
OraGiST - How to Make User-Defined Indexing Become
Usable and Useful

Carsten Kleiner, Udo W. Lipeck
Universität Hannover

Institut für Informationssysteme
FG Datenbanksysteme

Welfengarten 1
30167 Hannover

{ck|ul}@dbs.uni-hannover.de

Abstract: In this article we present a concept for simplification of user-defined in-
dexing for user-defined data types in object-relational database systems. The concept
is based on a detailed analysis of user-defined indexing in ORDBS on one hand, and
features of generalized search trees (GiST) as an extensible indexing framework on
the other hand. It defines a minimal interface to be implemented in order to use GiST
within ORDBS; this greatly simplifies the process of implementing user-defined in-
dexes. The effectiveness of the approach is illustrated by performance experiments
carried out on a prototypical implementation of our concept. For the experiments we
have used new specialized spatial data types, that store spatial as well as thematic infor-
mation within a single attribute. These data types facilitate advanced spatial analysis
operators. The experiments show great performance improvements on these opera-
tors by using multidimensional user-defined index structures based on R-trees when
compared to system-provided indexes.

Keywords: object-relational databases, user-defined indexing, data cartridge, user-defined
datatype, advanced spatial analysis operators

1 Introduction

1.1 Motivation

In recent years object-relational database systems (ORDBS) have advanced past research
prototypes and are becoming commercially available. One of the key advantages over tra-
ditional relational databases is the possibility to use user-defined datatypes (UDTs). It is a
very important feature in many advanced applications, because adequate modeling of non-
standard domains requires such types. This can be inferred from the increased popularity
of object-oriented modeling which implicitly facilitates the use of arbitrary datatypes.

Also in the spirit of object-oriented modeling these new UDTs will have specific functions
operating on them, usually called methods in object-oriented technology. The most impor-



tant of these methods from a database perspective are methods that can be used in queries
to select objects from tables or join objects from different tables. These methods are also
called operators in object-relational terminology. In commercial settings these new fea-
tures will only be used, if they achieve a performance comparable to standard datatypes
and functions in traditional relational databases.

Since UDTs can be defined arbitrarily by the user, it is impossible for the ORDBS vendor
to provide efficient support of all such operators in selection and/or join queries. Conse-
quently they provide extensible indexing and query optimization features. The author of
the UDT has to implement these features using domain-specific knowledge. The complete
package of UDT, operators, indexing and query optimization is also called a cartridge (or,
depending on the particular vendor, extender or data blade), since it can be plugged into
the database server similar to cartridges in hardware. The enhanced database server then
efficiently supports UDTs transparent to the end-user.

A big obstacle, however, is that the implementation of user-defined indexing is pretty
complex and time-consuming. Moreover as it is, it has to be carried out completely from
scratch for every UDT that requires efficient query support. In order to overcome this and
make user-defined indexing more usable, a generic indexing framework such as gener-
alized search trees (GiST; [HNP95]) should be used. This has the advantage of already
providing most of the required functionality for several different index structures. These
structures can easily be specialized to obtain a specific index for a particular datatype.

Therefore it would be desirable to have an easy to use tool that combines a particular
UDT from an ORDBS with a concrete extension of an index framework automatically
and leaves only the (very few as will be shown in this article) type and operator specific
implementation parts to the user. In this article we will first investigate what the type and
operator specific details of such a definition under some reasonable assumptions are. The
result is a concept for greatly simplifying the usage of an indexing framework in ORDBS.
We will then present the design of a prototypical implementation of such a tool, called
OraGiST, which facilitates the use of GiST as user-defined index structures in the ORDBS
Oracle 9i . The tool which was developed in our group does as much work as possible
automatically, leaving the programmer with just very few tasks1 to be solved, before being
able to use GiST inside Oracle. While OraGiST is specifically designed for Oracle, similar
extensions for other ORDBS based on the previous concept would also be possible.

The effectiveness of this approach is illustrated by some sample results from spatial data.
In advanced applications one would like to combine spatial selection criteria with other
thematic attributes in a single operator. Queries such as select all cities in a given query
window where the population density is higher than a given value and the percentage of
male inhabitants is more than 55 percent could be answered efficiently by such complex
operators. We will show that using high-dimensional R-tree-like GiST extensions devel-
oped by using OraGiST is more efficient than working with classical indexes. It is even
more efficient than using the DBMS provided spatial indexes on the spatial component.

1If using one of the predefined GiST extensions it takes in the order of minutes to implement the required
parts.



1.2 Related Work

The concept of object-relational database systems (ORDBS) has been described in [SM96]
and [SB99]. Most commercial DBMS that were relational can be called object-relational
to a certain degree today. Probably the most commonly used systems are Oracle 9i and
IBM DB2. In the open-source area e. g. PostgreSQL is also object-relational; it is based on
the oldest ORDBS Postgres (cf. [SR86]). Requirements specific to user-defined indexing
in ORDBS are explained in [SB99].

A good overview of advanced spatial applications can be found in [RSV01]. In particular
indexing in spatial databases is reviewed in [GG98]. RSS-Trees were introduced in detail
in [KL00]. The introduction of user-defined types in ORDBS requires easily extensible
indexes in order to facilitate efficient querying of UDTs. Therefore generic index struc-
tures such as generalized search trees have to be used. A similar idea to ours has been
described in [RKS99] for the CONCERT DBS. It allows indexing based on concepts but
is more focused on spatio-temporal data and is restricted in the indexes to be used since it
requires a hierarchical partitioning of space. The basic insight that only very few features
are actually specific to a data type in indexing is also used in our approach. More advanced
research on query optimization for user-defined types is described in [Hel98]. Another im-
plementation for advanced index structures was presented in [BDS00]. It is written in Java
and focuses on main memory index structures. When Java has become more efficient and
systems even more powerful in terms of main memory this will probably also be a very
interesting approach. The combination of an extensible indexing framework with a com-
mercial ORDBS has to the best of our knowledge never been researched before. Also the
idea of using higher-dimensional indexing for advanced spatial analysis has never been an-
alyzed in such detail. Finally no experimental results on the efficiency of real user-defined
indexing in ORDBS have been reported yet.

2 Current Situation

Generalized search trees (GiST; [HNP95]) are search trees that combine and implement
the common features of tree-based access methods such as insertion and searching but still
allow to adjust the classical operations to a particular data type and indexing structure.
This is achieved by an implementation using certain extensible methods in the general
algorithms that have to be implemented by the user for the particular data type and indexing
structure by object-oriented specialization later; these methods are consistent, penalty,
pickSplit, union and optionally compress and decompress. Due to space constraints details
on GiST are omitted; they can be found in the full version of this paper ([KL02]).

A file-based implementation of generalized search trees called libgist has been made
available under http://gist.cs.berkeley.edu. It is written in C++ and provides
the general tree along with several extensions for most of the trees proposed in the litera-
ture such as B-Tree, R∗-Tree and SS-Tree. Its completion was reported in [Kor99]. Since
it operates on index files, it cannot be used directly in conjunction with a commercial OR-
DBS, where index files should be under control of the DBS as well, e. g. for transactional

http://gist.cs.berkeley.edu


correctness reasons. Moreover the interfaces need to be linked together in order to use a
GiST specialization as an index inside the ORDBS. In addition ORDBS users want to use
the given and other GiST-based index structures for their own user-defined types. This
requires a mapping of database types and operators to GiST objects and predicates.

In order to implement extensible user-defined indexing - for example in Oracle 9i - cer-
tain methods have to be programmed: IndexCreate, IndexInsert, IndexDrop, IndexStart,
IndexFetch, IndexClose, IndexAlter and IndexUpdate. These are later automatically in-
voked by the database server when executing regular SQL commands using the UDTs.
Again due to space constraints details are omitted here, but can be found in the full version
of the paper.

User-defined data types in ORDBS need data type specific query optimization to be able
to use them efficiently. In Oracle this is implemented by providing special interfaces for
extensible optimization. Functions defined in these interfaces are called automatically by
the database server, if an implementation of the interface for the particular data type is
registered with the server. This way extensible optimization is as directly integrated into
the database server as possible for arbitrary data types. The interfaces of the extensible
optimizer are described in detail in system documentation.

3 Concept of OraGiST

In order to connect the file-based implementation of generalized search trees with the in-
dexing interface of the ORDBS we have firstly analyzed which components of the mapping
between a generic index and an ORDBS are generic themselves and which are dependent
on the particular data type in question. Consequently, the implementation of a connector
component between ORDBS and generic index consists of two main parts. We have called
our prototypical implementation OraGiST, since it operates based on libgist and Or-
acle 9i . An overview of the architecture of OraGiST is given in figure 1.

As explained before, the tool OraGiST mainly consists of two components. The first
component (called OraGiST library) is independent of the particular data type, user and
GiST extension. It provides functionality for calling the appropriate generic index methods
inside functions of the ORDBS extensible indexing interface (cf. section 2) on the one
hand. Also it facilitates storing of index information of a file-based tree index structure
inside an ORDBS on the other hand. These are the upper two associations in figure 1.

The second component (OraGiST toolbox in figure 1) is dependent on the data type and
thus index structure specialization. Consequently, it cannot work completely without pro-
grammer interaction. It can rather be a support tool providing the user with method proto-
types, and taking over all generic tasks of this part of the user-defined index development
process. In particular, only four methods have to be implemented for the particular data
type by the database programmer. Firstly, it has to be defined which GiST specialization
is to be used for a particular ORDBS user-defined data type2. This is done by implement-

2This specialization has to be written separately in advance; it is not a big restriction, though, since many
important index structures for different domains are already provided with libgist. Also because of the



GiST

GiSTExtension

GiSTEntry

1

n

GiSTIndexFile

DBSExtensibleIndexing

UserDefinedIndexStructure

DBSUserDefinedObject

1

n

DBSIndexTable

Oracle ORDBS

1

1

libgist library

1

1

OraGiST

OraGiST Library

OraGiST Toolbox

initiates calls

is stored in

1
n

OraGiSTExtension

+getExtension()
+getQuery()
+needFilter()

TypeMap

+approximate()

Figure 1: Architecture and Functionality of OraGiST

ing the method getExtension. Secondly, the mapping of database operators to index
structure methods implementing the desired predicate has to be declared by implement-
ing the method getQuery by the developer. The implementation of these two methods
typically consist of only a single line returning a pointer to the particular object required.

Also the mapping between ORDBS data type and index structure entry has to be imple-
mented. Since often not the exact objects but rather approximations are inserted into an
index, this method is called approximate (cf. MBRs in spatial indexing). More gener-
ally speaking this method implements the compress method of the original GiST concept.
This method is the only one that may incur considerable programming work, since it must
implement the mapping of a database object to an index object; in the case of spatial data
in Oracle 9i , for instance, the rather complex definition of the database geometry type has
to be investigated in C to compute the MBR of the object.

Finally, results from an index lookup may not be results to the original query, if the index
entries are approximations of the original objects. For spatial data e. g. not all objects
whose MBR intersect a given object do intersect the object themselves; thus usually the
so-called filter-and-refine strategy of query execution is used for spatial queries. This is
reflected in OraGiST by means of a method needFilter. It has to return true, if
results from the index scan still have to be tested, before the query result is determined,
and false else. For the programmer this is only one additional line of code in the current
version of OraGiST, since as testing method the functional implementation of the opera-
tor which is required by the ORDBS anyway may be used. If such testing is required, after
registering the index with OraGiST, the toolbox will automatically take care, that results
of an index scan are additionally filtered by the functional implementation of the operator

framework character of libgist such extensions are supported very well.



CREATE TYPE twoIntegerGeometry AS OBJECT (
geom OGCGeometry,
theme1 INTEGER,
theme2 INTEGER,
-- type-specific methods);

Figure 2: Data type definition for combining spatial and thematic information

in the ORDBS.

As stated earlier based on this concept, we have developed a prototypical implementation
of a connector between GiST implementation libgist and Oracle 9i as ORDBS. This
simplifies user-defined indexing to such a degree that it is really usable with acceptable
implementation effort. If one of the predefined GiST extensions is to be used as index
only the small OraGiST toolbox classes have to be implemented. But even if a new GiST
extension is required as index development time is greatly reduced. This is due to the
extensibility features of GiST which facilitate simple definition of new index structures as
long as they can be expressed in the GiST framework. We will illustrate that user-defined
indexing is also very useful for UDTs by presenting performance experiments of using
such indexes for advanced spatial analysis operators in the next section.

4 Case Study: Advanced Spatial Analysis

4.1 Data Types and Operators

Spatial index structures have been researched in great detail in the past. Operators sup-
ported by most of these indexes are spatial selections such as overlap or window queries.
Some also support spatial join or nearest neighbor queries. Common for all these queries
is that they only use the spatial information of objects for determining the query results.

Recent spatial applications on the other hand tend to use queries that combine spatial and
thematical information in finding the desired objects. One could e. g. be interested in
all counties in a given window where the median rent is below a given value. Or using
even more thematic information, one could ask for all those counties where, in addition,
the population is higher than another fixed value. For these queries traditional spatial
indexes are only partly helpful, since they only support the spatial selection part of the
queries. Especially in cases where the stronger restrictions are on the thematic attributes
(e. g. a very low threshold value for median rent) the spatial index does not help at all.
Since in many cases it is difficult or impossible to predict which queries will be used on a
given table3, it would be desirable to have a combined index that supports spatial-thematic
queries of different selectivities equally well, regardless of the particular query parameters.

3Also any type of query could be posed equally often.



Consequently we suggest to define user-defined data types in ORDBS which combine spa-
tial and thematic attributes in a single type4. A sample definition for twoIntegerGeo-
metry combining a spatial and two numerical thematic attributes is given in figure 2.
We use a type OGCGeometry as an implementation of the OpenGIS Consortium simple
features specification here. Operators on these newly defined types can be conjunctions of
spatial operators and operators on the types of the thematic attributes. In the sequel we will
investigate the frequently used operator twoBetweenOverlap on the aforementioned
type, which is a conjunction of spatial overlap operator and between operator on the the-
matic attributes. Since twoIntegerGeometry combines information from orthogonal
domains in a single type, it is straightforward to use higher dimensional spatial indexes
for the newly introduced operator. In particular, we obtain a four-dimensional domain for
twoIntegerGeometry.

4.2 Performance Evaluation

An extensive performance evaluation for different datatypes can be found in the full ver-
sion. If we use one thematic attribute in addition to the spatial attribute and thus use type
integerGeometry and operator betweenOverlap, we obtain the results depicted
in figure 3. Indexing options compared in this work are user-defined three-dimensional
versions of R*- and RSS-Tree ([KL00]), as well as Oracle spatial indexes on the spatial
component of such objects5. For the latter indexes the thematic attribute has to be checked
separately in order to compute a correct query result. Figure 3 shows that this separate
processing incurs a big overhead and thus leads to a pretty bad performance. User-defined
indexes perform much better with the R*-tree outperforming the RSS-tree by a small mar-
gin. The unstable performance of the predefined indexes is due to them only considering
the spatial component. Consequently, when the stronger restriction in the query parame-
ters is on the spatial component they perform better, but worse if the stronger restriction is
on the thematic attribute. Figure 3 clearly shows the usefulness of user-defined indexing,
since only by using it, an efficient and predictable query performance can be achieved for
the user-defined type considered.

Since the built-in indexes already performed bad on integerGeometrywe do not con-
sider them an alternative6 for the more complex type twoIntegerGeometry. Figure 4
illustrates the performance of different user-defined indexes on queries using the operator
twoBetweenOverlap. In particular the variants of the user-defined RSS-tree for dif-
ferent dimensionalities are compared; also the four-dimensional R*-tree can be compared
with the RSS-tree. The figure clearly shows the benefits of using a multidimensional in-
dex structure as compared to a lower dimensional one, since, at least for low to medium
dimensional data, the more dimensions are indexed the better the performance is. Also,

4Using a user-defined index on the attribute combination without defining a new type was not evaluated due
to current technical restrictions that do not allow such a definition. Actually the introduction of such combined
types should be subject to some automatic generation based on a specification of the attributes.

5Spatial indexes provided with ORDBMS currently do not support more than two dimensions.
6In fact, experiments have shown that they perform by far worse than on integerGeometry. Therefore

we omit these results here.



0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14

re
sp

on
se

 ti
m

e

selectivity in %

Oracle R-Tree
User-Def-3D-RSS-Tree

User-Def-3D-R*-Tree
Oracle Quadtree

Figure 3: Performance Evaluation on 2D spatial data plus one thematic dimension

different from the indexes on integerGeometry, this time the full-dimensional RSS-
tree is faster than the R*-tree for small selectivities. Consequently it is difficult to say
which of the two variants should be preferred in real applications. But, since both perform
almost equally well, the RSS-tree has the advantage of a faster index creation time due
to its simpler, namely linear, insertion algorithm. More details can be found in the full
version. Nevertheless we can already conclude that the performance gain from using a
more appropriate index for a particular data type illustrates, that an easily adaptable in-
dexing framework is required. Only by doing so one can obtain optimal performance with
acceptable effort for each of the many possible UDTs.

5 Conclusion and Future Work

5.1 Conclusion

In this article we have presented a concept on how to integrate a flexible extensible index-
ing framework into recent commercial ORDBS. The need for this integration was moti-
vated by the new features of ORDBS, namely the possibility to use user-defined data types.
Since these types also have type-specific operators, type-specific indexes will be required
in order to process user-defined operators efficiently.

The concept of integrating generalized search trees into an ORDBS was then applied to
specialized spatial data types to prove its feasibility and also its effectiveness. In particular,
spatial data enriched with one or two thematic attributes was used as data type. Operators
on these types answer queries such as retrieve all objects that lie in a given area where
the median rent is below a given threshold value. These operators are very frequent in
advanced spatial analysis and therefore need index assistance.



0

10

20

30

40

50

60

70

80

0 5 10 15 20

re
sp

on
se

 ti
m

e

selectivity in %

User-Def-4D-RSS-Tree
User-Def-4D-R*-Tree

User-Def-3D-RSS-Tree
User-Def-2D-RSS-Tree

Figure 4: Performance Evaluation on 2D spatial data plus two thematic dimensions (standard query)

Our experiments showed that viewing the objects as elements of a three- (for one the-
matic attribute) or four-dimensional (for two thematic attributes) space and using spatial
indexes extended to three or four dimensions shows best query performance. Overall the
experiments showed the huge performance gain achieved by using user-defined indexing
as compared to using system-provided indexes. The concept of OraGiST uses object-
oriented techniques to simplify the development in two ways: firstly, if an existing index
structure is used only the implementation of the interface defined by OraGiST is required.
If on the other hand a different index is desired, its development is supported by using an
extensible indexing framework such that only a new spezilization has to be developed.

5.2 Future Work

The concept has so far only been implemented in a prototype fashion. Firstly the imple-
mentation is currently restricted to GiST and Oracle 9i . An extension to other indexing
frameworks and more importantly other ORDBS should be evaluated. Also the very good
performance results shown previously only hold for rather simple objects. If we consider
complex polygons in the spatial component, we currently obtain good results only for very
small selectivities. These results could probably become better, if the OraGiST concept
is extended to allow for a direct implementation of the refine step during two step query
processing in the connector class. Currently the functional implementation (fallback) of
an operator inside the DBS is used for refinement.

Our concept and prototype implementation should be tested with different, especially more
complex, user-defined data types and operators. We expect the results to be even more
impressive with such types, since no system-provided indexing is available at all. Also,
tests with different operators on the given types, especially different spatial operators,
could give an interesting overview of overall performance. Moreover to provide a com-



plete data cartridge fine tuning of user-defined indexing by implementing user-defined cost
and selectivity estimation is also missing so far. Conceptually we think, that an extensi-
ble framework-like approach could greatly simplify implementation for a particular UDT,
similar to user-defined indexing. To be able to use such techniques a parametrized ap-
proach to cost and selectivity estimation in ORDBS has to be developed. In particular
the processing of data type specific join queries could benefit significantly from optimized
query execution, both by indexing and by cost and selectivity estimation. Research on data
type specific joins in ORDBS is currently only in its early stages.

Bibliography

[BDS00] J. van den Bercken, J. P. Dittrich, and B. Seeger. javax.XXL: A Prototype for a Library of
Query Processing Algorithms. In: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, Dallas, May 16-18, 2000. ACM Press.

[GG98] Volker Gaede and Oliver Günther. Multidimensional Access Methods. ACM Computing
Surveys, 30(2):170–231, June 1998.

[Hel98] Joseph M. Hellerstein. Optimization Techniques for Queries with Expensive Methods.
ACM Transactions on Database Systems, 23(2):113–157, June 1998.

[HNP95] J.M. Hellerstein, J.F. Naughton, and A. Pfeffer. Generalized Search Trees for Database
Systems. In: Proceedings of the 21th International Conference on Very Large Data Bases,
Zurich, Sept. 11-15, 1995. Morgan Kaufmann Publishers.

[KL00] Carsten Kleiner and Udo W. Lipeck. Efficient Index Structures for Spatio-Temporal Ob-
jects. In: Eleventh International Workshop on Database and Expert Systems Applications
(DEXA 2000; 4-8 September 2000, Greenwich, UK). IEEE Computer Society Press.

[KL02] Carsten Kleiner and Udo W. Lipeck. OraGiST - How to Make User-Defined Indexing
Become Usable and Useful. Technical Report DBS 01-2002, Institut für Informationssys-
teme, Universität Hannover, September 2002.

[Kor99] Marcel Kornacker. High-Performance Extensible Indexing. In: Proceedings of the 25th
International Conference on Very Large Data Bases, Edinburgh, Sept 7-10, 1999. Morgan
Kaufmann Publishers.

[RKS99] Lukas Relly, Alexander Kuckelberg, and Hans-Jörg Schek. A Framework of a Generic In-
dex for Spatio-Temporal Data in CONCERT. In: Spatio-Temporal Database Management
– Int. Workshop STDBM’99, Edinburgh, Sept. 10-11, 1999. Springer-Verlag.

[RSV01] Philippe Rigaux, Michel Scholl, and Agnes Voisard. Spatial Databases: With Application
to GIS. Morgan Kaufmann Publishers, 2001.

[SB99] Michael Stonebraker and Paul Brown. Object-Relational DBMSs – Tracking the Next
Great Wave (Second Edition). The Morgan Kaufmann Series in Data Management Sys-
tems. Morgan Kaufmann Publishers, 2nd edition, 1999.

[SM96] Michael Stonebraker and Dorothy Moore. Object-Relational DBMSs – The Next Great
Wave – First Edition. The Morgan Kaufmann Series in Data Management Systems. Mor-
gan Kaufmann Publishers, 1st edition, 1996.

[SR86] Michael Stonebraker and Lawrence A. Rowe. The Design of POSTGRES. In: Proceed-
ings of the 1986 ACM SIGMOD International Conference on Management of Data. ACM
Press.


	page3231: 324
	page3241: 325
	page3251: 326
	page3261: 327
	page3271: 328
	page3281: 329
	page3291: 330
	page3301: 331
	page3311: 332
	page3321: 333


