Changes Classification in M2 Models

Boris Gruschko
SAP Research
CEC Karlsruhe
Vincenz-Priessnitz-Strasse 1
76131 Karlsruhe, Germany
boris.gruschko@sap.com

Abstract: As Model Driven Software Development gains attention, its utilization be-
come more feasible in large scale software projects. The metamodels (M2 models)
are important artifacts of the MDD process. These models capture the modeler’s un-
derstanding of the problem domain. However, the process of problem domain un-
derstanding is not necessarily completed, as the M2 models is being delivered to its
consumers. Therefore, the changes of M2 models are inherent to the modeling process.
Therefore, the M1 models can erode, when not backwards-compatible changes are be-
ing introduced to M2 models. The problem of M1 model erosion in face of M2 model
changes becomes a definitive one, when MDD is applied in large scale development
projects. We therefore propose a structured M1 model migration, driven by M2 model
changes. In this paper we present the classification of M2 model changes, in regard to
their impact on corresponding M1 models. To illustrate our considerations, we use the
example of super type associations in context of the Eclipse Modeling Framework.

1 Introduction

In the field of Model Driven Development, the modeling infrastructures are providing the
substrate for modeling tools, required in order to build and maintain the modeling artifacts.
The meta-meta-model (M3 model) is at the heart of a modeling infrastructure and is as-
sumed to be fixed for a reasonable amount of time. In recent years, the Eclipse Modeling
Framework[BSM™03] has established itself as de facto standard for modeling infrastruc-
tures. The Ecore is the M3 model corresponding to the Eclipse Modeling Framework. The
Ecore M3 model is comparable to the EMOF standard from OMG[Obj04]. Because the
Ecore model contains itself to the essential meta-modeling construct, it’s well suited to
demonstrate the ideas of M2 model changes classification.

The classification of detected M2 changes is in our view the most crucial step in the M1
model migration process. This step is preceded by the detection of M2 changes, which
delivers a set of changes between two revisions of a M2 model. The classification step is
succeeded by the user input gathering for changes, which can not be resolved automati-
cally. Therefore, the classification step determines the amount of user effort, required to
enable the M1 model migration. It is out goal, to minimize the number of user operations,
required to migrate the M1 models.

277

In this paper, we use the EMF type hierarchy representation of EMF, to clarify out view
on M2 model changes classification. Figure 1 depicts the EMF type hierarchy. All super
types of a given class, are represented as links of the ordered eSuperTypes link set.

eSuperTypes
EClass j

Figure 1: M3 EMF type hierarchy.

The rest of this paper is structured as follows. In section 2 we present the classification
scheme for M2 model changes. In section 3 we explain the classification presented in
section 2 on the example of eSuperType reference. Finally, we conclude and provide an
overview of the future work in section 4.

2 Proposed Changes Classification Scheme

In order, to allow for the M1 model migration, the changes performed on the M2 model
have to be partitioned into sets, which are relevant to the already existing M1 instances
and those, which do not have an impact. Therefore, the most rudimentary classification is
the partitioning of the changes set into this two partitions. We call the set of changes with
impact on M1 instances, the breaking changes, while the latter set of changes is called
additive.

Breaking Resolvable

All M2
changes Additive Not Resolvable

Figure 2: Proposed M2 changes classification.

The classification into the two presented sets, is useful in regard to additive changes. These
changes can be simply ignored by the migration. The set of breaking changes requires ac-
tion, but can not be worked on as is, because some of the changes require human assistance,
to capture the semantic of the changes. We therefore propose, to further partition the break-
ing changes into the following two categories. The breaking and resolvable changes, are
changes which can be migrated without further human assistance. The breaking and not

278

resolvable changes, are requiring further inputs, to migrate the concerned M1 instances.
Figure 2 depicts the proposed M2 changes classification.

3 Example of Changes Classification

To improve the understanding of the provided M2 model changes classification, we present
an example of all three change classes. The example is based upon the eSuperTypes rela-
tion, already presented in section 1.

A
B
attrA:String[0..1] d1:D
AN AN
attrA="d"
d1:D

D —_—

(a) ()

Figure 3: Version 1 of the example M2 model and corresponding instances.

The example M2 model is depited in figure 3(a). The example M2 model contains three
classes A, B and D. The classes A and B are supertypes of class D. Further, the figure 3(b)
depicts two instances of the example M2 model.

A A C
attrA:String[0..1] B attrA:String[0..1] attrC:String[1..1]

T =

() (W) ()

Figure 4: Three variants of M2 model changes.

The presented instance are valid, as long as the author does not change the M2 model. To

279

demonstrate the proposed changes classification, we will use the changes introduced to the
M2 model, to obtain the models depicted in figure 4.

The change depicted in figure 4(a) constitutes the deletion of class B. This class did not
have any attributes and therefore, no illegal attributes can exist in its instances. Therefore,
this change is additive. The change introduced in figure 4(b) consists of class A deletion.
Class A carried the attrA attribute which was optional. It is possible, that instances of
class D, carrying values of attrA are existent and now became invalid. En example of such
an instance is the upper insance shown in figure 3(b). This change therefore is breaking.
Howeyver, the values of attrA can be deleted from instances of D, without human interven-
tion. Therefore, this change is breaking and resolvable. The figure 4(c) depicts a change,
where a new class C has been introduced. This class carries a mandatory attribute attrC.
Because attrC is mandatory, no valid instances of D can possibly exist. This fact makes
this change breaking and not resolvable, because human intervention is needed to provide
values for attrC.

The provided cases are not exhaustive, however they do illustrate all three proposed changes
categories. The classifications do not take into account known M1 instances. Therefore,
an open world, where arbitrary, unknown M1 instances of the changed M2 model may
exist, is being assumed. If this assumption is can be dropped and a closed world, where
all existing M1 instances are known, can be assumed, some of the changes may be moved
to less problematic categories. For example, if the only M1 instance in existence is the
lower instance from diagram 3(b), the change from figure 4(b) becomes additive, because
no instance can possibly be broken by it.

4 Conclusion

In this paper we have shown a possible approach to the classification of M2 model changes.
This work is being performed in larger context of M1 model migration. The presented ap-
proach is being constructed, in order to allow for effort minimization during M1 model
migration. Therefore, the presented step is crucial to the success of the overall approach.
Now we work on the complete categorization of possible Ecore model changes, according
to the presented scheme. We are convinced, that the categorization of M2 model changes,
will make the semi automatic M1 model migration a feasible option for large scale soft-
ware engineering projects.

References

[BSM03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick und Timothy Grose.
Eclipse Modeling Framework. Addison Wesley Professional, 2003.

[Obj04] Object Management Group. Meta Object Facility (MOF) 2.0 Core Final Adopted Spec-
ification, 2004.

280

