
provides two major extensions to SQL: A functional and a procedural extension. The func-
tional extension allows the definition of optimizable side-effect free functions which can
be used to express and encapsulate complex data flows. Moreover, we presented two novel
language constructs of the functional extension of SQLScript: First, an extended version
of the MapReduce programming model to support parallelizable user-defined functions
(UDFs). Second, an extended version of recursion (i.e., iteration) compared to recursion
in the SQL standard, which takes multiple input parameters and can produce multiple out-
put parameters. For both extensions, we showed optimization and execution strategies that
were analyzed in an experimental evaluation to show their efficiency.

As future work, we plan to extend the static optimization and execution by adaptive tech-
niques (i.e., changing the plan parallelism dynamically). Moreover, we also plan to add
better rewrite techniques for the map- and reduce operators by further annotations. An-
other major issue includes the debugging and testing of these complex functions on the
database side.

381

References

[ABE™10]

[ABPAT09]

[BBCT11]

[BHBE10]

[BPASP11]

[BRFR12]

[DGO8]

[DQRIT10]

[HADI2]

[KST12]

[Les12]

[Ord05]

[ORST08]

[SQL12]

[TPC12]
[TSIT10]

Alexander Alexandrov, Dominic Battré, Stephan Ewen, Max Heimel, Fabian Hueske,
Odej Kao, Volker Markl, Erik Nijkamp, and Daniel Warneke. Massively Parallel Data
Analysis with PACTs on Nephele. PVLDB, 3(2), 2010.

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin, and
Avi Silberschatz. HadoopDB: An Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads. PVLDB, 2(1):922-933, 2009.

Alexander Behm, Vinayak R. Borkar, Michael J. Carey, Raman Grover, Chen Li,
Nicola Onose, Rares Vernica, Alin Deutsch, Yannis Papakonstantinou, and Vassilis J.
Tsotras. ASTERIX: towards a scalable, semistructured data platform for evolving-
world models. Distributed and Parallel Databases, 29(3):185-216, 2011.

Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. HalLoop: Effi-
cient Iterative Data Processing on Large Clusters. PVLDB, 3(1), 2010.

Kamil Bajda-Pawlikowski, Daniel J. Abadi, Avi Silberschatz, and Erik Paulson. Ef-
ficient processing of data warehousing queries in a split execution environment. In
SIGMOD, pages 1165-1176, 2011.

Carsten Binnig, Robin Rehrmann, Franz Faerber, and Rudolf Riewe. FunSQL.: it is
time to make SQL functional. In EDBT/ICDT Workshops, pages 41-46, 2012.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107-113, 2008.

Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty,
and Jorg Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without
It Even Noticing). PVLDB, 3(1):518-529, 2010.

Apache Hadoop. http://hadoop.apache.org, 2012.

Tim Kaldewey, Eugene J. Shekita, and Sandeep Tata. Clydesdale: structured data
processing on MapReduce. In EDBT, pages 15-25, 2012.

Jure Leskovec. Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data/, 2012.

Carlos Ordonez. Optimizing recursive queries in SQL. In SIGMOD Conference, pages
834-839, 2005.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: a not-so-foreign language for data processing. In SIGMOD, pages
1099-1110, 2008.

SAP HANA SQLScript Reference. http://help.sap.com/hana/hana_dev_sqlscript_en.pdf,
2012.

TPC-H. http://www.tpc.org/tpch/, 2012.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning
Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a petabyte scale data
warehouse using Hadoop. In ICDE, pages 996-1005, 2010.

382

