
Evaluating the Energy Efficiency of Reconfigurable
Computing Toward Heterogeneous Multi-Core

Computing

Fabian Nowak
Karlsruhe Institute of Technology

Chair for Computer Architecture and Parallel Processing
76128 Karlsruhe, Germany

Email: nowak@kit.edu

Abstract—Future exascale systems need to have a much
better performance-to-power ratio than today’s systems. Ac-
celerators are a promising approach to pave this path by
more energy-efficient computing. We show some early results
of our investigations toward energy efficiency of reconfigurable
and heterogeneous computing against multi-core processors for
special applications. The results are supported by a general
framework and toolchain for early evaluation of potential benefits
of reconfigurable hardware. As a result, heterogeneous systems
based on reconfigurable hardware, efficient data exchange mech-
anisms, data-driven and component-based programming, and
task-parallel execution can help achieve power-efficient exascale
systems in future.

I. INTRODUCTION

Multi-core microprocessors nowadays feature a thermal
design power (TDP) of more than 100 Watt. Not only is
energy consumption high, but it is also hard to cool down
the components. New solutions are required to lower average
and maximum energy consumption and to also distribute the
heat spots along the processor chip. Hardware accelerators
can fulfill a lot of tasks not only faster, but even much more
energy-efficiently, i.e., consuming less energy in the same time
or consuming more energy while also being unproportionally
faster, or more formally:

energy efficiency :=
ratiospeedup
ratioenergy

. It is therefore of paramount importance to evaluate other
resources as alternatives to microprocessor cores for energy-
efficient execution in order to someday yield exascale com-
puting systems [6]. In addition, other means than data-parallel
programming and execution must be found, evaluated and
propagated to make more use of the number of cores already
present in nowadays processors. For example, OpenMP 3.0
already supports task-parallel execution. Ideally, such other
means will allow seamless migration of program parts from
microprocessor cores to accelerators and vice versa.

Apart from energy consumption, another issue with today’s
microprocessors is that many parts such as floating point units,
multimedia or SIMD streaming extensions are unused [13].
Reconfigurable hardware instead of such hard-wired special
units allows to dynamically “load” required or useful hardware
so that chip area will always be used. Field programmable gate

arrays (FPGAs) contain lots of reconfigurable hardware and
can therefore serve as evaluation candidates. t

In this paper, we employ the Convey HC-1, a heteroge-
neous system equipped with four user-programmable FPGAs,
for our investigations toward energy-efficient computing. The
FPGAs are connected to the host microprocessor via the Front-
Side Bus (FSB), thereby posing a tightly coupled heteroge-
neous system that can serve as a basis and evaluation platform
for future architectures of multi- or many-core processors. We
also employ a 2-socket Intel Westmere X5670 system with
six cores each and HyperThreading as homogeneous multi-
core system, providing up to 24 hardware threads in total,
to compare coprocessor-extended heterogeneous computing
against.

After giving an overview of related work in Section II, we
show in Section III three implementations: a kernel for the
bioinformatics application HHblits in reconfigurable hardware
based on previous work [2], [8] and its extension toward
heterogeneous computing; a micro-programmed, data-driven,
task-parallel, component-based and domain-adaptive frame-
work in software; and the implementation of said framework
for leveraging FPGAs based on previous work [7]. Our eval-
uation in Section IV shows that reconfigurable computing can
be up to 24× more energy-efficient than legacy computing
on microprocessors. We draw the conclusions in Section V,
giving some final remarks on possible heterogeneous micro-
processors to come in the future.

II. RELATED WORK

A solution to low usage of many parts of the microproces-
sor [13] is to distribute work onto all available cores to execute
in a data-parallel fashion. OpenMP and Intel Array Building
Blocks yield high processor utilization and high speedups
this way, with the latter also exploiting SIMD streaming
extensions (SSE) and thereby even more of a chip’s resources.
When memory bandwidth cannot provide enough data to the
processing cores for the application to scale only by means
of exploiting data-level parallelism, an obvious solution is to
bring in task parallelism, i.e., executing different functions of
an application concurrently, hopefully reusing already loaded
or cached data. Also, the nodes of an application’s directed
acyclic graph representation can execute independently. Intel’s
Cilk Plus [12], OpenMP 3.0 and StarSS [10] are promising
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programming models to exploit task parallelism in multi- and
manycore systems.

Another solution to tackle dark silicon issues [13] is to
provide heterogeneous cores. Basically, with MultiAmdahl the
allocation problem of which and how many resources should
be integrated on a chip, given a specific target application,
has been solved [14]. Now what remains to be investigated
and qualified are programmability and energy efficiency of
reconfigurable hardware-based accelerators that represent a
potential “specialized horseman”.

Comparing the FPGA-based heterogeneous computing sys-
tem Convey HC-1 against a GPU-based system, Bakos finds
the HC-1 5× less energy-efficient [1]. However, we expect
more benefit from heterogeneous computing with reconfig-
urable hardware. Therefore, we evaluate our bioinformatics
FPGA-based accelerator for ungapped score calculations as
used by HHblits [11]. We also shortly present our task-based
programming model for both homogeneous and heterogeneous
resources and upon this basis, we evaluate energy efficiency
of task-based programming and computing in heterogeneous
environments.

III. IMPLEMENTATIONS

We present three different implementations to evaluate the
fitness of existing homogeneous and heterogeneous computing
systems in regard to required energy efficiency for exascale
computing.

A. Accelerating Ungapped Score Calculations for Bioinfor-
matics Application

HHblits [11] is a bioinformatics application to find homol-
ogous sequences among a query protein string and a database
of reference protein strings. HHblits employs prefiltering of
the millions of database entries by means of a striped Smith-
Waterman implementation [3], which has been implemented
on FPGA recently [2], [8].

HHblits works as depicted in Figure 1: For the query
protein sequence, at first a Hidden Markov Model (HMM) is
created. Then, a profile is created upon the query HMM. The
profile is used to prefilter suitable entries from the large protein
database. This is done by first calculating a so-called ungapped
score without considering any gaps between the query profile
and the database reference sequence, i.e, the query and the
reference are quickly evaluated with regard to contiguously
matching parts. Those sequences passing this ungapped-score
prefilter are roughly checked whether they would also deliver
a suitable score when accepting gaps between subsequences.
The large number of millions of database entries is thereby
decimated to only some ten thousands. These “few” remain-
ing protein HMMs are regularly compared against the query
HMM. To obtain more suitable candidates, additional runs
can be used to find more results by “widening” the query
so that more reference sequences can match the query. If
another run is intended or required, then an update of the
initial HMM by the information from the accepted HMMs
is needed and accordingly performed by HHblits. The most
time-consuming part is the prefiltering step, with the first step
(ungapped score calculation) accounting for 1601.9 seconds
of the total application time of 1626.2 seconds when not

Fig. 1. Comparing a query sequence against a protein sequence database
within HHblits.

Fig. 2. Implementation of the first prefiltering step of HHblits on the four
FPGAs on the Convey HC-1. (MC – Memory Controller, ROQ – Read-Order
Queue, AEG registers – Application Engine General registers).

employing Farrar’s efficient striped SSE implementation for
the prefiltering step when performing only a single run. When
prefiltering is accelerated via Farrar’s SSE implementation,
then prefiltering takes roughly 67 % of the total application
time of 74.1 seconds for one run. If more runs are performed,
the proportion of the ungapped score calculations to overall
application execution time decreases.

Key to successful acceleration is enhancing data reuse. So
in contrast to the SSE execution, our implementation [2], [8],
shown in Figure 2, of the first prefiltering step for calculating a
locally ungapped score first loads the entire profile in parallel
over all 16 memoy controllers (MCs) and then streams the
query sequence over one MC per ungapped score calculation
unit (UCU) that can then heavily reuse data from different
parts of the profile. The profile is shared by all instantiated
UCUs. Apart from data reuse, exploiting massive parallelism is
required to successfully speedup an application despite the low
processing frequency of FPGAs. We do so by employing the
four FPGAs of the Convey HC-1, with each FPGA instantiat-
ing three UCUs for calculating three different ungapped scores
in parallel. These calculations are made up of 16 parallel, 8-
Byte-processing units; and the maximum is calculated in a
reduction tree over the 128 calculated individual scores and is
implemented as a pipeline. In total, we exploit 4·3·16·8 = 1536
fold parallelism and can output a new maximum score per
FPGA every cycle, while the SSE version suffers from the
non-parallel maximum calculations that introduce undesired
additional delay.
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The two cores on the host processor of the HC-1 can also
perform useful work during coprocessor execution: the second
prefiltering step depends only on the individual results of
previous single ungapped score calculations and can therefore
be carried out in an overlapped, task-parallel fashion.

B. Task-Parallel, Data-Driven and Component-Based Pro-
gramming and Execution (TDDcomp)

As second application domain to be analyzed toward per-
formance and efficiency of homogeneous and heterogeneous
computing systems we investigate numerical applications. As
can be seen from Figure 3 of the conjugate gradient method
(CG method), not only are some functions completely indepen-
dent from others, but many functions can also be executed in an
overlapped fashion, using already calculated vector entries to
compute the next depending functions. This is interesting and
helpful for two reasons: first, the available bandwidth to/from
external memories is too low to provide enough data to the
processing cores as soon as data become too large to fit into
the caches so that some cores are only waiting for data. Second,
newly calculated data that would normally be replaced in the
caches is reused now.

We implemented a set of linear algebra routines in a
data-driven fashion. The functions are executed as separate
POSIX threads and consume data from matrices or vectors
and exchange progress information in order to not use yet
invalid data. From a performance point of view, it proved to
be best to split matrices into ten blocks, so that communication
would not occur on a per-datum or per-line basis. Implemented
and evaluated mechanisms ensure that the function threads do
not consume valuable processing time as long as the required
input data are not available. When processing data blocks,
OpenMP is employed to exploit data parallelism in addition.
From an application programmer’s perspective, programming
resembles that of sequential programming. The programmer
has to care that as much task parallelism can be exploited as
possible. During development, our investigations revealed that
matrix data and structures should be allocated rather sooner
than later in order to leverage more task parallelism after
the allocation phase; and the structures should be freed as
late as possible in order to not pollute the caches during
ongoing more useful calculations. As it does not make sense
to poll continuously for new data, we evaluated sleeping
against waiting on semaphores. Upon the results gained, we
decided to employ semaphores. The final implementation and
configuration of the routines allow processing of large vectors
with competitive speed to data-parallel execution for the CG
method.

C. Implementation of a Micro-Programmable TDDcomp
Framework on the Convey HC-1

When employing FPGAs to accelerate applications par-
tially or even entirely, one of the most crucial problems is
data transfer due to limited off-chip bandwidth and lack of
hardware caches. Therefore, we implemented a streaming-
oriented, component-based architecture framework similar to
the one proposed above in Subsection III-B as depicted in
Fig. 4. To exchange data between components and external
memories in an efficient manner, a central FIFO buffer set
connects the components much like a crossbar. Data flow is

Fig. 4. Implementation of the architecture framework on the Convey HC-1.

controlled via a user-supplied micro program. This framework
allows application programmers to provide and exploit custom,
application-targeted accelerators in reconfigurable hardware
by developing micro programs only instead of describing
hardware at low level and instead of employing high-level
language converters. For example, the CG method can be ac-
celerated up to ten times in comparison to the Convey HC-1’s
host processor and the framework even achieves comparable
performance to 24 hardware threads on a two-socket Intel
Westmere X5670 system [7], although employing only one
out of the four available FPGAs.

With special units such as an enhanced-precision dot
product implementation, even more speedup can be gained
because the algorithm can converge in only half the number
of iterations. This architecture framework is hence also a
possible approach of how to interconnect multiple cores on a
manycore chip and how to have them communicate efficiently
via buffer sets in a data flow style. Moreover, the special
units represent the case of exploiting reconfigurable logic for
custom accelerators, while the numeric functions might also
be executed on standard microprocessor cores.

IV. ANALYSIS AND EVALUATION

We aim at analyzing the fitness of heterogeneous, FPGA-
based computing systems as a possible approach for future ex-
ascale computing where much more energy-efficient execution
than on today’s regular, multi-core processor-based computing
systems is required. In future, manycore chips might want
to integrate reconfigurable logic for faster and less energy-
consuming, i.e, more energy-efficient, computing. An early
example is the Intel Atom E6x5C [4] with an Altera FPGA
connected to the low power core over PCI Express. This way,
the dark logic issues [13] might be solvable when integrating
special instructions, operations or functions. Also will heat dis-
sipation be less problematic then. We do hence study execution
time and energy consumption of the implementations presented
in Sect. III on the Convey HC-1 and a two-socket Intel
Westmere system. Table I summarizes the maximum power
consumption of these systems. Although many processors can
be dimmed down to a fraction of the maximum frequency, this
is not much different from using FPGAs that are clocked with
only 100 MHz to 300 MHz, except that FPGAs can implement
special operations at bit-level or with smart data structures so
that they also reduce execution time in addition to having a
lower power consumption footprint. Some processors can also
be boosted to a higher frequency, but this is possible only for
a very short time due to heating problems and going rather
into the opposite direction than the approach favored in this
paper.
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Fig. 3. Graph for the Conjugate Gradient Method indicating exploitable task parallelism. Data flows from left to right, while time advances vertically. Many
tasks can execute in an overlapped fashion as they only depend on few previously calculated data.

TABLE I. THERMAL DESIGN POWER (TDP) AND MAXIMUM POWER CONSUMPTION OF THE USED SYSTEMS.

System setup Intel Xeon 5138 @Convey HC-1 Xilinx Virtex-5 LX330 @Convey HC-1 Convey HC-1 Intel Xeon X5670 2-socket X5670

TDP / maximum 35 W 35.8 W 178.2 W 95 W 190 W

A. Energy Efficiency of HHblits Implementations

The performance of HHblits largely depends on the per-
formance of the ungapped score calculation kernel (60 %-70 %
of total execution time [2]). We study the individual aspects
of coprocessor-supported execution and task-parallel execution
and finally merge these.

1) Ungapped Score Calculation on the FPGA-based Co-
processor: As can be seen from Table II, employing the
FPGAs dramatically increases power consumption because as
of now, a hardware thread is required to control execution
on the FPGAs (fifth row). FPGA power consumption is
determined via Xilinx Power Analyzer (XPA), while CPU
power consumption is taken from the specified thermal design
power (TDP). Also, for the remaining parts of HHblits, power
and energy consumption of the standard processor must be
accounted for. However, due to shortened overall execution
time and because the coprocessor runs only for the ungapped
score calculations, but not for the remainder of the application,
the total energy efficiency of the heterogeneous system shall
be better, as will be seen later.

2) Overlapped Execution of HHblits: We already sketched
the approach of overlapping different subtasks of HHblits.
As multi-core processors may easily run into the memory
wall, it must be investigated whether task-parallelism allows
to better exploit the available processing resources so that
memory accesses do not become the bottleneck. Figure 5
shows that although not necessarily providing real benefit
over data-parallel execution, it is possible to entirely hide
the computations of swStripedByte behind the ungapped-score
calculation by executing in a task-parallel, component-based
manner. The overhead imposed by synchronization must be
regarded the culprit for the low advantages of the task-parallel
approach for our coprocessor-accelerated version of HHblits.
As consequence, more data must be transferred so that memory
bandwidth is stressed more, or a different communication
model must be used for synchronization.

3) HHblits on the Heterogeneous System: Applying the
task-parallel model while also using the coprocessor allows
to easily synchronize the ungapped score calculations more
tightly with the subsequent swStripedByte because the co-
processor is invoked for a set of sequences only, and sw-
StripedByte can process the previous sequence set then. Again,
Table III shows that energy consumption is higher when also
processing HHblits on the coprocessor, but due to achieved
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Fig. 5. Data-parallel execution of HHblits on Homogeneous System with two
X5670 processors against task-parallel execution, which hides swStripedByte
nearly entirely behind ungapped-score calculation and thereby is faster in most
cases.

speedup, the heterogeneous systems performs more than 1.5×
more energy-efficiently.

B. Energy Efficiency of Conjugate Gradient Method Imple-
mentations

To finally support our thesis that heterogeneous computing
based on reconfigurable hardware can provide benefit over
computing on homogeneous resources only, we regard energy
consumption and efficiency of an FPGA for task-parallel,
data-driven computing (TDDcomp) in reconfigurable hardware
on the Convey HC-1’s coprocessor against a two-socket In-
tel Xeon X5670 system. A previous implementation [7] of
the CG method in the framework serves as basis for these
investigations. As indicated by Xilinx Power Analyzer, the
FPGA implementation of TDDcomp draws 17.439 W of power.
Note that the FPGA implementation includes an extended dot
product unit in order to draw more benefit from reconfigurable
hardware by arbitrary bit-width implementations. This also
reflects the case that special operations (→ “specialized horse-
man” [13]) are tightly integrated into execution of a program
on various resources, such as an exact dot product imple-
mentation [9] which is approximated here by the extended-
precision unit. Table IV lists the execution time, calculated

76



TABLE II. POWER CONSUMPTION AS USED IN OUR ANALYSIS MODEL, EXECUTION TIME AND ENERGY CONSUMPTION OF ALL KERNEL CALCULATIONS
OF HHBLITS ON THE CONVEY HC-1.

System setup Power consumption [W] Kernel execution time [s] Energy consumption [mWh]

Xeon 5138, 1 Thread (TDP) 17.5 1601.9 7787.0
Xeon 5138, 1 Thread, SSE (TDP) 17.5 50.0 243.1
Xeon 5138, 2 Threads, SSE (TDP) 35 25.1 244.0
Xilinx Virtex-5 LX330 (XPA) 18.561 28.6 147.5
Convey HC-1 with Coprocessor (1 Hardware Thread, 4 FPGAs) 91.744 13.1 333.8

TDP – Thermal Design Power, XPA – Xilinx Power Analyzer

TABLE III. EXECUTION TIME, ENERGY CONSUMPTION AND RATIOS OF CPU EXECUTION, COPROCESSOR-EXTENDED EXECUTION AND OVERLAPPED
CPU/COPROCESSOR EXECUTION FOR THE ENTIRE APPLICATION HHBLITS.

Xeon 5138 (1 Thread, SSE) With Coprocessor (+ 4 FPGAs) Overlapped

Execution time [s] 74.585 37.465 34.147
Energy consumption [mWh] 362.566 507.048 507.048
Speedup over CPU (1.0) 1.991 2.184
Relative energy consumption against CPU (1.0) 1.398 1.398

Relative energy efficiency against CPU (1.0) 1.424 1.562

energy consumption and energy efficiency ratio of FPGA-
based computing against a 24-hardware-thread system. The
FPGA implementation of the conjugate gradient method within
the micro-programmable TDDcomp is more than 17 times as
energy-efficient as execution on a 24-hardware thread Intel
Westmere system.

V. CONCLUSIONS AND FUTURE WORK

We showed that reconfigurable computing can be 17×
more energy-efficient than computing on general-purpose
multi-core processors. To fully leverage the benefits of het-
erogeneous, accelerator-based systems, both the kernels ported
to accelerators in reconfigurable hardware and the application
need to take much care of data locality and data reuse.
The task-parallel execution of components in reconfigurable
hardware and software allows to exploit such data local-
ity and data reuse by means of FIFO buffers and by the
concept of streaming. As a result, our investigations show
that upcoming multi- and many-core microprocessors should
be heterogeneous by nature, for example by instantiating a
couple of FPGA-like resources to provide application-required
accelerators on demand. Moreover, the task-parallel execution
of components in a streaming fashion requires data buffers for
linear data access. Such data buffers should make up another
part of microprocessors in addition to the regular caches as the
buffers will support both kernels in reconfigurable hardware
and in software. With such a setup of multiple processing
cores, reconfigurable hardware and custom memory structures
on chip, we can expect to meet the required power and energy
goals of exascale systems. Future work includes seamless
provision of the required accelerators based on previous work
toward self-management of heterogeneous systems [5].
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