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Abstract: Data stream processing systems enable querying continuous data without
first storing it. Data stream queries may combine data from distributed data sources
like different sensors in an environmental sensing application. This suggests dis-
tributed query processing. Thus the amount of transferred data can be reduced and
more processing resources are available.

However, distributed query processing on probably heterogeneous platforms com-
plicates query optimization. This article investigates query optimization through op-
erator graph changes and its interaction with operator placement on heterogeneous
distributed systems. Pre-distribution operator graph changes may prevent certain op-
erator placements. Thereby the resource consumption of the query execution may
unexpectedly increase. Based on the operator placement problem modeled as a task
assignment problem (TAP), we prove that it is NP-hard to decide in general whether an
arbitrary operator graph change may negatively influence the best possible TAP solu-
tion. We present conditions for several specific operator graph changes that guarantee
to preserve the best possible TAP solution.

1 Introduction

Data stream processing is a well suited technique for efficient analysis of streaming data.

Possible application scenarios include queries on business data, the (pre-)processing of

measurements gathered by environmental sensors or by logging computer network usage

or online-services usage.

In such scenarios data often originate from distributed sources. Systems based on different

software and hardware platforms acquire the data. With distributed data acquisition, it is

feasible to distribute query processing as well, instead of first sending all data to a central

place. Some query operators can be placed directly on or near the data acquisition sys-

tems. This omits unnecessary transfer of data that are not needed to answer the queries,

and partitions the processing effort. Thus querying high frequency or high volume data

becomes possible that would otherwise require expensive hardware or could not be pro-

cessed at all. Also data acquisition devices like wireless sensor nodes profit from early

operator execution. They can save energy if data is filtered directly at the source.
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Problem Statement Optimization of data stream queries for a distributed heterogeneous

execution environment poses several challenges: The optimizer must decide for each op-

erator on which processor it should be placed. Here and in the remainder of this article, the

term processor stands for a system that is capable to execute operators on a data stream.

A cost model is a generic base for the operator placement decision. It can be adapted to

represent the requirements of specific application scenarios, so that minimal cost repre-

sents the best possible operator distribution. Resource restrictions on the processors and

network links between them must also be considered. In a heterogeneous environment

costs and capacities will vary among the available processors. The optimizer can optimize

the query graph before and after the placement decision. Pre-placement changes of the

query graph may however foil certain placements and a specific placement limits the pos-

sible post-placement algebraic optimization. For example, a change of the order of two

operators can increase costs if the first operator of the original query was available directly

on the data source and the now first operator in the changed query is not. This must be

considered when using common rules and heuristics for query graph optimization.

Contribution We investigate the influence of common algebraic optimization techniques

onto a following operator placement that is modeled as a task assignment problem (TAP).

We prove that the general decision whether a certain change of the query graph worsens

the best possible TAP solution is NP-hard. We then present analysis of different common

operator graph changes and state the conditions under which they guarantee not to harm

the best possible placement. We do not study any special operator placement algorithm,

but focus on preconditions for graph changes.

Article Organization The following section gives an overview on related work from

both the fields of classical database query optimization and data stream query optimiza-

tion. Sect. 3 introduces the TAP model for the operator placement. It is the basis for

the following sections. We prove the NP-hardness of the query-graph-change influence in

Sect. 4 and present the preconditions for special graph changes in Sect. 5. The next section

shows how to use the preconditions with an exemplary cost model for a realistic query. In

the last section we conclude and present some ideas for further research.

2 Related Work

This section presents related work on operator graph optimization from the domains of

data base systems (DBS) and data stream systems (DSS). Due to space limitations, we are

unfortunately only able to give a very rough overview.

Query optimization in central [JK84] as well as in distributed [Kos00] DBS is a well stud-

ied field. Basic ideas like operator reordering are also applicable to DSS. Some operators,

especially blocking operators, however have different semantics. Other techniques like

optimization of data access have no direct match in DSS. Strict resource restrictions are
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also rarely considered with distributed DBS because they are not thought to run on highly

restricted systems.

The authors of [HSS+14] present a catalog of data stream query optimizations. For each

optimization, realistic examples, preconditions, its profitability, and dynamic variants are

listed. Among operator graph changes the article also presents other optimizations, like

load-shedding, state sharing, operator placement and more. They impose the question for

future research, in which order different optimizations should be performed. In the paper

at hand, we go a first step into this direction by studying the influence of operator graph

changes to following placement decisions. We detail the impact of all the five operator

graph changes from [HSS+14]. We think that these changes cover the common query

graph optimizations.

The articles [TD03] and [NWL+13] present different approaches to dynamic query opti-

mization. The basic idea is that the order in which tuples visit operators is dynamically

changed at runtime. The concept of distributed Eddies from [TD03] decides this on a

per tuple basis. It does not take the placement of operators into account. Query Mesh

[NWL+13] precreates different routing plans and decides at runtime which plan to use for

a set of tuples. It does not consider distributed query processing.

3 Operator Placement as Task Assignment Problem

The operator placement can be modeled as a TAP. Operators are represented as individual

tasks. We use the following TAP definition, based on the definition in [DLB+11].

P is the set of all query processors. L is the set of all communication channels. A single

communication channel l ∈ L is defined as l ⊆ {P × P}. A communication channel

subsumes the communication between processors that share a common medium.

T is the set of all operators. The data rate (in Byte) between two operators is given by

rt1t2 , t1, t2 ∈ T . The operators and rates represent the query graph.

ctp are the processing costs of operator t on processor p. kp1p2
gives the cost of sending

one Byte of data between processor p1 and processor p2. The costs are based on some

cost model according to the optimization goal. Since cost models are highly system and

application specific, we do not assume a specific cost model for our research of query-

graph-change effects. Sect. 6 shows how to apply our findings to an exemplary cost model.

[Dau11, 98–121] presents methods for the estimation of operator costs and data rates.

The distribution algorithm tries to minimize the overall cost. It does this by minimizing

term (1), considering the constraints (2) - (5). The sought variables are xtp. xtp = 1
means that task t is executed on processor p. The first sum in equation (1) are the overall

processing costs. The second sum are all communication costs.

min
∑

t∈T

∑

p∈P

ctpxtp +
∑

t1∈T

∑

p1∈P

∑

t2∈T

∑

p2∈P

kp1p2
rt1t2xt1p1

xt2p2
(1)
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∑

t∈T

ctpxtp ≤ b(p), ∀p ∈ P (2)

∑

(p1,p2)∈l

∑

t1∈T

∑

t2∈T

rt1t2xt1p1
xt2p2

≤ d(l), ∀l ∈ L (3)

∑

p∈P

xtp = 1, ∀t ∈ T (4)

xtp ∈ {0, 1} , ∀p ∈ P, ∀t ∈ T (5)

Constraint (2) limits the tuple processing cost of the operators on one processor to its

capacity b(p). Constraint (3) limits the communication rate on one communication channel

to its capacity d(l). Constraints (4) and (5) make sure that each task is distributed to exactly

one single processor.

Our findings are solely based on the objective function together with the constraints. We

do not assume any knowledge about the actual distribution algorithm. There exist different

heuristics for solving a TAP. See e.g. [DLB+11] and [Lo88].

4 Generic Operator-Graph-Change Influence Decision

A single algebraic query transformation changes the TAP in numerous ways. For example

an operator reordering changes multiple data rates, which are part of multiple equations

inside the TAP. When some of those factors increase, it is hard to tell how it affects a

following operator placement. The transformed query might even become impossible to

execute.

One way to determine the usefulness of a given transformation is to compare the min-

imum costs of both the original and the transformed query graph. If the transformed

query graph has lower or equal cost for the optimal operator placement, i.e. lower or

equal minimum cost, than the original query, the transformation has a non-negative ef-

fect. U(Q) denotes the query graph that results from applying a change U to the original

query Q. Since the operator placement needs to solve a TAP, an NP-complete problem,

it is not efficient to compute the placement for each possible transformation. A function

CompareQuery(Q,U(Q)), that compares two queries and returns true iff U(Q) has

smaller or equal minimal costs than Q would solve the problem.

Sentence. CompareQuery(Q,U(Q)) is NP-hard.

Definition. Utp is a transformation that allows task t only to be performed by processor

p. All other aspects of Utp(Q) are identical to Q. Both Q and Utp(Q) have equal costs

when operators are placed in the same way, i.e. as long as t is placed on p.

Proof. Given CompareQuery(Q,U(Q)) and transformations Utp it is possible to com-

pute the optimal distribution. For each task t it is possible to compare Q and Utp(Q) for
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each processor p. If CompareQuery(Q,Utp(Q)) returns true Utp(Q) has the same

minimum cost as Q. Thus the optimal placement of t is p. The algorithm in pseudo code:

ComputeDistribution(Q) {

foreach (t in Tasks) {

foreach (p in Processors) {

if (CompareQuery(Q, U_tp(Q)) == true) {

DistributeTaskProcessor(t, p);

// makes sure t will be distributed to p

break; // needed if multiple distributions exist

} } } }

ComputeDistribution(Q) calls CompareQuery(Q,U(Q)) at most |T | · |P |
times. This is a polynomial time reduction of ComputeDistribution(Q). To com-

pute the optimal distribution it is necessary to solve the TAP, an NP-complete problem.

This proves that CompareQuery(Q,U(Q)) is NP-hard.

5 Specific Query Graph Changes

While the general determination of a query graph change’s impact is NP-hard, it can easily

be determined for specific cases. If a transformation neither increases variables used for the

TAP nor adds new variables to the TAP, it is trivial to see that all valid operator placement

schemes are still valid after the transformation. For the transformed query exist operator

placements with lower or equal costs than the original query’s costs: the original optimal

placement is still valid and has lesser or equal costs.

We establish preconditions for all the five operator graph changes from [HSS+14]. If

the preconditions are met the transformation is safe. That means for each valid operator

placement scheme of the original query exists a valid scheme for the transformed query

with equal costs. So the preconditions especially guarantee that the minimum costs do not

rise. However, if heuristic algorithms are used for solving the TAP, they may fail to find

an equally good solution for the transformed query as they did for the original query and

vice versa, because local minima may change.

Table 1 shows all preconditions at a glance. We now justify why these preconditions hold.

Notation Most of the used notation directly follows from the TAP, especially ctp and

rt1t2 . The cost cAp of an operator A on the processor p depends on the input stream of A
and thus on the overall query executed before that operator. Query graph changes affect the

input streams of operators an thus also change the costs needed to execute those operators.

In order to distinguish between the original and the changed query we use U(A) to indicate

the operator A with the applied query change. U(A) and A behave in the same way, but

may have different cost, since they work on different input streams. The costs cU(A)p are

needed to execute U(A) on p and the following operator t receives an input stream with
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the data rate rU(A)t. In addition rI denotes the input data stream and rO denotes the output

data stream.

Operator Reordering Operator reordering switches the order of two consecutive oper-

ators. The operator sequence A → B is transformed to U(B) → U(A). In the original

query, operator A is placed on processor pA and operator B on pB . It is possible that pA
is the same processor as pB , but it is not known whether both operators are on the same

processor, so this cannot be assumed. pA = pB would result in a set of preconditions that

are easier to fulfill than the preconditions we present. The transformed query can place the

operators U(B) and U(A) on any of the processors pA and pB .

Case 1: U(B) is placed on pA and U(A) is placed on pB . To insure the validity of all

distributions, the transformed operators’ cost must not exceed the cost of the other

original operator, which results in equations (6) and (7). Since the reordering affects

the data rates between operators, precondition (8) must hold.

Case 2: Both operators are placed on pA. This adds an internal communication inside

pA to the operator graph. Equation (9) ensures that internal communication is not

factored into the TAP constraints and cost function. The sum of the cost for both

transformed operators must be smaller or equal than the cost of A, which is de-

scribed by equation (10). The changed data rates are reflected in equation (11).

Case 3: Both operators are placed on pB . This case is similar to case 2 and can be fulfilled

with the preconditions given by equations (9), (12) and (13).

Case 4: The remaining option, U(B) is placed on pB and U(A) is placed on pA, can

be viewed as changed routing. Since the remaining distribution of the query is

unknown, the changed routing can be problematic and this option is inherently not

safe. It is possible that pA processes the operator that sends the input to A and

that pB has an operator that processes the output stream of B. In this situation the

changed routing causes increased communication cost, since the tuples must be send

from pA to pB (applying B) to pA (applying A) to pB instead of only sending them

once from pA to pB .

If one of the operators has more than one input stream not all cases can be used. Even

if the stream does not need to be duplicated, if A has additional input streams only case

2 is valid. The other cases are not safe anymore, because the transformation changes the

routing of the second stream from destination pA to destination pB . Similar, if B has

additional input streams only case 3 is safe.

Redundancy Elimination This query change eliminates a redundant operator: the query

graph has an operator A on two different positions processing the same input stream,

duplicated by another operator. This change works by removing one of the instances of A
and duplicating its output.

The original query consist of three operators. Operator D (Dup Split in [HSS+14]) is

placed on pD, while an instance of A is placed both on p1 and p2. The transformed query

66



Transformation Case Precondition (∀p ∈ P )

Operator reordering

Case 1:

U(B) on pA
U(A) on pB

cAp ≥ cU(B)p (6)

cBp ≥ cU(A)p (7)

rAB ≥ rU(B)U(A) (8)

Case 2:

U(B) on pA
U(A) on pA

kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cAp ≥ cU(B)p + cU(A)p (10)

rAB ≥ rO (11)

Case 3:

U(B) on pB
U(A) on pB

kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cBp ≥ cU(B)p + cU(A)p (12)

rAB ≥ rI (13)

Redundancy elimination –

kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cDp ≥ cU(A)p + cU(D)p (14)

Operator separation –

kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cAp ≥ cA1p + cA2p (15)

Fusion

Case 1:

All on pA

cAp ≥ cCp (16)

rAB ≥ rO (17)

Case 2:

All on pB

cBp ≥ cCp (18)

rAB ≥ rI (19)

Fission –

kpp = 0 ∧ ∀l ∈ L : (p, p) /∈ l (9)

cAp ≥ cSp + cMp +
∑

U(A)

cU(A)p (20)

Table 1: Preconditions for safe query graph changes that must be fulfilled for all processors. If an
operator is not available on some processors, the preconditions can be assumed fulfilled for these
processors. It is sufficient that the preconditions of one case are fulfilled.
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consists of the operators U(A) and U(D), with U(D) duplicating the output instead of

the input. The only possibility to place the transformed query without changing routing

is to place both U(A) and U(D) on pD. The additional internal communication, due to

the additional operator on pD, again forces equation (9). To ensure that any processor can

perform the transformed operators, equation (14) is necessary.

In some situations (when pD is the same processor as p1 or p2) the change is safe as long

as A does not increase the data rate. But since it is unknown how the operators will be

placed, this requirement is not sufficient.

Operator Separation The operator separation splits an operator A into the two opera-

tors A1 → A2. Additional internal communication results in precondition (9). Equation

(15) ensures that the separated operators’ costs are together less than or equal to A’s cost.

Fusion Fusion is the opposite transformation to operator separation. The two operators

A → B are combined to the single operator C (a superbox in [HSS+14]). For the original

query A is placed on pA and B on pB . The combined operator can be placed on either

pA or pB . The cost for C must not exceed the cost of pA or pB respectively. In addition,

the data rates are affected and thus also add preconditions. So either the fulfillment of

equations (16) and (17) (if C is placed on pA) or (18) and (19) (if C is placed on pB)

guarantee the safety of this change. A special case of the fusion is the elimination of an

unneeded operator, i.e. removing the operator does not change the query result. Since the

redundant operator can change the data rate of a stream (e.g. a filter applied before a more

restrictive filter) it still needs to fulfill the preconditions to be safe.

Fission The original query is only the single operator A. Fission replaces A by a par-

titioned version of it, by applying a split operator S, multiple versions of U(A), which

can potentially be distributed across different processors, and finally a merge operator M
to unify the streams again. Since it is unknown whether other processors exist that can

share the workload profitably, the transformed operators must be placed on the processor

that executed the original A. This is safe when preconditions (9) and (20) hold. These

equations demand that the combined costs of the split, merge and all parallel versions of

U(A) can be executed by all processors with smaller or equal cost than the original A.

6 Application

Given a query and a DSS it is now possible to test whether a specific change is safe. Using

an exemplary cost model we examine a simple example query.

Cost Model [Dau11, 91–98] presents a cost model that will be used for the following

example. We use a filter and a map operator, which have the following costs:
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CFilter = λiCFil + λoCAppendOut (21)

CMap = λiCproj + λoCAppendOut (22)

CFil and Cproj are the costs associated with filtering respectively projecting an input tuple

arriving at the operator. CAppendOut represents the costs of appending one tuple to the

output stream. λi is the input stream tuple rate, while λo is the output stream tuple rate. For

those operators λo is proportional to λi and the equations (21) and (22) can be simplified

to λifOp, where fOp is the cost factor of operator O on processor p for one tuple.

Using these simplified equations, the assumption that the tuple rate is proportional to the

data rate and costs and selectivities are non-zero, equations (6) to (8) can be rewritten as:

λIfAp ≥ λIfBp ⇔
fAp

fBp
≥ 1 (23)

σAλIfBp ≥ σU(B)λIfAp ⇔ σA

σU(B)
≥

fAp

fBp
(24)

σAλI ≥ σU(B)λI ⇔ σA

σU(B)
≥ 1 (25)

The equations for the other two cases shown in table 1 can be similarly rewritten. Equa-

tions (23) to (25) show that there are relatively few values to compare: We need the ratio

of the operator selectivity and for each processor the ratio of operator costs.

Example We examine the simple query of a map operator M followed by a filter F
applied on a stream containing image data monitoring conveyor belts transporting freshly

produced items. The query supports judging the quality of the current production run. Op-

erator M classifies each tuple (and thus each observed produced item) into one of several

quality classes and is rather expensive. F filters the stream for one conveyor belt, because

different conveyor belts transport different items and are observed by different queries.

M does not change the data rate of the stream. It simply replaces the value unclassified

already stored inside the input stream for each tuple with the correct classification and thus

has a selectivity of 1. There are multiple types of processors available inside the production

hall. Depending on the processor type the ratio
fMp

fFp
differs quite a bit, but overall M is

more expensive: this ratio fluctuates between 2 and 10. Equations (23) to (25) show that

the selection push down is always safe if σU(F ) is smaller or equal than 0.1: In this case

it is always possible that the two operators switch their places without violating additional

constraints of the TAP. If σU(F ) is greater than 0.1 this change is not necessarily safe. It is

possible that the preconditions of one of the other two cases (both operators on the same

processor) are fulfilled or another good distribution is possible, but the latter cannot be

tested in a reasonable time as we discussed in Sect. 4.
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7 Conclusion

We presented our findings on the interaction between optimization through query graph

changes and the placement of operators on different heterogeneous processing systems.

We first motivated our research and defined the problem. Existing work on query opti-

mization through operator graph changes in the context of DMS and DSS was presented,

none of which studied the interaction with operator placement. The next section presented

the TAP model of the distribution problem. We showed that it is NP-hard to decide in

general if an arbitrary query graph change can negatively influence the best possible op-

erator placement scheme. Based on a selection of common query graph changes from the

literature, we deduced preconditions under which operator placement does not mind the

changes. The last section showed the application of our findings with an exemplary cost

model for a realistic query.

The preconditions for safe operator graph changes are quite restrictive. They severely limit

the possible changes if followed strictly. As with general query optimization, development

of heuristics to loosen certain preconditions seems promising. The preconditions presented

in this article are the basis for such future work. Another interesting field is the direct

integration of query graph optimization in the usually heuristic distribution algorithms.

Distribution algorithms could be extended to consider query graph changes in addition to

the operator placement. We plan to investigate these ideas in our future research.
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