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Abstract: Today, publication of medical data faces high legal barriers. On the one
hand, publishing medical data is important for medical research. On the other hand,
it is neccessary to protect peoples’ privacy by ensuring that the relationship between
individuals and their related medical data remains unknown to third parties. Various
data anonymization techniques remove as little identifying information as possible to
maintain a high data utility while satisfying the strict demands of privacy laws.

Current research in this area proposes a multitude of concepts for data anonymiza-
tion. The concept of k-anonymity allows data publication by hiding identifying infor-
mation without losing its semantics. Based on k-anonymity, the concept of t-closeness
incorporates semantic relationships between personal data values, therefore increasing
the strength of the anonymization. However, these concepts are restricted to a central-
ized data source.

In this paper, we extend existing data privacy mechanisms to enable joint data pub-
lication among multiple participating institutions. In particular, we adapt the concept
of t-closeness for distributed data anonymization. We introduce Distributed two-Party
t-closeness (D2Pt), a protocol that utilizes cryptographic algorithms to avoid a central
component when anonymizing data adhering the t-closeness property. That is, without
a trusted third party, we achieve a data privacy based on the notion of ¢-closeness.

1 Introduction

Over the past years, various incidents of privacy breaches have fueled the growing demand
for preserving privacy of individuals. The ever increasing digital footprint of individuals
makes it easier to gather sensitive private information. Abuses in the past show that the
collection of data sets imposes a risk for revealing sensitive private information [Swe97].
On the other hand, data collection and exchange is necessary to support the needs of in-
stitutions that rely on it, e. g., medical institutions conducting a clinical trial. Therefore,
taking privacy protection approaches to an extreme by not releasing data at all is no so-
lution. Only revealing non-sensitive information does not provide a feasible solution as
well, since medical institutions rely on information about sensitive data, e. g., diseases.
The challenge is to find a balance between the privacy interests of individuals and the
interests of organizations and companies to gain access to personal data.

Research in the area of privacy protection has developed the domains of Privacy-Preserving
Data Mining (PPDM) and Privacy-Preserving Data Publishing (PPDP) [CT13]. Both areas
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aim to allow access to data sets while preserving privacy of individuals. However, both
areas differ in how to handle data sets. The focus of PPDM is to answer queries targeting
disclosed data sets in a privacy preserving way. The focus of PPDP is to generate and
publish a complete data set that preserves the privacy of individuals. This paper will focus
on microdata protection techniques of PPDP.

One major field of application for PPDP are clinical trials. Clinical trials rely on the
publication of private data. Especially, in the field of medicine data is considered highly
sensitive. The implied trade-off becomes hard to solve. First, to maintain the utility of the
data. Second, to keep the data private at the same time. Therefore, the essential idea when
publishing clinical trial data is to achieve a minimal information loss without violating the
privacy of individuals.

The Health Insurance Portability and Accountability Act (HIPAA) [US96] is a legislative
effort to protect individuals when releasing information about them. For example, HIPAA
specifically addresses the removal of personally identifiable information when publishing
medical data of individuals (also known as the HIPAA Privacy Rule and the HIPAA Safe
Harbor Provision). The notion of privacy and sensitive information are considered to be
either to rigid or to imprecise to protect the privacy of individuals [LeF07].

To overcome the limitations imposed by the law, different concepts have been proposed
for PPDP. The concept of k-anonymity seeks to protect sensitive private information by al-
tering specific attributes using syntactical rules [Swe02b]. An enhancing notion of privacy
is the concept of t-closeness, enriching the concept of k-anonymity with the semantic re-
lationship between attribute values [LLV07]. However, both concepts operate on a single
data set.

Generally, privacy concepts that consider sensitive attributes (SAs) are limited to a single
sensitive attribute [FAN11]. In contrast, multi-center clinical trials carried out by more
than one institution rely on the publication of data containing more than one SA. Each
institution collects different data about the same patient, thus forming a vertically par-
titioned data collection. Such a scenario creates the multiple sensitive attributes (MSA)
problem [FAN11], i. e., multiple sensitive attributes collected by multiple institutions. Sev-
eral approaches recognize the importance of MSA without providing necessary algorithms
tailored to the specific needs of a distributed data collection environment [DB12].

In the light of this discussion, the contribution of this paper is threefold: (/) We extend
the concept of t-closeness to a distributed vertically partitioned environment with multi-
ple sensitive attributes and analyze the demands imposed on the concept of ¢-closeness,
(2) we develop a protocol named D2Pt, which achieves data anonymization utilizing the
concept of t-closeness and (3) we present an experimental evaluation of our protocol D2Pz.
Furthermore, we compare D2P7 to previous state-of-the-art protocols that do no utilize se-
mantic data anonymization.

The remainder of this paper is organized as follows. In section 2, we provide background
information on data anonymization techniques following the notion of PPDP. In section 3,
we present our extended concept of ¢-closeness and introduce our protocol D2Pz. In sec-
tion 4, we show our evaluation results as well as an analysis of our results. In section 5, we
provide an overview on related work. We conclude and outline future work in section 6.
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2 Background

Nowadays, data publication focuses on publishing data as microdata, typically in tabular
form [CDCdVFSO07]. Microdata contains unaltered data statistics on individuals [Dal77].
An example of a microdata table can be found in Table 1a.

2.1 Centralized data-anonymization

Attributes contained in a microdata-table can be classified into three categories: identifiers
(IDs), sensitive attributes (SAs) and quasi-identifiers (QIDs). The ID uniquely identifies
an individual. An example is the full name of an individual. The SA specifies an attribute
an individual does not want to be associated to, e. g., a disease. For that reason the ID is
removed from a microdata publication. This process is called de-identification [Swe97].
In [Swe97] Sweeney showed that de-identification does not suffice to protect microdata
publications. This is due to other publicly available data sets, like voter lists. Voter lists
contain the name as well as demographic information like the date of birth, age and gender
of an individual. The combination of these attributes values is often unique [Swe97], hence
they are termed QIDs. The de-identified microdata table can be linked to the publicly
available data by joining them on the QID.

k-anonymity To protect against linking, Sweeney introduced the concept of k-anonymity
in [Swe02b]. Intuitively, k-anonymity alters the values of the QIDs, thus making every in-
dividual in that microdata indistinguishable from at least £ — 1 individuals w.r.t. to QID
values [Swe02b]. The values are not randomly altered, rather they are being removed or
replaced by a “less specific but semantically consistent value” [Swe02a]. This mechanism
is called generalization and suppression [FED94]. A group of individuals in a microdata
table is said to form an equivalence class (EC) if they equal in their QID values.

A semantically consistent value is determined by the use of a value generalization hier-
archy (VGH) [SamO1]. A VGH is a directed, balanced tree describing the proper gener-
alization of attribute values. The specific values are located in the leaves of the tree. the
more general values are located in the inner nodes. The root node consists of the most
general value or the value **’, which indicates the suppression of a value. A VGH for the
attribute AGE can be found in Figure la. An example for the generalization of the value
22 of attribute AGE is the age span [20 — 29].

The Datafly-algorithm Meyerson et al. and Aggarwal et al. have shown that the prob-
lem of an optimal anonymization is NP-hard [MWO04, AFKT05]. Therefore, approxi-
mate solutions to achieve k-anonymity exist. In [Swe97] Sweeney suggested the Datafly-
algorithm. In its basic version the Datafly-algorithm uses full-domain generalization with-
out suppression, i.e., at every state of the algorithm each QID value is at the same level
of the VGH. In every iteration of the algorithm, Datafly chooses one out of the QID at-
tributes, specifically the attribute containing the most different values. The algorithm then
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(a) VGH for QID AGE (b) VGH for QID z1p

Figure 1: Value generalization hierarchies

generalizes the values of that attribute, i. e., replacing every occurrence of a value with the
value one level up in the VGH. It continues until every individual in the microdata table
is indistinguishable from at least k¥ — 1 other individuals in that table w.r.t. QID values.
This algorithm will serve as an example throughout this paper, therefore, we will elaborate
more and show its operating principle using an example.

Example 1. Consider Table 1a to be a microdata table and the goal to create an anonymous
version of that table satisfying 2-anonymity. Let attribute ID be the identifier, AGE and
zIP the QID with corresponding VGHs in Figure la and 1b. The SAs are given by the
attributes DISEASE and TREATMENT. To provide an easy to follow example, we will
not remove the ID. In the first iteration of Datafly the algorithm would pick attribute
AGE for generalization, since it has the most different values: nine compared to eight of
attribute z1p. Every value is replaced by a more general value. Attribute ZIP still contains
eight unique values, hence another generalization is performed on attribute z1P. This table
satisfies 1-anonymity, since the combination of ZIP and AGE is unique for tuple ID 5 (1236*
and [50 — 59]. In order to satisfy 2-anonymity another iteration has to be performed. The
generalization of attribute ZIP gives the resulting 2-anonymous table depicted in Table 1b,
i.e., every individual in the table is indistinguishable from at least another individual in
that table. The equivalence classes (ECs) are marked by dashed horizontal lines.

I Zip AGE DISEASE TREATMENT Ip Zip AGE DISEASE TREATMENT
1 12345 23 Gastric ulcer Antacid 1 123 [20-29] Gastric ulcer Antacid
2 12345 29 Gastritis Acid-reducing drug _ 2 123%% _ [2029]_ _Gastits _ _ _ Acid-reducing drug _
3 12363 41 Flu Antipyretic drug 3 123%% [40-49] " "Flu Antipyretic drug
4 12361 43 Stomach cancer Cytostatic drug 4 123%% [40-49] Stomach cancer Cytostatic drug
5 12362 59 Pneumonia Antibiotics T 5 7 123" T [50-59] “Pneumonia Antibiotics
6 12471 52 Bronchitis Antibiotics 6 1245 [50-59] Bronchitis Antibiotics
7 12473 55 Flu Antipyretic drug 7 1245 [50-59] Flu Antipyretic drug
(a) Microdata-table (b) 2-anonymous table

Table 1: 2-anonymization of a microdata table

t-closeness The focus on the QIDs turned out to be a weak point of the concept of
k-anonymity [MKGVO07]. In [LLVO7] Li et al. criticized the concept of k-anonymity
for not taking the values of the SAs into account. Li et al. pointed out, that the semantic
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(a) Frequency distribution
of attribute DISEASE for the
first EC (IDs {1,2})

(b) Frequency distribution
of attribute DISEASE for the
whole table

Figure 2: Comparison of frequency distribution

relationships between SA values of individuals may allow attribute disclosure. i.e., the as-
sociation of an individual with the value of its SA or a semantically close value [LLVO7].
To address the notion of closeness, Li et al. use the earth-movers distance (EMD) [RTGO0O].

The EMD is a metric used in image processing to measure the similarity of two pictures.
The pictures are being described by the frequency distribution of colors occurring in the
picture. Intuitively the EMD measures the amount of work necessary to transform one
distribution into the other. The result is a value in the interval of [0, 1]. The closer the
value is to 0 the closer the two distributions are.

Adapted to the use case of data anonymization, the similarity of attribute values is mea-
sured by comparing the frequency distribution of attribute values for every EC to the fre-
quency distribution of the whole table. If the result is closer to 1, the values in an EC are
very similar, thus allowing to infer information [LLV07]. Hence, a value closer to 0 is de-
sirable. An example of the frequency distribution for the first EC (IDs {1,2}) for attribute
DISEASE of Table 1b to the whole Table 1b is depicted in Figure 2a and Figure 2b. Based
on Table 1b and a simplified VGH of attribute DISEASE in [LLV07] the table satisfies 0.57-
closeness w.r. t. DISEASE'. If privacy requirements demand a lower ¢-closeness value, the
table could be generalized once again using the Datafly-algorithm. The resulting table is
a maximally generalized table containing only values of the root nodes of the VGHs. It
satisfies 0-closeness, since it consists of only one EC.

2.2 Distributed data-anonymization

As outlined in section 1, today’s interconnected society places new demands on data pri-
vacy. The challenge is to adapt to a computing environment where data is distributed
across multiple distinct sites. Throughout this paper, we focus on physically distributed
data partitioned across two distinct sites, i.e., medical institutions. In such an environ-

Details of this calculation are left out due to space considerations. The reader is referred to [LLV07] for an
in depth explanation of ¢-closeness
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ment, data can be vertically or horizontally partitioned. In the following we focus on
vertically partitioned data, i. ., data about the same individuals stored at multiple sites.

One problem when jointly computing an anonymization on data split across multiple sites,
is to define a security model. A security model describes demands imposed on participat-
ing sites and what can be learned from executing the protocol, i.e., the distributed data
anonymization algorithm. A typical security model is that of an honest-but-curious (HBC)
adversary, i.e., no site gains information about another sites input other than can be in-
ferred from the own input and the result of the computation [Gol04]. In an HBC model,
each site acts accordingly to the protocol, i.e., every site is truthful about its input and
further steps of the protocol [Gol04]. We adhere to this security model for the remainder
of this paper. Solutions to this model involve either the use of a trusted third party (TTP)
or the utilization of a secure multiparty computation (SMC) protocol [Gol04].

Using a TTP may not be possible at all times. Therefore, the paradigm of SMC describes
a set of protocols that try to simulate the use of a TTP [Gol04]. This is achieved by using
cryptographic functions hiding the input of participating sites and revealing nothing but
the result of the computation.

One way of protecting the input is the use of a commutative encryption scheme as described
by Shamir et al. in [SULMASO]. An encryption scheme uses a cryptographic function
Ey : M — M, that transforms a plaintext m € M into a cyphertext m € M using a
key k. We omit the details of E. The important property of a commutative encryption
scheme is the independence of the order of encryption, i. e., given the encryption function
E}, two keys 0,1 and a plaintext m € M, the following commutativity property holds:
Eq (Ey (m)) = E1 (Eo (m)).

2.3 DPP,GA: distributed k-anonymity

The Distributed Privacy-Preserving two-Party Generic Anonymizer (DPP,GA) protocol
by Jiang et al. [JCO5] implements distributed k-anonymity on vertically partitioned data.
Its goal is to create a globally k-anonymous data set from two locally k-anonymous data
sets, stored at different sites. During execution of the protocol, k-anonymity of the lo-
cally stored data sets is preserved. This definition of distributed privacy is related to the
definition of SMC, but differs in that it allows some degree of information gain.

Before discussing the protocol in more detail we will outline its key steps: (/) Ensure
local k-anonymity, (2) exchange encrypted information about local ECs, (3) ensure global
k-anonymity and (4) join local data sets on a global identifier. We will elaborate on the
key steps by using an example.

Example 2. The prerequisite of the protocol is a vertically partitioned table, distributed
across two sites. An example is given in Table 2a reusing the running example from
Table 1a split into two tables. For simplicity, we omit values for the SAs. The subscript
number close to the attribute name indicates that the attribute is either stored at site O or site
1. As before, dashed horizontal lines indicate ECs. Following this abstract example, each
local table is 1-anonymous, i. e., at least one individual is unique w.r. t. its QID values. We
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ID; AGE D) AGE|

1 [2029] 1 [2039]
2 [2029] 2 [2039]
B T T R P 377714059
4 [40-49] 4 [40-59]
""" 57 50559) 5 [40-59]
6 [50-59] 6 [40-59]
7 [50-59] 7 [40-59]
(a) Initial state (b) 1% iteration (c) 2™ jteration

Table 2: Distributed 2-anonymity using DPP,GA

will assume that the participating sites agreed on publishing a globally 2-anonymous table.
Therefore, following step (/), every site first creates a locally 2-anonymous version of its
data set. As Jiang et al. [JCO5] noted, this can be achieved using any k-anonymization
algorithm. For simplicity, we assume the use of the Datafly-algorithm.

After the first iteration of Datafly on the local data sets, we obtain different ECs on both
sites. The global result is identical to the result outlined in example 1. Hence, we observe
the ECs depicted in Table 2b. Next, we investigate step (2) of the protocol. This step
can be divided into five parts: (2.7) send an encrypted version of the ECs to the other site,
(2.2) receive an encrypted version of the ECs from the other site, (2.3) encrypt received EC
with own key and send it back to the other site, (2.4) receive an encrypted version of the
EC sent to the other site in part (2.7) and (2.5) compare the encrypted multisets. To satisfy
the k-anonymity requirement the sites need to exchange information about the equivalent
classes in an encrypted, thus privacy-preserving way. Using the commutative encryption
function, introduced in subsection 2.2, the two sites exchange their multisets.

We will explain this step by continuing our previous example, focusing on the first EC.
Each site is now in the possession of the following encrypted multisets:
site 0 : {{Eo (1), FEo(2)},...} andsite 1 : {{E; (1), E1(2)},...}. These encrypted IDs
are being sent to the other site (part (2.7)). Site 0 now owns an encrypted version of the
ECs of site 1. Furthermore, site 1 now owns an encrypted version of the ECs of site 0 (part
(2.2)). Due to the encryption, neither site is able to read the IDs, therefore the k-anonymity
requirement is still intact. As outlined in part (2.3), every site encrypts the version just re-
ceived by the other site, with its own key and sends it back to the corresponding site. Now,
every site owns two versions of the encrypted ECs: First, one originally encrypted by
themselves and returned encrypted yet again by the other site. Second, the version orig-
inally received from the other site and now encrypted by themselves (part (2.4)). Since,
the commutativity property holds for the encryption function F/, we are now able to com-
pare the ECs without knowing the actual values of the IDs (part (2.5)). For that purpose,
Jiang et al. proved, that a local k-anonymization is globally k-anonymous, under the fol-
lowing circumstances: (/) For every encrypted ID in each EC in one multiset, there exists
another EC in the other multiset containing the same ID. (2) The cut of those two sets is
of cardinality at least k. We will refer to this property as the multiset-equality property.
Continuing our example, this is not the case for ID 5 as can be seen in Table 2b. Hence,
the local k-anonymizations are not globally k-anonymous. Therefore, another iteration of
the Datafly-algorithm has to be performed on the local data. Afterwards, the comparison
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has to be repeated. This process continues until a valid global k-anonymization is found.
An example for a valid global k-anonymization can be seen in Table 2c.

Finally, in step (4) of the protocol the k-anonymous partitions have to be joined on the ID
in order to form a k-anonymous publication. This can be achieved by using a secure join,
as proposed by Jiang et al. in [JC06]. We will omit an explanation of this part, referring to
[JCO6] for further details.

3 Distributed two-party ¢-closeness

In this section, we present our protocol D2P¢, which extends the DPP,GA data anonymiza-
tion technique by the concept of ¢-closeness.

3.1 Preliminary assumptions

For the following considerations, we make the same assumptions as in subsection 2.3,
i.e., the data is vertically partitioned across two independent sites. Furthermore, the sites
agreed on the parameters of the anonymization protocol prior to executing the protocol,
e. g., k-value for k-anonymity, ¢-value for ¢-closeness, a common ID describing the same
individual on both sites, as well as the parameters used for the commutative encryption
scheme. In addition we use the same security model used in subsection 2.3, e. g., an HBC
adversary. Lastly, we assume the privacy model described in [JCO5], thus allowing some
inference of information, hence weakening the rules of SMC. Since protocols of SMC are
costly and add an additional layer of complexity, we decided to lose the absolute security
of SMC but gain an intuitive and easy to follow protocol. Also, methods of computer
and communication security are out of scope of this work. As Sweeney emphasizes in
[Swe02b], we state that every entry in the table be specific to one individual only.

3.2 Problem statement

To clarify our concept of ¢-closeness in a distributed environment, we have to discuss some
important observations. As we have shown in subsection 2.3, the concept of k-anonymity
can be transferred to a distributed environment. Enhancing this approach with the concept
of t-closeness has two shortcomings. First, as was shown in section 2.1, the ¢-closeness
property incorporates the notion of semantics of SA values to an anonymization. Since
the SA is the attribute an anonymization is trying to protect, information about it can-
not be exchanged directly. Therefore, only relying on the cut-operation as an indicator
of a globally valid anonymization is not enough. The cut may shrink an EC as long as
its cardinality is still greater or equal to k. A reduced EC has a drastic influence on the
t-closeness property, thus shrinking an EC is not an option when using ¢-closeness. Sec-
ondly, a joined data publication imposes several problems. On the one hand side, it is
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Figure 3: Flowchart of the protocol D2P¢

desirable to publish the combination of every SA for each individual. On the other hand,
as Fang et al. [FAN11] pointed out, this changes the characteristics of the SA. Since the
original values of each SA are known to the site publishing it, this site could re-identify the
value in the anonymized data set, thus re-identifying an individual. Therefore, the SA val-
ues transform into additional QIDs, which we term identifying sensitive attributes (iSAs).
iSAs introduce a new threat to k-anonymity. Fang et al. [FAN11] identified this threat
as the background-join attack. Lastly, it remains unclear how data privacy models like
t-closeness, that operate on frequency distributions of SA values handle the case of multi-
ple sensitive attributes (MSA). Computing ¢-closeness on the joint distribution of the SAs
does not provide a feasible solution, since it will most likely be evenly distributed, thus
providing no useful information.

Our observations lead to the following requirements for a global ¢-closeness in a dis-
tributed two-party environment having multiple sensitive attributes: (/) The released data
must be t-close for every SA. (2) The k-anonymity-property must respect the back-
ground-join attack based on iSAs.

3.3 Overview

A schematic overview of our protocol D2P¢ can be found in Figure 3. It depicts an in-
stantiation of the key components at one site. The protocol consists of three components:
(1) the Anonymizer, (2) the Synchronizer and (3) the Fragmenter.

3.4 Anonymization phase: k-anonymity and ¢-closeness

The Anonymizer creates a locally k-anonymous data set, using an anonymization algo-
rithm. For the sake of simplicity, we chose the Datafly-algorithm which was introduced
in section 2.1. Although we are not limited to the Datafly-algorithm, as any algorithm
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]DO ZIPO [D] AGE] ]DO ZIPO [D] AGF.] ]DO ZIPO |D] AGF.I

1 1234%* 1 [20-29] 1 123%* 1 [20-39] 1 * 1 *

2 [20-29] 2 123 2 [20-39] 2 * 2 *

3 3 123% 777 3777 Ta0se 3 * 3 *
4 123%* 4 [40-59] 4 * 4 *

_____ 52 . _1_2_3_*1 . 5 [40-59] 5 * 5 *

6 6 124 6 [40-59] 6 * 6 *
7 1247%* [50-59] 7 124%% 7 [40-59] 7 * 7 -

(a) 1! iteration (b) 2" jteration (c) 3" jteration

Table 3: Distributed ¢-closeness using D2P¢-IDENTITY

guaranteeing full-domain generalization is applicable to provide the anonymization phase.
The k-anonymous data is handed over to the ¢-closeness-verifier, that in turn verifies the
t-closeness of the data for a given ¢. If that check fails, the data is being handed back
to the Anonymizer to produce a more general version of the anonymized table. After a
finite number of iterations the table satisfies ¢-closeness. A table will satisfy ¢-closeness
after a finite number of runs, since any generalization algorithm will produce a maximally
generalized table at some point of its execution. The maximally generalized table is equal
to the whole table thus satisfying 0-closeness, as outlined in section 2.1.

3.5 Synchronizer

The Synchronizer component handles the comparison of the two local anonymizations
and decides whether they fulfill the needs of a globally ¢-close data set or not. It uses
the mechanism of commutative encryption outlined in subsection 2.2 and subsection 2.3
to compare the anonymized tables produced by the two sites. In case of a negative result
the local anonymization is handed back to the Anonymizer to perform another iteration of
the anonymization algorithm. We developed three versions of the Synchronizer. Each one
providing special properties to the protocol, as will be outlined below.

Synchronizer: IDENTITY The IDENTITY Synchronizer is the simplest form of a Syn-
chronizer we developed. Its mode of operation is a straight-forward adaption of the syn-
chronization protocol used by Jiang et al. [JCO5]. Instead of demanding a cut of cardinality
of at least &, each EC has to be identical on both sites.

Example 3. Revisiting our running example, Table 3a displays the state of the Synchro-
nizer after the first iteration of Datafly. Again, we omit the SA values for clarity of the
example. The dashed horizontal lines depict ECs. Due to ID 5 no equal ECs exist, thus the
data is being handed back to the Anonymizer to create a more general anonymization. The
result of the next synchronization attempt is shown in Table 3b. Once again the ECs do
not match, hence demanding another generalization. This step is the final anonymization,
since its result is a maximally generalized table, as can be seen in Table 3c. Therefore, the
synchronization process is complete and the data is being transferred to the Fragmenter.
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(a) 1% iteration (b) 2" jteration (c) 3" iteration

Table 4: Distributed ¢-closeness using D2Pz-FORK

Synchronizer: FORK The FORK Synchronizer is an improvement of the IDENTITY
Synchronizer. We observed that, even though identical ECs exist, they are lost during the
next generalization phase. The essential part of the FORK Synchronizer is its ability to
mark identical ECs and exclude them from the next generalization phase.

This marking is also conducted in a privacy-preserving way. Therefore, every EC is as-
signed a separate ID, the ec-ID, which is also being encrypted using a commutative en-
cryption scheme. After recognizing an identical EC, the FORK Synchronizer decrypts its
ec-ID and sends it to the other site. In turn it receives an decrypted version of the ec-ID
of the other site. Thus allowing both sites to decrypt the ec-ID and gain access to the
information what EC to exclude from the next generalization phase.

Example 4. As an example review Table 4a derived from the initial Table la. The first
EC containing the IDs 1 and 2 is equal on both sites. Thus the FORK-Synchronizer marks
them for exclusion, depicted by an asterisk after the ID. The next iteration excludes the
tuples from the first EC. The result is shown in Table 4b. Note, that no additional matching
ECs are being found. Hence, a third iteration yields the result depicted in Table 4c.

Synchronizer: MERGE Revisiting the previous example, the following observation can
be made. The IDs {3,4,5,6,7} seem to be candidates for alignment, as can be seen in
Table 5a. Unfortunately, the next generalization phase creates different ECs which render
such a generalization impossible. The MERGE Synchronizer addresses this issue. We
explain its behavior given the following example.

Example 5. The MERGE Synchronizer randomly selects one EC and adds its IDs to a
queue () which cannot contain duplicates. Let {6, 7} be that EC, hence the queue consists
of @) = (6, 7). For each element in the queue on both sites the EC containing this element
is being identified. The EC is then marked for not being available anymore, analogously
to the FORK Synchronizer. We will select element 6. Every element in that EC is added
to the queue, therefore, the elements (5,6,7) from site 1 are added to the queue, e.g.,
@ = (5,6,7). In the next step MERGE selects ID 5, leading to the addition of elements
(3,4,5) from site 0. The resulting queue is @) = (3,4, 5,6, 7). After that no other elements
are being added to the queue, indicating that MERGE found a valid merge of ECs, which,
when generalized accordingly, will form a valid anonymization.
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1 1234% 1 [20-29]
2 1234% 2 [20-29]
TR T T 3777 [4059]
4 * 4 [40-59]
5 * 5 [40-59]
6 * 6 [40-59]
7 * 7 [40-59]
(a) 1% iteration (b) 2" iteration
Gip Zipgy AGE] Gip DISEASE Gip TREATMENT
1 1234% [20-29] 1 Gastric ulcer 1 Antacid
1 1234 [20-29] 1 Gastritis 1 Acid-reducing drug
""" 27T 0SS0 T T e T T M Andipyretic drug T
2 * [40-59] 2 Stomach cancer 2 Cytostatic drug
2 * [40-59] 2 Pneumonia 2 Antibiotics
2 * [40-59] 2 Bronchitis 2 Antibiotics
2 # [40-59] 2 Flu 2 Antipyretic drug

(c) Resulting data publication

Table 5: Distributed ¢-closeness using D2Pt+-MERGE

3.6 Fragmenter

Finally, the Fragmenter component is responsible for joining and releasing the data set.
As its name suggests the resulting tables are not being joined and published as a whole.
Rather, the data handling is twofold. On the one hand side, the quasi identifiers of sites
0 and 1 are being joined on the ID using a secure join protocol proposed by Jiang et al.
[JCO6]. On the other hand, the data is being partitioned, i. e., QIDs and SAs are being split
into different tables. To maintain a reference from the QIDs to the SAs a new attribute,
termed global identifier (GID) is inserted. The GID associates one SA value to at least k
QID values, depending on the size of the EC. After the fragmentation the QIDs can be
restored to their original values, because no direct association between a QID value and
a SA value exists [XT06]. This process eliminates the risk for a background-join attack
based on iSAs and, allow the t-closeness to be applied on each SA individually.

3.7 Privacy analysis

Privacy preservation We analyze our distributed anonymization protocol D2P¢ w.r.t.
compliance to k-anonymity and ¢-closeness. We show the validity of our approach using
the following theorems with sketches of proofs.

The proof is split into three parts. First, we show compliance with k-anonymity during
the execution of the protocol. Second, we extend this property to the t-closeness property.
Lastly, we show that the fragmented result set adheres to the k-anonymity and ¢-closeness

property.

Theorem 1. The Synchronizer component introduces no risk of invalidating the
k-anonymity property of the local data.
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Proof sketch. We need to show that the Synchronization step shown in Figure 3 does not
break the k-anonymity properties of the local anonymization. First, we outline the basic
setup and then go into detail about the k-anonymity property and discuss the ¢-closeness
property thereafter.

The Synchronizer receives a k-anonymous and ¢-close data set from the Anonymizer com-
ponent. The anonymization is valid w.r. t. to the local data only. Now, exchanging infor-
mation about the ECs in an encrypted, thus privacy preserving way does not invalidate the
k-anonymity property of the data. As outlined in subsection 3.2, the Synchronizer compo-
nent demands the ECs to be identical in terms of the contained IDs. This is a special case
of the multiset-equality property introduced in subsection 2.3. In case the synchronization
step fails, the data is being handed back to the Anonymizer. The Anonymizer produces a
more general version of the data, which will lead to larger ECs containing the same set of
tuples as in the previous iteration plus additional tuples from another EC.

Theorem 2. The Synchronizer component introduces no risk of invalidating the
t-closeness property of the local data.

Proof sketch. Following the idea of theorem 1, the Synchronizer receives a more general
version of the local data in every iteration of the protocol. Due to the generalization prop-
erty, outlined by Li et al. in [LLVO7], the ¢-closeness is invariant to further generalizations.
By using commutative encryption and exchanging information only on the IDs, neither site
is able to learn anything about the frequency distribution of the SA-values. Following the
same argument as Jiang et al. in [JCO5], the data exchange step does not reveal information
about the ¢-closeness of the local data.

Theorem 3. The distributed anonymization protocol D2Pt computes a k-anonymous and
t-close view of vertically partitioned data in an HBC model.

Proof sketch. To show the compliance of the proposed protocol with the k-anonymity and
t-closeness property, we have to analyze the result sets. First, we will elaborate on the
k-anonymity property of the global data, e. g., the data depicted in Table Sc. As explained
in subsection 3.6, each tuple contains a reference to the SA-tables, e. g., the GID. Since
the GID is derived using the ECs constructed by the Datafly-algorithm, at least % tuples
are referencing the same set of at least k& SA-values. Following the works of Xiao et al.
such fragmented data fulfills the k-anonymity property [XTO06].

Using the fragmentation, we also maintain the ¢-closeness property on the local data
throughout the release of the global data set. We will elaborate on this proposition by
outlying a sketch of the steps necessary to prove this statement.

We start by reviewing Table 5c. As a result of the global anonymization process, we obtain
three tables, e. g., a QID-table and two SA-tables. We will refer to the table containing the
SA DISEASE as SAq and the table containing the SA TREATMENT as SA;. We need to
show the validity of the ¢-closeness for every SA in the set resulting from our protocol.

The two tables SAg and SA; contain a set of identical ECs. That is, the GID attribute
references an identical set of individuals on both sites. Using the GID is the only way to
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reconstruct the original data. Therefore, the tables S Ay and SA; can only be joined on
their GID. Joining the tables on the GID results in a table S A, by taking the Cartesian
product of every EC from S A, with the matching EC of SA;.

Given S A, it is not useful to derive the ¢-closeness for S Ay or SA;. As the set includes
a large number of tuples not included in the original data, called phantom tuples hereafter,
the calculation of the ¢-closeness provides no information gain w. r. t. the original data. The
amount of phantom tuples increases in the cardinality of the ECs of SA . To estimate the
amount of phantom tuples, we assume a minimal value for k-anonymity of 2. Thus, every
EC introduces at least one phantom tuple for each existing tuple in the tables S A, and
SA;. In order to utilize the released data S A, to infer information on the ¢-closeness,
S A has to be modified. Specifically, the phantom tuples have to be removed, since
they introduce perturbation of the data. This can be achieved based on the frequency
distribution of S A and S A;. The goal is to reconstruct a set of tuples, termed S A’,, that
includes one tuple for each individual in the original data.

We show the reduction of SA by revisiting our running example from Table 5c, using
only the first EC with GID 1. We observe, that attribute value “Gastritis” of attribute D1S-
EASE, would appear twice in SA,, e. g., “(Gastritis, Acid-reducing drug)” and “(Gastritis,
Antacid)”. One of these tuples must be a phantom tuple, since Table 5c contains “Gastri-
tis” only once. Without background knowledge, we can only select one combination by
chance. Next, we extend this example to the use of background knowledge.

Given the knowledge that Acid-reducing drugs are a promising treatment for Gastritis,
we would select the corresponding tuple “(Gastritis, Acid-reducing drugs)” as candidate
for the reconstruction. Therefore, we remove the identified phantom tuple “(Gastritis,
Antacid)” from S A . Applying this procedure to every EC results in S A’ , which contains
every sensitive attribute value that appears in SAy or SA;. It has to be noted, that the
resulting tuples will not necessarily represent an individual present in the original table.
Most important, the number of tuples in SA’, equals the number of tuples in SAy or
SA;. Additionally, the frequency of every value in SAy or SA; is exactly the same as in
S A’ . Thus, the frequency distribution of the attribute values remains unchanged. Since
t-closeness is computed from the frequency distribution of attribute values, its result is the
same compared to the ¢-closeness gained by the Synchronizer.

To sum up our proof sketch, we have shown that: (/) k-anonymity is maintained during
the execution of the protocol in theorem 1, (2) t-closeness is maintained during the exe-
cution of the protocol in theorem 2 and (3) the result does adhere to the k-anonymity and
t-closeness property, as shown in theorem 3.

As additional findings, we want to elaborate on properties regarding the calculation of the
t-closeness for table S A . First, joining the table SAy and SA; on the GID resulting in
the table SA. If the table SA, contains ECs different in size, the resulting ¢-closeness
computed over the frequency distribution of every attribute, will be different from the one
computed on the local data sets. The bigger the difference in size between the smallest
and largest EC, the more the ¢-closeness differs. Second, if the data in the table SA is
skewed or correlated it is possible to infer information about the original distribution from
the frequency distribution in the table SA. For example, one could use the conditional
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probability measure to find the most likely join candidate among the tuple combinations
in every EC. This allows the removal of impossible combinations in the whole table,
e. g., the attribute value appears only once. Furthermore, our experiments indicate that
it will likely be possible to reconstruct the original table, thus linking the SA-values. In
subsection 3.6 this was identified as being a privacy threat. If the SA-values are unique a
re-identification has appeared. However, the ¢-closeness is a privacy metric that does not
address this kind of attack and thus cannot protect from it. The reconstructed table still
adheres to ¢-closeness.

4 Experimental Evaluation

In this section, we evaluate our protocol D2Pr presented in section 3. At first, we describe
our experimental setup in subsection 4.1. Then, we compare the results with respect to the
Synchronizer in section 4.2, i.e., the amount of synchronization attempts. We have also
conducted an in-depth experimental analysis of the amount of data transmitted. We will
leave out a detailed presentation of the results due to the focus of the paper being on the
concepts of data anonymization and their adaption to a distributed environment. Finally,
we analyze data utility of the published data in section 4.2.

4.1 Experimental setup

Prototypical implementation We implement D2Pr as a prototype in Java. The pro-
totype consists of a main program and two logical units representing the different sites.
Each site holds an instance of an Anonymizer responsible for ensuring the k-anonymity
and t¢-closeness properties. The Datafly-implementation is based on the Anonymization
Toolbox of UT Dallas?. In contrast to the Anonymization Toolkit, which uses SQLite as a
data store, we chose PostgreSQL to allow concurrent access to the database.

In a preparation step, we introduced a cache structure, thus, allowing us to reuse anonymiza-
tion results from the Datafly-algorithm, therefore, significantly accelerating the process of
data anonymization. In this paper, we exclude the preparation step from our measure-
ments, since times needed for data anonymization and exchange are not in the focus of our
evaluation. As mentioned in section 3 the anonymization algorithm is exchangeable, thus
providing no use for a comparison of the anonymization algorithm. Rather, we focus on
the simplicity and comprehensibility of our protocol. Since we are only interested in the
utility of the anonymization results and the amount of data transmitted during the synchro-
nization phase, we also exclude an evaluation of the commutative encryption scheme.

Data description We evaluate our protocol using the Adult Data Set®, which is the de
facto standard for benchmarking anonymization techniques [FTH"11]. Out of the approx-

Zhttp://cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php
3https://archive.ics.uci.edu/ml/datasets/Adult
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imately 50 000 entries forming the training data, we use only those containing no NULL
values, i.e., 30 162 entries. As outlined in section 2.1 and section 2.1, we need a set
of VGHs to model possible generalizations, as well as semantic relationship between at-
tribute values. We adapt the VGHs presented by Fung et al. in [FWYO05]. We classify the
attributes contained in the Adult Data Set into QIDs and SAs. The QIDs are formed using
the attributes Workclass, Education, Marital Status, Relationship, Race, Sex and Native
Country. Likewise, the SAs are formed using the attributes Occupation and Salary. This
is equivalent to the setting used by Li et al. [LLVO7].

Workload For our test series we define the following schedule: We randomly assign
each site one SA. Afterward, the QIDs attributes are distributed among the sites in every
possible combination. Every combination of QIDs is evaluated with every combination of
k,t values and every Synchronizer. For values of k£ we adapt the ones used by Jiang et al.
in [JCO5], namely, k& € {2,5,10,20,100}. Likewise, we use the values given for ¢ by
Li et al. [LLVO7], i.e., ¢ € {0.1,0.2}. To get a better understanding of the influence
of high ¢ values we add the value 0.7 and 1.0. The latter, allows us to simulate DPP,GA
using a specialized Synchronizer, without the need to modify out protocol. Thus we obtain
t € {0.15,0.2,0.7,1.0}

4.2 Experimental results

In the previous section we described the experimental setup. We will now analyze the
impact of the k and ¢ values on the resulting anonymization. Therefore, we differentiate
our results into results called SAME and DIFF. Results stemming from SAME are obtained
from initially identical anonymizations produced by the Anonymizer, i.e., the same ECs
exist at both sites after the first anonymization phase. Results obtained from initially dif-
ferent anonymizations, will be called DIFF. The reason for the distinction between the two
is given in Figure 4a. We observe that, given a t value of 0.15, the amount of initially
identical anonymizations is almost 30 % for every k. That can be explained by the reduced
amount of possible generalizations available for the strict privacy constraints of a small
t. An initially identical anonymization renders the synchronization phase useless, since it
evaluates to true after the first iteration. Since we want to observe the impact of ¢ on the
anonymization process at a whole, we distinguish between the cases SAME and DIFF. The
following numbers apply to numbers obtained by DIFF unless otherwise stated. The term
ALL will refer to the combined results of SAME and DIFF.

Synchronization attempts As outlined in subsection 3.5, situations occur when every
Synchronizer except MERGE has to perform more than one generalization step. Since this
is only the case for ECs stemming from DIFF, we directly observe the need for such a
distinction. As expected, the MERGE-Synchronizer always performs its synchronization
within one step. DPP,GA also performs well during the synchronization phase, i.e., it
needs more than three attempts in less than 2.1 % of all testcases. In contrast, the Syn-
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t 2 5 10 20 50 100

0.15 29.4% 29.4% 29.4% 30.1% 30.1% 30.1%
0.2 5.5% 5.5% 5.5% 6.0% 6.0% 6.0%
0.7 1.2% 2.2% 2.5% 2.7% 3.2% 3.5%
1 1.6% 2.2% 2.5% 2.7% 3.2% 3.5%

(a) Percentage of SAME-share w.r.t. k and ¢

3 CJIDENTITY +
} [ZZAFORK
H [ MERGE Testcase Synchronizer 0.15 0.2 0.7 1.0
« = DPP,GA
. IDENTITY  1.00  1.00  0.97  0.97
L2 . Fork  1.00  0.99  0.96  0.95
IS MERGE ~ 0.99  0.84  0.63  0.63
g DPP,GA - 0.22
5
2
& L00% IDENTITY  0.60  0.58  0.32  0.32
5 SAME ForRk ~ 0.60  0.58  0.32  0.32
5 MERGE 0.60 0.58 0.32 0.32
| DPP,GA - - 0.32
5
“ IDENTITY 0.88 0.97 0.95 0.95
L ForRKk  0.88  0.97  0.94  0.94
: MERGE ~ 0.87  0.82  0.63  0.62
DPP,GA - - - 0.22
I . .
0 10 20 50 100
Number of testcases in %, rounded
(b) Distribution of Syncronizer-runs (c) Normalized discernibility metric dependent on

the Synchronizer and ¢

Figure 4: Evaluation of D2P¢

chronizers IDENTITY and FORK need more than three synchronization attempts in over
40 % of the cases. The only situations where IDENTITY and FORK need less than three
Synchronizer runs, is given by small ¢ values, e. g., {0.15,0.2}. That can be explained by
the reduced amount of possible generalizations available for the strict privacy constraint
of a small £.

Data utility As a measure to rate the utility of an anonymized data set we use the
discernibility metric (DM). This metric was introduced by Bayardo et al. [BAOS5]. It
penalizes large ECs. Its result is the sum of these penalties. In order to gain comparable
results, the sum has to be normalized. The evaluation on the utility dependent on the
Synchronizer and ¢ value is shown in Figure 4c.

As a pre-note, we want to emphasize, that results for DPP,GA only apply for the case
of t = 1, since the protocol does not support ¢-closeness. The results obtained by the
MERGE-Synchronizer are generally preferable to those of IDENTITY and FORK. Surpris-
ingly, FORK does not perform much better than IDENTITY. While it is able to mark ECs
in 61 % of its testcases, this only slightly affects the result of the DM. Not surprisingly, all
Synchronizers show their worst performance for small ¢ values. As noted before, a small
t leads to maximal generalization with high probability.

Again, we can observe the use of splitting the result into the groups of SAME and DIFF.
Clearly, every Synchronizer in the SAME group obtains the same utility, since no synchro-
nization has to be performed after the first anonymization phase.
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In summary, our results indicate that the utility of the data generated by D2Pt¢ is lower than
that of DPP,GA. However, this also results from the use of ¢-closeness as a privacy metric
and its higher demands on the structure of ECs.

5 Related work

The protocol DPP,GA has been criticized for relaxing the notion of SMC. Therefore,
Jiang et al. [JCO6] extended DPP,GA to the protocol DkA to comply with the rules of
SMC. Both protocols perform a bottom-up generalization by gradually generalizing QID
values until achieving k-anonymity.

Mohammed et al. [MFD11] propose a top-down variant of a distributed k-anonymization
protocol. This protocol, iteratively specializes maximally generalized QID values, thus
producing an approximate optimal k-anonymity.

Recent work by Kohlmayer et al. [KPEK13] presents a study on state-of-the-art anonymiza-
tion algorithms applied to a distributed environment [KPEK13]. The proposed frame-
work is capable of dealing with horizontally and vertically partitioned data sets. One of
the concepts discussed by Kohlmayer et al. is the concept of t-closeness. However, as
Kohlmayer et al. pointed out, their framework is not capable of dealing with numerical
values in case of ¢-closeness. Furthermore, it was not shown if the framework respects the
threats imposed by the background-join attack introduced by Fang et al. [FAN11].

Closely related to the adaption of privacy metrics to a distributed environment is the ques-
tion of dealing with multiple sensitive attributes (MSA). This setting is imposed by a
distributed scenario where each participating institution holds at least one SA.

The problem of MSA does not affect k-anonymization algorithms, since k-anonymity does
not require the SAs to satisfy any properties. The concept of ¢-diversity demands SAs
values to be “well-represented” [MKGVO07]. Machanavajjhala et al. identify the problem
of MSA, but omit a detailed discussion. Recent work by Das et al. [DB12] addresses the
problem of MSA and provide a solution specifically tailored for /-diversity. The solution
of Das et al., Decomposition+, is related to ours, since it also fragments the data.

Data fragmentation has been discussed before in the context of k-anonymization. It is
achieved by the Anatomy-algorithm developed by Xiao et al. [XT06]. Recently, Fang et al.
[FAN11] addressed the problem of MSA for centralized ¢-closeness. Providing a frag-
menting solution, that analyzes the information loss imposed by the fragmentation.

6 Conclusion & future work

Throughout this paper, we have shown a simple yet effective method to enhance the dis-
tributed k-anonymization algorithm DPP,GA with the privacy requirements of ¢-closeness.
Using the MERGE-Synchronizer, we were able to significantly enhance the utility of our
distributed anonymization protocol.
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Moreover, the results we have gathered so far, indicate that the globally t¢-close table is
identical to the one produced by a centralized instance of the Datafly-algorithm. However,
a more detailed discussion on this assumption is subject to future research.

Nevertheless, our evaluation shows that DPP,GA achieved better utility. Therefore, it
should be noted, that the concept of ¢-closeness itself lowers utility of the data. In fact,
Li et al. criticized that it “substantially limits the amount of useful information that can be
extracted from the released data” [LLV10].

The work presented in this paper focuses on the simplicity of the protocol, thus relaxing
some security requirements typically imposed by the notion of SMC. Future work could
focus on allowing distributed t-closeness under the strict requirements of SMC. Further-
more, our current protocol is limited to a two-party design, thus allowing only two sites to
jointly compute an anonymization. It would be a challenging task to adopt our protocol to
an n-party environment, i.e., an arbitrary number of participating sites. Finally, it would
be of great interest to investigate the benefits of bottom-up and top-down approaches and
their application in an distributed environment.
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