
B. Juurlink, W. Karl (Hrsg.)
Proceedings 28th PARS Workshop

Influence of Discretization of Frequencies and Processor
Allocation on Static Scheduling of Parallelizable Tasks with
Deadlines

Sebastian Litzinger, Jörg Keller1

Abstract: Models for energy-efficient static scheduling of parallelizable tasks with deadlines on
frequency-scalable parallel machines comprise moldable vs. malleable tasks and continuous vs.
discrete frequency levels. We investigate the tradeoff between scheduling time and energy efficiency
when going from continuous to discrete processor allocation and frequency levels. To this end, we
present a tool to convert a schedule computed for malleable tasks on machines with continuous
frequency scaling (P. Sanders, J. Speck, Euro-Par 2012) into one for moldable tasks on a machine with
discrete frequency levels. We compare the energy efficiency of the converted schedule to the energy
consumed by a schedule produced by the integrated crown scheduler (N. Melot et al., ACM TACO
2015) for moldable tasks and a machine with discrete frequency levels. Our experiments indicate that
the converted Sanders Speck schedules, while computed faster, consume more energy on average than
crown schedules. Surprisingly, it is not the step from malleable to moldable tasks that is responsible,
but the step from continuous to discrete frequency levels.

Keywords: Static Scheduling; Frequency Scaling; Energy-efficient Schedules

1 Introduction

Repetitive tasks with deadlines often occur in embedded multicore systems, for example
in streaming applications where each task is activated in a scheduling round [Me15]. The
length of the round determines the throughput, such as the number of images that can be fed
to an image processing application per second, and at the same time poses a deadline until
which all the tasks must or should be executed, depending on the hardness of the deadline.
While each task feeds output to its follow-up tasks according to the streaming task graph,
this input can be considered to be transferred from one scheduling round to the next, so that
the task invocations in one round are independent of each other.

If the application has a longer runtime or is frequently executed, it pays off to find a static
schedule to execute the tasks within a round with minimum frequencies in order to lower
the energy consumption for the given throughput. A static schedule typically has lower
runtime overhead and at the same time better quality than a dynamic schedule, given that
1 FernUniversität in Hagen, Faculty of Mathematics and Computer Science, 58084 Hagen, Germany first.last@

fernuni-hagen.de

https://creativecommons.org/licenses/by-sa/4.0/
first.last@fernuni-hagen.de
first.last@fernuni-hagen.de

Sebastian Litzinger, Jörg Keller

the task executions are predictable, which is the case in the above scenario. Minimizing
energy consumption is of tremendous importance in embedded systems, as lower energy
might mean a housing without a fan and thus lower production and maintenance cost. At
least it means a lower bill from reduced energy supply and reduced cooling.

An interesting sub-case of this static scheduling scenario are parallelizable tasks, i. e. tasks
that are parallel programs themselves. This is advantageous e. g. when the number of cores
is larger than the number of tasks. Several approaches have proposed solutions to this
problem, however starting from different assumptions. On the one hand, Sanders and Speck
[SS12] have proposed an algorithm that computes a schedule under the assumption that the
frequency can assume an arbitrary value, and not only a finite number of discrete levels, and
under the assumption that the degree of parallelism of a task can vary during its execution
(so-called malleable tasks), i. e. a task allocated to 5.3 cores runs on 6 cores for 30% of
the time till the deadline, and on 5 cores for the remaining time. Finally, they assume that
a (sequential) task can be interrupted and continued later on. On the other hand, crown
scheduling [Me15] assumes that only a finite number of discrete frequency levels is available,
that a task can only be allocated to an integral number of cores2 (so-called moldable tasks)
and that a task is not interrupted by another task once its execution has started. There are
other differences as well (the Sanders Speck scheduler poses some restrictions on the power
and speedup functions, while the crown scheduler allows arbitrary power and speedup
profiles) which we will ignore here.

In the current work, we are interested in the trade-off between these two extremes. In
particular, we investigate the hypothesis that to schedule a set of moldable tasks, we might
first use the Sanders Speck scheduler as if the tasks were malleable, and convert the schedule
into one for moldable tasks, remove preemption of sequential tasks, and step over to discrete
frequencies. For all these steps, we observe how much the energy consumption of the
resulting schedule increases, and compare the final result with the energy consumption
of a crown schedule. The Sanders Speck scheduler (even including the converter) has a
shorter runtime than crown scheduling, which solves a mixed-integer linear program. Our
hypothesis, which we will test by experiments, is that a converted Sanders Speck schedule
has a higher energy consumption than a crown schedule, so the user can trade scheduling
time for energy consumption. In addition, by doing a sequence of conversion steps we can
see which of the model differences has most influence, so that one may perform research on
that difference in the future.

Surprisingly, the main difference does not seem to lie in the contrast between malleable and
moldable tasks, but in the step from continuous to discrete frequencies. This might call for
a reconsideration of the requirement that the discrete frequency level of a task need not be
changed during task execution. [EK15] demonstrate that for tasks with sufficient runtime, a
non-existing frequency might be simulated by using each of the two existing surrounding

2 Crown Scheduling further assumes that a task can only be allocated to p processors where p is a power of 2, but
it turned out [Me19] that this restriction only leads to slightly higher energy compared to requiring an integral
number of cores.

Static Scheduling of Parallelizable Tasks

discrete frequency levels for part of the execution time, with only a small increase in energy
consumption.

The remainder of this article is structured as follows. In Section 2, we briefly review
background information on energy-efficient scheduling and related work. In Section 3, we
describe both schedulers used, present the routine to convert a Sanders Speck schedule
for malleable tasks into a schedule for moldable tasks, and indicate how we discretize the
frequency levels. In Section 4, we report on the experiments with which we test the above
hypothesis, and in Section 5, we summarize and give an outlook to our future work.

2 Background

We consider the problem of scheduling a set of parallelizable tasks T = {t1, . . . , tn} to a set
of homogeneous processors P = {P1, . . . , Pp}, where we can scale the frequency for each
core independently. A task tj is characterized by its workload τj , which might represent the
number of processor cycles necessary to execute the task on one core, and its maximum
width Wj , determining the maximum number of cores tj can be executed on concurrently. A
task-specific parallel efficiency function ej(q), 1 ≤ q ≤ p, is defined as the speedup when
running the task on q processors, divided by q, thus depending on the number of cores to
which the task is allocated.3

If a task tj is allocated to a noninteger number of processors – as is done by the Sanders
Speck scheduler, which assumes tasks to be malleable – the expression wj + γj gives the
total number of processors for tj , wj being an integer value and γj ∈ [0, 1).

We compute a static schedule, i. e. we schedule prior to the actual execution. The schedule
allocates each task to a set of processor cores and assigns an execution frequency and a start
date. The schedule must be feasible, i. e. no core is ever allocated to more than one task
at the same time. Furthermore, execution of the task set shall terminate before reaching a
deadline M .

When a processor core is running at a frequency f , it draws electrical power P(f). In the
most general sense, P is non-decreasing in f . Next to the frequency, P depends on a number
of other factors, such as the supply voltage, the instruction mix of the currently executed code
and the temperature. We assume that voltage is always set to the minimum level possible for
each frequency (and nowadays a single voltage level often serves many frequency levels),
so the influence of voltage on power consumption is covered by the frequency parameter.
The instruction mix is considered to be uniform for all tasks (but might be extended, cf.
[HK17, LKK19]), and the temperature is assumed to be controlled to remain constant.

A task with workload τ that runs on q cores has a workload of τ
q ·e(q) on each core. Normally,

it is assumed to run at one frequency f for its whole execution on q cores, so that the power
3 The concept of maximum width is therefore introduced solely for convenience, as one could simply set
e j (q) = 0 for q >Wj .

Sebastian Litzinger, Jörg Keller

consumption remains constant during the execution. The runtime t(q) can be obtained by
dividing core workload (number of cycles) by frequency (number of cycles per time unit).
The energy consumption can be obtained by multiplying runtime and power consumption.
The energy consumption of a schedule is the sum of the tasks’ energy consumptions.

We employ a simple energy model, assuming dynamic power to be (proportional to)
f α [SS12]. Here, f denotes the processor’s current operating frequency, and α is a
constant depending on the actual hardware. To facilitate comparability between the different
scheduling approaches, we assume that frequency scaling does not produce any time or
energy overhead, and static power consumption as well as idle power are ignored here. The
energy consumed by a processor executing a task on frequency f over a period M is thus
f α · M .

While literature on task scheduling is vast, two approaches are of particular interest for our
current purposes. In [SS12], a static scheduler for malleable tasks is presented, which allows
continuous frequency scaling and seeks to minimize energy consumption while meeting a
set deadline. The Crown scheduler introduced in [Me15] is a static scheduler for moldable
tasks. It also aims for minimization of energy consumption under deadline constraints,
which is achieved via integer linear programming (ILP). Processor allocation, mapping,
and frequency scaling are either performed separately or in a combined manner, promising
further energy savings. Due to restrictions regarding allocation, mapping, and execution
sequence, Crown scheduling allows for solving medium-sized problems by means of linear
programming. The Crown scheduling technique is expanded in [MKK16] when static and
idle power are taken into consideration and the concept of core consolidation is explored.
In [XKD12], parallel tasks with deadlines and discrete frequencies are treated. Scheduling
is performed via a level-packing approach, and for minimization of energy consumption,
a 0-1 ILP is contrasted with a three-step heuristic consisting of the specification of each
task’s width, task scheduling, and frequency assignment.

3 Scheduling Approaches for Parallelizable Tasks

In this section, Sanders Speck scheduling is outlined in 3.1. Subsection 3.2 shows how to
convert a Sanders Speck schedule, and 3.3 offers a recap of the crown scheduling technique.

3.1 Sanders Speck Scheduling

Sanders and Speck [SS12] assume that the tasks are malleable, i. e. that the scheduler can
vary the number of cores used during execution of a task. For example, a task might be
run on 4 cores in the time interval [0; 0.3 · M] and run on 5 cores in the time interval
[0.3 · M; M]. The number of allocated cores (also called the width) for task j is therefore4

4 They prove that in their setting, other variations than using q and q + 1 cores for a task do not occur.

Static Scheduling of Parallelizable Tasks

given as wj + γj , where wj = 4 and γj = 0.3 for this example. There are restrictions on
the efficiency function, which according to their analysis seem to be met by many parallel
algorithms.

The cores can be scaled to an arbitrary, continuous frequency f ≥ 0, and the power
consumption of a core is f α, where typically 2 ≤ α ≤ 3. Adding a constant amount of
static power is ignored, as it does not change the allocations that achieve minimum energy,
as long as the cores are not switched off. Thus, transformations can be used to morph
realistic frequency ranges into the dimensionless space used here and morph back to power
consumption values for real processor architectures.

The algorithm given by Sanders and Speck computes a processor allocation wj + γj for each
task j, such that

∑
j(wj + γj) = p, the total energy spent in the computation is minimum,

and the task set is executed until the deadline. From the allocation and the given parallel
efficiency function, they are able to derive the operating frequency for each task. The
mapping is as follows: a task with wj ≥ 1 gets wj cores for the complete time till the
deadline. All the γj parts, i. e. the times where a task gets an extra core, and the sequential
tasks (where wj = 0) are mapped to the remaining p −

∑
j wj cores by a wrap-around rule:

A core is filled with these tasks. When it is allocated for a fraction δ till the deadline, and
δ + γj > 1, then this task gets 1 − δ of the time on this core, and γj + δ − 1 on the next core.
This leads to another requirement: it must be possible to stop a task and continue it later on
a different core.

To illustrate the mapping procedure, Figure 1 provides an example mapping of 3 tasks to
6 cores, with processor allocations of 3.2 (t1, orange), 0.9 (t2, green), and 1.9 (t3, pink).
Since wj > 1 for the orange and pink tasks, these receive 3 and 1 cores, respectively, for the
whole execution time. The sequentially executed green task is not considered at this point.
As there are 6 cores in total, the γj are distributed across the remaining 2 cores in the next
step. The orange task receives core 5 for 20% of the execution time. The green task, which
is allocated 0.9 cores overall, is mapped to core 5 for the remaining 80% of total execution
time and – by wrap-around – to core 6 for 10%. As one can gather from Figure 1, we now
require preemption. The pink task is run on core 6 after t2 to reach its total allocation of
1.9 cores. For the orange and pink tasks, we assume malleability since their width changes
from 4 to 3 (orange) and 1 to 2 (pink) during the course of their execution.

1 2 3 4 5 6
processor

Fig. 1: Example mapping of 3 tasks to 6 cores

Sebastian Litzinger, Jörg Keller

3.2 Converting a Sanders Speck Schedule

Converting a Sanders Speck schedule starts with moving from malleable to moldable tasks.
Under this restriction, a task can either be executed in parallel on a fixed integer number of
processors (i. e. wj > 1, γj = 0.0), or sequentially on a single core (i. e. wj = 1, γj = 0.0 or
wj = 0, 0 < γj < 1).

In order to achieve this, one first splits the task set T into TP = {tj ∈ T : wj + γj > 1}
and TS = T \ TP . In the first step, only tasks in TP are considered. To begin with, we
determine the sum of the parallel tasks’ processor allocations under the Sanders Speck
schedule, πtotal =

∑
tj ∈TP

wj + γj , as well as the number of processors solely dedicated
to a single parallel task, πsingle =

∑
tj ∈TP

wj . Computing u = nint(πtotal) − πsingle gives
you the number of cases in which processor allocation shall be rounded up, where nint()
signifies the nearest integer function.5 One now proceeds as follows: The tasks in TP are
sorted by descending γj . Then, for the first u tasks in that order, set wj = wj + 1, γj = 0.0.
For the remaining |TP | − u parallel tasks, set γj = 0.0. The processor allocations for parallel
tasks now are integer values, and the total amount of cores utilized is nint(πtotal). On a side
note, it may be the case that a task which would be executed in parallel under the Sanders
Speck schedule runs sequentially under the converted schedule.

Going back to the example from Section 3.1, we have TP = {t1, t3} and TS = {t2}
since only the green task is executed sequentially. We get πtotal = w1 + γ1 + w3 +
γ3 = 3 + 0.2 + 1 + 0.9 = 5.1 and πsingle = w1 + w3 = 3 + 1 = 4, which yields
u = nint(πtotal)−πsingle = nint(5.1)−4 = 5−4 = 1. Sorting the tasks in TP by descending
γj gives us t3, t1. We now set wj = wj + 1 and γj = 0.0 for the first u tasks in that order,
i. e., for t3 we assign w3 = 2, γ3 = 0.0. For the remaining |TP | − u parallel tasks, we set
γj = 0.0, i. e., for t1 we now have γ1 = 0.0 (and w1 stays at 3).

The next step is to compute the sequential tasks’ processor allocations. The number of
cores available for the execution of sequential tasks is p − nint(πtotal). The tasks in TS are
now mapped to the remaining processors via a binpacking approach. To this end, they are
sorted by descending τj and subsequently are assigned to the (at the respective time) least
occupied bin, i. e. core.6 Note that bin size can easily be computed as fmax · M, which
represents the maximum workload a processor can handle up to the deadline M running
on its maximum operating frequency fmax . After the binning step, one can immediately
compute the processor allocation for each task tj ∈ TS: If a task tj is the only one running
on a given processor, set wj = 1, γj = 0.0. Otherwise, a task is allocated a fraction of a

5 Naturally, u could be computed differently, e. g. one could set u = dπtot al e − πsingle or u = bπtot al c −
πsingle , or try both ways and see which resulting schedule yields lower energy consumption. In any case, as
long as there are sequential tasks, it has to be ensured that there is at least one core left for the execution of
sequential tasks, i. e. if dπtot al e = p, one must set u = bπtot al c − πsingle .

6 As the processor’s operating frequency for each task is not carried over from the Sanders Speck schedule but is
computed anew after processor allocation has been performed, it cannot serve as a sorting criterion. Consequently,
a task’s workload is used to best represent its size. We expect mapping the sequential tasks to processors in order
of descending workload to lead to a reasonable load balancing.

Static Scheduling of Parallelizable Tasks

processor corresponding to its share of the processor’s total workload, γj =
τj∑

tk ∈Ti
τk

, where
Ti denotes the set of tasks to be executed on processor Pi , and tj ∈ Ti . For these tasks, set
wj = 0.

In our example from Section 3.1, there is just one sequential task and we have p −
nint(πtotal) = 6−5 = 1. Thus, t2 is allocated an entire core, which gives us w2 = 1, γ2 = 0.0
under the conversion. Figure 2 shows the resulting mapping after conversion. As all parallel
tasks’ allocations are now integer values, malleability is not required anymore. Beyond that,
the mapping of any sequential task to a single core, where it is executed in one go, renders
preemption expendable.

1 2 3 4 5 6
processor

Fig. 2: Mapping after applying the conversion procedure to the example depicted in Figure 1

As processor allocation is now completed for all tj ∈ T , one can compute the frequency for
each task as

Fj =

{ τj
γj ·M

if wj = 0,
τj

e j (wj)·wj ·M
if wj ≥ 1.

This allows calculation of the energy consumption for each tj ∈ T (note that wj = 0 ⇔
γj , 0):

Ej = Fαj · (wj + γj) · M .

Now that processor allocation has been carried out, frequency discretization can be employed
in order to obtain energy consumption values under the further restriction that cores feature
a set of discrete frequency levels F = { f1, . . . , fs} they can run on. We further assume that a
core’s operating frequency can be changed only between task executions. As before, we first
consider TP: Here, frequency discretization is fairly easy to perform: Since each tj ∈ TP

is the only task allocated to its respective processor(s), one has no choice but to increase
frequency to the closest frequency level: Fj = min{ f ∈ F : f > Fj}. Lowering Fj to the
closest frequency level f < Fj instead would incur a deadline violation.

For TS , frequency discretization does not necessarily imply increasing the operating
frequency for each tj ∈ TS to the next possible value. On the contrary, one should aim for
reducing the frequency for as many tasks as possible so as to improve energy consumption.
To facilitate this, in a first step all tj ∈ TS are treated as described above for parallel tasks:
Fj is increased to min{ f ∈ F : f > Fj}. Afterwards, for each processor Pi executing tasks

Sebastian Litzinger, Jörg Keller

from TS , the operating frequency is decreased by one level, task by task, until the deadline
cannot be met, starting with the last task mapped to Pi (which is the least bulky one due to
the binpacking performed beforehand). The last assignment of frequencies to tasks adhering
to the deadline is then adopted.

If one allows frequency scaling during task execution, energy consumption can be reduced
since a given frequency Fj can be simulated by running on flj = max{ f ∈ F : f < Fj} for
c · M and on fh j = min{ f ∈ F : f > Fj} for (1 − c) · M , c ∈ [0, 1]. This procedure forms a
generalization of the above approach, where frequency scaling is performed this way for all
t ∈ TP with c = 0. Choosing c individually for all t ∈ T on the other hand will most likely
have a positive impact on energy consumption. This is done as follows:

cj = −
Fj − fh j

fh j − flj
.

The calculation of a task’s energy consumption in this scenario is then pretty straightforward:

Ej = (f αlj · cj + f αh j
· (1 − cj)) · (wj + γj) · M .

3.3 Crown Scheduling

A different static scheduling approach for moldable tasks with discrete frequencies is
the crown scheduler [Ke13, MKK16]. Here, we consider the integrated version, where
processor allocation, mapping, and frequency scaling is performed in a combined fashion
by solving an integer linear program (ILP). In order to ease computation, the Pi are assigned
to a hierarchy of processor groups as in Figure 3: The largest group, P1, comprises all
processors, which is then divided into two equally sized subgroups. These subgroups each
are divided into two equally sized subgroups, and so on, with the smallest groups containing
one processor only. This group structure can be applied for core counts which are powers of
2, and the resulting number of groups is 2p − 1. Tasks are then mapped to processor groups,
which run at a specified frequency for the duration of a task’s execution.

Fig. 3: Processor groups for p = 8, taken from [Ke13]

Static Scheduling of Parallelizable Tasks

The optimization problem therefore yields n · (2p − 1) · s binary decision variables xj,i,k ,
xj,i,k = 1 signifying that task tj shall be executed on processor group Pi operating at
frequency fk . The target function to be minimized computes the total energy consumption

E =
∑
j,i,k

xj,i,k ·
τj · f α−1

k

ej(pi)
.

The term pi denotes the number of cores in processor group Pi . Several constraints apply in
order to guarantee a valid schedule. First, every task shall be scheduled only once:

∀ j :
∑
i,k

xj,i,k = 1.

Furthermore, to ensure the deadline is met, the total runtime of all tasks mapped to a core
Pl must not exceed the deadline:

∀l :
∑
j

∑
i∈Gl

∑
k

xj,i,k ·
τj

pi · fk · ej(pi)
≤ M,

where Gl denotes the set of all groups core Pl belongs to. Finally, the maximum number of
cores allocated to a task tj shall be its maximum width Wj :

∀ j :
∑

i,pi>Wj

∑
k

xj,i,k = 0.

Applying an ILP solver to the optimization problem then yields a mapping of tasks to
processor groups as well as the respective processors’ operating frequencies.

4 Experiments

In this section, we compare the resulting energy consumption when scheduling task sets
via the various approaches presented in Section 3. Our experiments are based on synthetic
task sets of varying cardinality and tasks’ maximum widths as in [Ke13, MKK16]: A task
set comprises 10, 20, 40, or 80 tasks and displays a low (Wj ∈ {1, . . . , p/2}), average
(Wj ∈ {p/4, . . . , 3p/4}), high (Wj ∈ {p/2, . . . , p}), or maximum (∀ jWj = p) degree of
parallelism7, or it contains sequential tasks only (∀ jWj = 1). For each combination of
cardinality and degree of parallelism, 10 different task sets are considered, thus yielding a
total of 200 different task sets for the evaluation of the previously introduced scheduling
techniques.

7 AllWj for low, average, and high degrees of parallelism are determined randomly based on a uniform distribution.

Sebastian Litzinger, Jörg Keller

The number of cores is set to 32, and the set of discrete frequencies is {1.0, 2.0, 3.0, 4.0, 5.0}.
Furthermore, α = 3.0 and the parallel efficiency of task tj is defined as in [Ke13]:

ej(q) =


1 for q = 1,
1 − 0.3 q2

(Wj)
2 for 1 < q ≤ Wj,

0.000001 for q > Wj .

The parameter q is the number of cores tj is executed on. The deadline M is determined as
in [Ke13]:

M =

∑
j

τj
p · fmax

+ 2
∑

j
τj

p · fmin

2
,

where fmin and fmax are the processors’ minimum and maximum operating frequencies.

Energy consumption values are computed for (cf. Figure 4 for the visualization of results):

• the Sanders Speck schedule (reference),

• the Sanders Speck schedule converted to moldable tasks without preemption (blue
bar),

• the converted schedule with discrete frequencies (purple bar),

• the converted schedule with discrete frequencies and one-time frequency scaling
during task execution (pink bar),

• the crown schedule (yellow bar).

We deployed a C implementation of the Sanders Speck scheduler, a Python implementation
of the converter tool, and for crown scheduling, the Gurobi 8.1.0 solver was adopted in
conjunction with the gurobipy module for Python. The Sanders Speck scheduler as well
as the converter tool were executed sequentially on an AMD Ryzen 7 2700X, while the
Gurobi solver ran in 16 threads on 8 cores with a 5 minute timeout for each ILP. It took the
Sanders Speck scheduler ≈ 0.3 s to compute schedules for the 200 synthetic task sets, and
the conversion process lasted another ≈ 56 s, while the crown scheduler required ≈ 366 min
to deliver the results.8 It should be noted though that the time to solve the ILPs varied
heavily among the task sets: Roughly half the schedules could be computed in < 1 s, ≈ 87%
in < 10 s, ≈ 92% in < 1 min, and 4 ILPs could not be solved to optimality until the 5 minute
timeout occurred.

From Figure 4 it becomes clear that moving from malleable to moldable tasks has a minor
impact on energy consumption over all task set types and cardinalities. Subsequent frequency

8 The execution times given are the sums of user and system times, while the timeout refers to real (wall clock)
time.

Static Scheduling of Parallelizable Tasks

se
qu
en
tia
l n
10

se
qu
en
tia
l n
20

se
qu
en
tia
l n
40

se
qu
en
tia
l n
80

lo
w
n1
0

lo
w
n2
0

lo
w
n4
0

lo
w
n8
0

av
er
ag
e
n1
0

av
er
ag
e
n2
0

av
er
ag
e
n4
0

av
er
ag
e
n8
0

hi
gh

n1
0

hi
gh

n2
0

hi
gh

n4
0

hi
gh

n8
0

m
ax
im
um

n1
0

m
ax
im
um

n2
0

m
ax
im
um

n4
0

m
ax
im
um

n8
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

task set

en
er
gy

SaSp converted
SaSp conv. discr. freq.
SaSp conv. freq. scale
Crown

Fig. 4: Energy consumption for different scheduling techniques and synthetic task sets relative to
energy consumption for the Sanders Speck scheduler

discretization on the other hand leads to a considerable increase in energy consumption, up
to 2.5x compared to the energy consumption of a corresponding Sanders Speck schedule.
The effect of frequency discretization is particularly severe for high degrees of parallelism.
This is due to the discretization strategy, which permits scaling to lower frequencies for
sequentially executed tasks but enforces moving to a higher frequency for tasks running in
parallel. The significantly lower relative energy consumption values for high cardinality task
sets over all degrees of parallelism support this explanation, since despite their potential for
parallel execution, many tasks will have to be run sequentially due to the large number of
tasks.

It can also be observed that in many cases the converted Sanders Speck schedule with
discretized frequencies leads to a substantial growth in energy consumption over a crown
schedule – the exceptions being high cardinality and low maximum width task sets. This is

Sebastian Litzinger, Jörg Keller

unfortunate, as both the converter and the crown scheduler essentially operate based on the
same constraints. In some scenarios, the former might be preferable though, as producing a
converted Sanders Speck schedule is less computationally intensive than creating a crown
schedule.

A good deal of the negative effect of frequency discretization can be mitigated when
frequency scaling during task execution is permitted. In many cases, the resulting schedule
performs better or as good as a crown schedule. It must be pointed out though that the
additional overhead of frequency scaling is not reflected in the current findings.

As a final observation, which is not afforded by Figure 4, the absolute energy consumption
values hardly differ when the degree of parallelism exceeds the average category. This
applies to all scheduling techniques. Here, a preliminary conjecture would be that deadline
constraints prevent exploitation of the higher potential for parallelism.

5 Conclusions

We have presented a tool that converts a schedule for malleable tasks on a machine with
continuous frequency scaling into one for moldable tasks on a machine with discrete
frequency levels. By applying this converter to schedules computed by the Sanders Speck
scheduler, we could demonstrate the tradeoff between scheduling time (lower for converted
Sanders Speck schedules) and energy-efficiency (better for crown schedules). The average
scheduling times are 0.28 s vs. 110 s, while the average energy consumption is ≈ 28%
higher for converted Sanders Speck schedules. By doing the conversion in two steps, we see
that the crucial point is not the switch from malleable to moldable tasks, but the change
from continuous to discrete frequency levels. Hence it might be worthwhile to investigate in
future research the influence of frequency switch during task execution, which would allow
to “simulate” a continuous frequency f by running a task partly on surrounding discrete
frequency levels f1 and f2 with f1 < f < f2.

Acknowledgments

We are very grateful to Christoph Kessler for inspiring our line of research and providing
helpful comments.

References
[EK15] Eitschberger, Patrick; Keller, Jörg: Energy-Efficient Task Scheduling in Manycore Pro-

cessors with Frequency Scaling Overhead. In: Proc. 23rd Euromicro Int. Conf. Parallel,
Distributed, and Network-Based Processing (PDP 2015). pp. 541–548, 2015.

Static Scheduling of Parallelizable Tasks

[HK17] Holmbacka, Simon; Keller, Jörg: Workload Type-Aware Scheduling on big.LITTLE
Platforms. In (Ibrahim, Shadi; Choo, Kim-Kwang Raymond; Yan, Zheng; Pedrycz,
Witold, eds): Algorithms and Architectures for Parallel Processing. Springer International
Publishing, Cham, pp. 3–17, 2017.

[Ke13] Kessler, Christoph W.; Melot, Nicolas; Eitschberger, Patrick; Keller, Jörg: Crown schedul-
ing: Energy-efficient resource allocation, mapping and discrete frequency scaling for
collections of malleable streaming tasks. In: 23rd International Workshop on Power and
Timing Modeling, Optimization and Simulation. pp. 215–222, 2013.

[LKK19] Litzinger, S.; Keller, J.; Kessler, C.: Scheduling Moldable Parallel Streaming Tasks
on Heterogeneous Platforms with Frequency Scaling. In: Proc. 27th European Signal
Processing Conference (EUSIPCO 2019). To appear September 2019.

[Me15] Melot, Nicolas; Kessler, Christoph; Keller, Jörg; Eitschberger, Patrick: Fast Crown
Scheduling Heuristics for Energy-Efficient Mapping and Scaling of Moldable Streaming
Tasks on Manycore Systems. ACM Trans. Archit. Code Optim., 11(4):62:1–62:24, 2015.

[Me19] Melot, Nicolas; Kessler, Christoph; Eitschberger, Patrick; Keller, Jörg: Co-optimizing Core
Allocation, Mapping and DVFS in Streaming Programs with Moldable Tasks for Energy
Efficient Execution on Manycore Architectures. In: Proc. 19th International Conference
on Application of Concurrency to System Design (ACSD 2019). To appear 2019.

[MKK16] Melot, Nicolas; Kessler, Christoph W.; Keller, Jörg: Improving Energy-Efficiency of
Static Schedules by Core Consolidation and Switching Off Unused Cores. In: Parallel
Computing: On the Road to Exascale (Proc. ParCo 2015). pp. 285–294, 2016.

[SS12] Sanders, Peter; Speck, Jochen: Energy Efficient Frequency Scaling and Scheduling for
Malleable Tasks. In (Kaklamanis, Christos; Papatheodorou, Theodore; Spirakis, Paul G.,
eds): Euro-Par 2012 Parallel Processing. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 167–178, 2012.

[XKD12] Xu, H.; Kong, F.; Deng, Q.: Energy Minimizing for Parallel Real-Time Tasks Based on
Level-Packing. In: 2012 IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications. pp. 98–103, 2012.

	Introduction
	Background
	Scheduling Approaches for Parallelizable Tasks
	Sanders Speck Scheduling
	Converting a Sanders Speck Schedule
	Crown Scheduling

	Experiments
	Conclusions

