
Adaptable Model Versioning in Action1

Petra Brosch2, Gerti Kappel3, Martina Seidl4, Konrad Wieland5, Manuel Wimmer6, Horst
Kargl7 and Philip Langer8

Abstract: In optimistic versioning, multiple developers are allowed to modify an artifact at the same
time. On the one hand this approach increases productivity as the development process is never
stalled due to locks on an artifact. On the other hand conflicts may arise when it comes to merging
the different modifications into one consolidated version. In general, the resolution of such conflicts
is not only cumbersome, but also error-prone. Especially if the artifacts under version control are
models, little support is provided by standard versioning systems.

In this paper we present the enhanced versioning process of the model versioning system AMOR.
We show how AMOR is configured in order to obtain a precise conflict report which allows the
recommendation of automatically executable resolution patterns. The user of AMOR chooses either
one of the recommendations or performs manual resolution. The manual resolution may be in col-
laboration with other developers and allows to infer new resolution patterns which may be applied
in similar situations.

1 Introduction

The development of software systems without version control systems (VCSs) is nowa-
days unimaginable. Especially optimistic VCSs are of particular importance because such
systems effectively manage concurrent modifications on one artifact performed by mul-
tiple developers at the same time. Like other software artifacts, models are developed in
teams and evolve over time; consequently they also have to be put under version control.

Standard VCSs for code usually perform the conflict detection by line-oriented text com-
parison of arbitrary artifacts. When applied on the textual serialization of models, the re-
sult is unsatisfactory because of the graph-based structure, single changes on the model
may result in multiple changed lines in the textual serialization. Considering lines as unit
of comparison, the information stemming from the graph-based structure is destroyed and

1 This work has been partly funded by the Austrian Federal Ministry of Transport, Innovation, and Technology
and the Austrian Research Promotion Agency under grant FIT-IT-819584 and by the fFORTE WIT Program
of the Vienna University of Technology and the Austrian Federal Ministry of Science and Research.

2 brosch@big.tuwien.ac.at
3 kappel@big.tuwien.ac.at
4 seidl@big.tuwien.ac.at
5 wieland@big.tuwien.ac.at
6 wimmer@big.tuwien.ac.at
7 horst.kargl@sparxsystems.at
8 philip.langer@jku.at

222 Petra Brosch et al.

associated syntactic and semantic information is lost. Consequently, dedicated VCSs for
models have been proposed (cf. [Alt08, KGE09, OWK03, MCPW08, CRP08, SZN04,
OS06, Kög08, AP05]). However, they either support generic model versioning and there-
from do not consider language-specific aspects or they are built for a specific language and
are not suitable for other languages. Furthermore, the focus in such systems is mainly set
on the detection of conflicts. The actual resolution is usually left to the user without hardly
any dedicated support. The provided resolution facilities are mostly limited to refuse mod-
ifications or to perform a manual remodeling. This task is often very repetitive as the same
conflict types occur again and again. These systems are not capable to analyze the user’s
behavior and learn therefrom for similar situations. Finally, the merge is left to the person
who does the later check-in. Therefore it is totally her responsibility to obtain a consoli-
dated version containing all modifications in a high quality. Collaborative approaches as
for code versioning [DH07], where all responsible developers are involved in the merge
process, have not been realized in model versioning systems so far. Consequently, the dif-
ferent intentions of the modelers might not be captured in the merged version and might
get lost. As models are often applied for early project phases, where a common under-
standing and a common terminology might not have been established yet, this loss could
cause errors which become obvious only in later phases of the project and which then are
very hard and expensive to correct.

The adaptable model versioning system AMOR [AKK+08] aims to combine the advan-
tages of both generic and language-specific VCSs by providing a generic framework with
extension points for including language-specific features. AMOR is built around subver-
sion8 and attaches an extended version of EMF Compare9 for change detection. Hence,
AMOR can deal with arbitrary Ecore10 based modeling languages. The combination of
generic and specific aspects improves conflict detection as well as conflict resolution.
When manual resolution is necessary, a collaborative merge process might be initiated.
If the resolution is performed manually, it is analyzed in order to derive resolution recom-
mendations for similar situations which occur in future scenarios. In this paper we present
the conflict detection and conflict resolution components of AMOR from the workflow
perspective and show how their interplay eases the check-in process for models.

The remainder of this paper is structured as follows: In Section 2 we introduce a mo-
tivating conflict scenario in which a naive merge would change the originally intended
semantics. In Section 3 we show how such conflicts are detected and resolved within the
model versioning system AMOR and in Section 4 we present a novel approach for the
automatic derivation of a general resolution strategy for similar conflicts. Section 5 gives
an overview on related work. Finally, in Section 6, we draw conclusions and sketch some
future work.

8 http://subversion.tigris.org
9 http://wiki.eclipse.org/index.php/EMF Compare

10 http://www.eclipse.org/modeling/emf

Adaptable Model Versioning in Action 223

V0 (Origin Version)

ScientificStaff

Professor Assistant

ScientificStaff

V0` (Harry‘s Working Copy) V0`` (Sally‘s Working Copy)

lectures lectures

ScientificStaff
lectures

Professor Assistant
lectures lectures

Research
Assistant

Junior
Professor
lectures

V0` + V0`` (Naive Merge)

Professor Assistant

Professor Assistant Research
Assistant

Junior
Professor
lectures

ScientificStaff
lectures

ScientificStaff

V1 (Intention Preserving Merge)

Professor Assistant

lectures

Research
Assistant

Junior
Professor

Teaching
Researcher

Fig. 1: Conflict Scenario.

2 Motivating Example

In the following, we introduce a small use case in which two modelers, Harry and Sally,
concurrently modify the common origin model. In this scenario a naive merge of both
working copies leads to an unintended effect regarding the semantics of the merged model.

Conflict Scenario. Both, Harry and Sally work on the common base model V0 depicted
in Figure 1. The model contains the two classes Professor and Assistant which are sub-
classes of ScientificStaff. Each of them contains a property lectures. Harry decides to
perform the refactoring “Pull Up Field” [FBB+99] by shifting the property lectures to
the superclass ScientificStaff. His modifications are depicted in version V0’ of Figure 1.
In the meanwhile, Sally introduces a new subclass JuniorProfessor which includes the

224 Petra Brosch et al.

Input: superCl : Class, propName : String

Precondition

NAC LHS RHS

superCl.subClasses->forAll(
subCl | subCl.properties->exists(prop | prop.name = propName))

NAC LHS

superCl : Class superCl : Class

RHS

superCl : Class
2 : properties

1

prop2: Property
N

3 : properties

subCl : Class

1 : subClasses

prop1 : Property
name = propName

subCl : Class

1 : subClasses

prop1 : Property
N

Ru
le

name = propName name propName

2 : properties
name = propName

RHSNAC LHS

2

RHS

superCl : Class

NAC LHS
superCl : Class

Ru
le

subCl : Class

1 : subClasses
subCl : Class

1 : subClasses

prop1 : Property
name = propName

2 : properties

Fig. 2: Graph Transformation Rules for “Pull Up Field”.

property lectures like the other existing subclasses. Additionally, she adds a new subclass
ResearchAssistant which does not contain the field lectures (cf. V0” in Figure 1) since
research assistants (at least in theory) are not holding lectures.

When merging naively there are no conflicts, because no overlapping changes are at hand.
The modifications of both modelers are incorporated in the merged version V0’ + V0”
depicted in Figure 1. However, a closer look at the merged version reveals two problems.
The first obvious one is due to the redundantly declared field lectures in class Junior-
Professor which already inherits the aforementioned field from ScientificStaff. Secondly,
the class ResearchAssistant now also inherits the field lectures. This has not been intended
by Sally who has introduced this class in V0”. Thus, the merge has changed the originally
intended semantics of the model, which should not happen when refactorings are applied.

Intention Preserving Merge. The aforementioned issues are only detectable if the ap-
plied changes are correctly identified. Especially, Harry’s refactoring “Pull Up Field”, a
composite operation, has to be known to the conflict detection component in order to indi-
cate the conflicts.

In AMOR language specific composite operations may be defined by the user to improve
change detection. Figure 2 shows such a composite operation represented by a graph trans-
formation rule. The refactoring “Pull Up Field” is defined by depicting required inputs,
preconditions, and transformation rules. This refactoring needs two inputs—the superclass

Adaptable Model Versioning in Action 225

to which the field is shifted and the name of the field to be pulled up. The depicted pre-
condition ensures the preservation of the model’s semantics by stipulating all subclasses
to contain a property with the specified name. Consequently, the refactoring may only be
applied to a superclass superCl if all of its subclasses provide a property with the name
propName. Rule 1 is executed if superCl does not yet contain the field to be pulled up. In
this rule the property, currently contained by a subclass, is shifted to the superclass. Due to
the negative application condition this rule is executed only once. Henceforward, Rule 2
removes the shifted field from the subclass as long as there are subclasses containing the
field to be pulled up.

With the knowledge about the applied refactoring, the introduction of the redundant field
lectures can be avoided by first applying atomic operations like “Add Inheritance” and
then replaying the composite operation, “Pull Up Field”. The newly introduced elements,
i.e., the JuniorProfessor, are then included in the refactoring. However, reconsidering the
conflict scenario in Figure 1, Harry’s refactoring cannot be directly applied to Sally’s work-
ing copy. The subclass ResearchAssistant does not contain the field to be pulled up and
therefore violates the refactoring’s precondition.

The optimal merge, which preserves all intentions of both modelers, consists of the in-
troduction of a new class TeachingStaff containing the property lectures as subclass of
ScientificStaff (cf. V1 in Figure 1). The classes Professor, Assistant, and JuniorAssistant
are subclasses of the newly created class TeachingStaff and consequently inherit the prop-
erty lectures. In contrast, the class ResearchAssistant is a direct subclass of ScientificStaff
without the property lectures. Hence, instances of ResearchAssistant cannot have lectures.
So the intentions of Harry (optimization) and Sally (extension of the model) are adequately
captured.

3 The AMOR Model Versioning System

V0

Conflict
Report

Recom-
menda-
tions

V0

V0’ V1
Reso-
lution
Report

Conflict
Detection

1
Resolution
Lookup

2
Conflict

Resolution

3
Merge

5

Resolution
Pattern
Storage

Reso-

V0’’
Reso-
lution

Operation
Repository

Oper Resolution
4

Operation
0

lution
Pattern

Oper-
ations

Resolution
Reasoning

Operation
Definition

Fig. 3: AMOR Workflow.

In the following, we show how the model versioning system AMOR supports Sally to
correctly merge the different versions of the origin model. Therefore, we first give an
overview how AMOR extends the workflow found in common versioning systems and
then we present how the different components of AMOR operate.

226 Petra Brosch et al.

3.1 The AMOR Workflow

In the following, we employ the afore presented example and accompany Sally doing
the check-in of her modifications and resolving the afore described conflict with AMOR.
The model versioning system AMOR provides not only an enhanced conflict detection
component, but also offers user support even to conflicts resulting from the application of
composite operations like refactorings. The complete workflow is depicted in Figure 3.

0. Operation Definition. The model versioning system AMOR provides modeling language-
independent versioning support. The quality of the detection and resolution of con-
flicts may be considerably improved when language-specific knowledge is incorpo-
rated in the merge process [DJ06]. Therefore, AMOR provides an extension point
to integrate composite, user-defined operations like refactorings. Once this is done,
applications of such refactorings are detectable. This additional information is the
basis for a precise conflict detection.

1. Conflict Detection. For the comparison and conflict detection the inputs are the ori-
gin version V0 and Harry’s and Sally’s working copies V0’ and V0”. The conflict
detection component detects not only the generic atomic changes like insert, update,
delete, but also composite operations stored in the Operation Repository. In our ex-
ample, a conflict between the operations “Pull Up Field” and “Add Inheritance” is
reported. If an additional class is added as subclass of ScientificStaff and this new
subclass does not contain the attribute lectures, the refactoring “Pull Up Field” is
not applicable any more.

2. Resolution Lookup. In this step, the Resolution Recommender of AMOR checks
whether there are solutions for the reported conflict in the Resolution Pattern Stor-
age. For the moment, it is assumed that nothing suitable is found. Consequently,
the only recommendations which are proposed to Sally are either to apply Harry’s
refactoring omitting her own changes or to apply her own changes and excluding
Harry’s refactoring.

3. Conflict Resolution. Sally has to decide how to resolve the conflict. She may either
resolve the conflict completely manually or choose one of the recommendations
made by the Resolution Recommender. As mentioned before, there are no useful
recommendations and therefore Sally chooses to apply a manual resolution. Since
Sally is not sure about Harry’s intention, she decides to perform a collaborative
resolution where she consolidates Harry. Their solution contains the modifications
of both where the new class TeachingStaff is introduced as shown in Figure 1.

4. Resolution Reasoning. In the background, the Resolution Reasoner analyzes Harry’s
and Sally’s decisions in order to derive a general resolution pattern for the conflict
between the “Pull Up Field” and “Add Inheritance” operations. The derived reso-
lution introduces a new intermediate class containing the pulled up property and
positions this class at the appropriate place in the inheritance hierarchy. The pattern
is stored in the Resolution Pattern Storage for the application in similar situations.

Adaptable Model Versioning in Action 227

5. Merge. Finally, all previously chosen resolution recommendations are applied and
the resulting model is saved into the repository as a new version.

3.2 The Components of AMOR

Operation Definition. In step 1 the merge process comprises the detection of conflicts
concurrently performed by the modelers. Beside atomic changes like insert, update, and
delete, modelers may also have performed composite operations like refactorings. Detect-
ing and regarding these composite operations enhances the preservation of both modelers’
intentions, as reported in [DJ06]. Of course, composite operations are always specific to
a certain modeling language. The AMOR conflict detection component may be enhanced
with user-defined composite operation specifications, which describe composite opera-
tions in terms of a set of atomic operations and necessary pre- and postconditions. AMOR
provides a tool called Operation Recorder to easily specify composite operations for spe-
cific languages by example [BLS+09b]. These Operation Specifications are then either
interpreted by the AMOR system or used to derive executable representations like graph
transformations.

Conflict Detection. Once an operation specification is created and included in the Oper-
ation Repository, the Change Detector is able to identify applications of the respective
composite operation. The detection mechanism is implemented by searching for the opera-
tion pattern contained in the Operation Specification. If the pattern is found and the model
elements referenced by the matching operations fulfill the pre- and postconditions, an ap-
plication of the composite operation is at hand. This detection allows a more compact
representation of the difference and conflict reports by folding atomic operations which
belong to a composite operation.

Based on the applied changes, conflicts are easily detected if the same element is modified
in different versions of a model. Conflicts resulting from changes of different elements
are much harder to detect. Especially, if composite operations are involved, standard ver-
sioning systems do not reveal conflicts and merge problems related to the application of
the composite operation. To overcome this drawback, AMOR creates a tentative merge by
first applying all non-interfering atomic changes and subsequently by replaying the exe-
cuted composite operations to the common base version. Consequently, added or changed
model elements are enclosed in the reapplied composite operation. On the one hand, this
maximizes the combination of the original modelers’ intentions and, on the other hand,
reveals inconsistencies concerning the compatibility of operations. For instance, such in-
consistencies occur if a composite operation cannot anymore be executed to the model
after all atomic changes are applied. This is accomplished by testing the preconditions of
the respective composite operation in the tentatively merged model.

Resolution Lookup. Recent VCSs indicate where conflicts interfere the merge process,
but they hardly provide any resolution support to the user. AMOR provides the Resolution
Recommender which offers resolution recommendations to the modeler who is responsi-
ble to perform the change correctly. These recommendations are stored in the Resolution

228 Petra Brosch et al.

Pattern Storage. A resolution recommendation is a pair containing a conflict description
and an executable operation pattern. The Resolution Recommender matches the conflicts
obtained from the conflict report against the conflict descriptions in the Resolution Pat-
tern Storage. The matching resolution recommendations are presented to the user ordered
according to their relevance. The Resolution Recommender identifies not only perfectly
matching resolution recommendations, but also proposes resolution recommendations for
similar conflict situations by abstracting the resolution pattern (see Section 4).

Conflict Resolution. AMOR provides different mechanisms to support the conflict reso-
lution which are described in the following.

• Semi-automatic vs. Manual Conflict Resolution. In semi-automatic conflict resolu-
tion the user selects one of the suggested recommendations offered by the Resolu-
tion Recommender. The resolution rule of the resolution recommendation is then
applied on the maximally merged version. It is executed completely automatically
as described in [BLS+09b]. In certain cases user input is required, e.g., if the name
of an element has to be introduced. If none of the given suggestions fit the user’s re-
quirement, then it is still possible to resolve the conflict manually either alone or in
collaboration with other modelers. This process is described in the next paragraph.

• Collaborative vs. Single User Conflict Resolution. When no adequate recommenda-
tions are found, then semi-automatic resolution is not possible. If one single modeler
decides how to merge, the danger is inherently high that the merged version does not
reflect the intentions of all involved modelers. Therefore, AMOR offers on the one
hand a validation of the merged version and on the other hand an opportunity to
resolve conflicts in a collaborative way. In this context, collaboration refers to com-
municating the intentions behind the changes and trying to combine these intentions
in a new version. Thus, AMOR provides an extension called Collaborative Conflict
Resolver [BLS+09a] to overcome the before mentioned issues by orchestrating the
modelers when resolving conflicts. The Collaborative Conflict Resolver offers the
modelers a communication platform to exchange the intentions behind their conflict-
ing changes. The modelers may manually create a merged version together by partly
remodeling the scenario to reach a model of high quality. Afterwards, both modelers
have to accept the new version before a commit to the central model repository is
possible. This ensures an approved and consolidated version to be checked in. To
sum up, the Collaborative Conflict Resolver allows to distribute the responsibility
in this critical and error-prone merge phase. Solving conflicts in collaboration en-
sures the preservation of all intentions of the modelers and, overall, increases the
acceptance of the merged version and the whole development process.

Resolution Reasoning. The mission of the Resolution Reasoner is twofold. On the one
hand, the Resolution Reasoner tries to derive resolution patterns if the solution is obtained
manually, which can be later used for automatic resolution. This is done by reusing mech-
anisms of the Operation Recorder. On the other hand, the Resolution Reasoner tracks
the application of already existing resolution patterns and persists metadata for ranking
purposes.

Adaptable Model Versioning in Action 229

Input: superCl : Class, confCl: Class, propName : String, midName : String

Ru
le
1

NAC LHS
superCl : Class superCl : Class superCl : Class

1 : subClasses

RHS

NAC LHS
superCl : Class

1 : subClasses2

superCl : Class

3 : subClasses

2 : properties

superCl : Class

middleCl: Class

R

confCl: Class confCl: Class confCl: Class

RHS

subCl : Class

1 : subClasses

prop1 : Property
name = propName

2 : properties

Ru
le
2

middleCl : Class
name = midName

prop1 : Property
name = propName

subCl : Class

4 : subClasses

NAC LHS

name = midName

subCl: Class

prop: Property
name = propName

RHS

Ru
le
3

NAC LHS

3 : properties

superCl : Class

middleCl : Class
name = midName

1 : subClasses

prop1 : Property
name = propName

3 : properties

RHS
superCl : Class

subCl : Class

2 : subClasses

4 : properties

middleCl : Class
name = midName

1 : subClasses

prop1 : Property
name = propName

subCl : Class

5 : subClasses
4 : properties

prop2 : Property
name = propName

Fig. 4: Derived Resolution Pattern.

Concerning the example conflict, a graph transformation consisting of three rules is de-
rived, which is illustrated in Figure 4. This pattern takes the superclass (cf. superCl), the
class which violates the precondition of the refactoring (cf. confCl), and the name of the
field to be shifted (cf. propName) as input. Moreover, the user has to provide the name
of the newly introduced intermediate class (cf. midName). As conflicting operations are
not automatically merged, the tentative merge neither includes the inheritance relation-
ship between the conflicting class and the superclass nor the refactoring “Pull Up Field”.
Hence, both operations have to be captured by the resolution pattern. Rule 1 matches only
once and adds the inheritance relationship, i.e. the pending operation of Sally. Rule 2 and
Rule 3 are used to reflect the refactoring of Harry. Rule 2 introduces the intermediate class
with the given name and links the property to be pulled up therewith. Due to the negative
application condition matching the produced structure, this rule is either executed once.
As long as subclasses comprising the given property exist, the property is removed from
these subclasses by Rule 3. This pattern is stored in the Resolution Pattern Storage for
reusing it in future scenarios.

230 Petra Brosch et al.

Merge. The Conflict Report is used to construct the consolidated merged version. If the
user has decided to apply suggested conflict resolution patterns, then they are automatically
executed. Finally, the merged version is stored in the repository.

4 Derivation of New Resolution Patterns

A few days later, Sally gets in trouble again during the check-in. In order to put her new
model version into the repository, she has to pass again the AMOR check-in process. As
in the previous example Harry again has been faster with applying his changes and has
already updated the head version of the repository. Hence, Sally’s working copy has to
be merged. Also this time she has a conflict with Harry’s work. Fortunately, AMOR is
now able to recommend a resolution strategy based on the previous example found in the
Resolution Pattern Storage. In the following, we present a new versioning example and
show how AMOR is able to automatically adapt and apply the afore derived resolution
pattern for the new conflict.

4.1 Motivating Example 2.0

Again, Harry and Sally work on the common base model V0 depicted in Figure 5(a).
The model contains an inheritance hierarchy of birds including the superclass Bird and
the two subclasses Hawk and Duck. This time, both of the subclasses own an operation
named getFlightSpeed(). In order to optimize the model’s structure, Harry applies the
refactoring “Pull Up Method” [FBB+99] to shift the common operation getFlightSpeed()
to the superclass. In the meantime, Sally expands the model by inserting further subclasses
Robin and Penguin. While the class Robin also has the operation getFlightSpeed(), the
class Penguin has not. This is due to the fact that penguins cannot fly.

4.2 Metamodel-based Resolution Lookup

When checking-in her new version, AMOR supports Sally as follows.

1. Conflict Detection. When Sally checks in her working copy, the merge cannot be
performed automatically. A conflict is reported because Harry has applied the refac-
toring “Pull Up Method” in parallel to Sally’s modifications. In Sally’s version, the
preconditions for the application of the refactoring are not satisfied due to the ab-
sence of the operation which should be shifted to the superclass in the class Penguin.
A Conflict Report is generated (cf. 5(b)).

2. Resolution Lookup. In this step, it is checked, whether suitable resolution patterns
have already been defined. Therefore, the Resolution Pattern Storage is searched
for candidate resolution patterns. If a perfect match is found in the Resolution Pat-
tern Repository, only the associated resolution pattern has to be applied for re-
solving the conflict. However, if only a partial match is found, special reasoning

Adaptable Model Versioning in Action 231

V0 Bird

Hawk
tFli htS d()

Duck
tFli htS d()

(a)

Conflict
Detection1

getFlightSpeed() getFlightSpeed()

Robin Penguin

V0``
Bird

Hawk
getFlightSpeed()

Duck
getFlightSpeed()

V0`

Hawk Duck

Bird
getFlightSpeed()

Resolution
L k

Conflict
Report

2

g
getFlightSpeed()

Class
operation

Class

Class
operation

pullUpMethod
addInheritance

Conflicting Operations:

(b)

Lookup

Resolution
Pattern

Detection
2.1

operation

Metamodel
Classifier

BehavioralFeature

Feature *
/feature {union}

StructuralFeature
Class

Class
property

Class
property

(c) (d)

Candidate
Resolution
Pattern

Resolution
Pattern

Adaptation
2.2

ownedAttribute
{subsets feature}

*

Class

Operation Property
ownedOperation
{subsets feature}

*

Class

Class
feature ~

Class
feature ~

(e)

Adaptation

Applicable
Resolution
Pattern

Bird

PenguinFlyingBird

V1 (f)

Conflict
Resolution3 Hawk Duck

Penguin

Robin

getFlightSpeed()
FlyingBird

Fig. 5: Metamodel-based Resolution Lookup By-Example.

techniques have to be applied in order to decide if the partial matching conflict is
generalizable to match the reported conflict. The generalization of partial matching
conflicts requires an adaptation of the associated resolution pattern before it is ap-

232 Petra Brosch et al.

plicable on the reported conflict which is done in the second phase called Resolution
Pattern Adaptation.

2.1. Resolution Pattern Detection. With the Conflict Report at hand, the first phase in
semi-automatic conflict resolution is the lookup of suitable conflict descriptions. A
query, taking the Conflict Report as parameter, is sent to the Resolution Pattern
Storage which not only returns resolution patterns for the actual exact conflict. It
also returns resolution patterns which had been applied to similar scenarios and
which might be adaptable to the actual one. This is done by first comparing the un-
typed graph structure of the model of the current conflict report with models already
persisted in the Resolution Pattern Storage. Once matching graph structures are
found, the type information is analyzed. For this, the metamodel is used as knowl-
edge base for finding similarities of model elements.
For the new conflict situation, the conflict of the previous example (cf. Figure 1) is
found as a similar conflict. The lookup algorithm detects the similar structure of the
conflicting part of the model. By comparing the type information, a positive match
is found for the classes and the inheritance relationship (cf. Figure 5(c)). However,
instead of operations the classes contain properties. Instead of rejecting the found
pattern immediately, a similarity analysis of the mismatching elements is performed.
With the help of the metamodel (cf. Figure 5(d)) inheritance relationships between
those elements are identified. By reflecting the metamodel, the algorithm finds out
that Property and Operation both are subclasses of the Feature class and are both
associated to Class which is relevant for both refactorings “Pull Up Field” and “Pull
Up Method”. Furthermore, the associations ownedAttribute and ownedOperation
are subsets of feature. Hence, they may be considered as similar (cf. Figure 5(e)).
This analysis is accomplished for all matching graph structures found in the Resolu-
tion Pattern Storage. The most similar conflicts are returned ordered by similarity
metrics and statistics of their previous usage.

2.2. Resolution Pattern Adaptation. For each candidate resolution pattern found in the
previous step, a higher-order transformation [TJF+09] is applied in order to modify
the corresponding resolution rule to fit the necessary model elements in the actual
conflict situation. The higher-order transformation may replace the type information
like in the example above. In our case, this means that the resolution pattern illus-
trated in Figure 4 is rewritten as followes. First, the types are substituted. Second,
the links are adapted to match the new types. Third, links and attributes which are
only existing for Property and not for Operation are eliminated. However, the last
step is not necessary for our example.

3. Conflict Resolution. Regardless whether the user decides for a single or a collabo-
rative conflict resolution, a tentative merge and a list of pending operations, which
could not be applied so far, are presented to the user. In cases where similar conflicts
were found in the Resolution Pattern Storage, the list of the adapted resolution pat-
terns is also presented to the user. The user may now select one of the resolution pat-
terns which is then automatically applied on the actual conflict situation. A preview
of the resolution is displayed and manual adjustments are possible. In our example,
the adapted resolution pattern is able to produce a new version which includes the

Adaptable Model Versioning in Action 233

intentions of both modelers in a consistent way (cf. Figure 5(f)). Sally only has to
provide a name for the newly introduced middle class.

According to step 4 of the AMOR workflow (cf. Figure 3), the new resolution pattern is
derived by the Resolution Reasoner and persisted in the Resolution Pattern Storage in
order to be recommended in future conflict situations. Finally in the Merge, the conflict is
resolved and committed to the repository.

5 Related Work

In the following, we give a short overview of work related to the AMOR model ver-
sioning system. Therefore, we consider the three issues (1) model versioning in general,
(2) refactoring-aware versioning, and (3) conflict resolution support.

Model Versioning Systems. In the last decades a lot of research approaches in the do-
main of software versioning have been published which are profoundly outlined in [CW98]
and [Men02]. Most of them mainly focus on versioning of source code as they deal with
software artifacts in a textual manner. Still, dedicated approaches aiming at the versioning
of software models exist. For example, Odyssey-VCS [MCPW08] supports the versioning
of UML models. This system performs the conflict detection at a very fine-grained level,
hence it is able to merge modifications concerning different model elements or even differ-
ent attributes of one model element. Odyssey-VCS neither considers composite operations
nor does it provide user support in conflict situations. EMF Compare [BP08] is an Eclipse
plug-in which is able to match, to compare, and to merge Ecore-based models. In combina-
tion with a model repository a model versioning system could be realized. EMF Compare
is intended to match any kind of model artifact, hence no language-specific operations and
conflicts can be handled. CoObRA [SZN04] is integrated in the Fujaba tool suite and logs
the changes performed on an artifact, hence it is tightly-coupled to a modeling tool. The
modifications performed by the modeler who did the later commit are replayed on the up-
dated version of the repository. Conflicts occur if an operation may not be applied due to
a violated precondition. Unicase [Kög08], an Eclipse-based CASE-tool, integrates differ-
ent model viewpoints. The Unicase client allows viewing and editing models in a textual,
tabular, and diagramming visualization. The models are stored in a repository and can
be versioned. The provided three-way merge technique makes use of editing operations,
which are obtained from the Unicase client. SMoVer [Alt08] is a VCS for EMF-based
model artifacts which is able to detect semantic conflicts. Therefore the parallel evolved
model versions are transformed to a semantic view which emphasizes a certain semantic
aspect. For each modeling language and each semantic view the transformation has to be
manually specified.

Overall, these approaches focus on specific aspects of conflict detection and provide little
or no resolution support at all. However, some of these approaches are suitable for the in-
tegration in AMOR. A detailed survey on model versioning systems is given in [ASW09].

234 Petra Brosch et al.

Refactoring-Aware Versioning Systems. Our approach comprises knowledge on ap-
plied refactorings to improve the quality of the merge. Hence, it is related to refactoring-
aware versioning systems such as [EA04] and [DMJN08]. Like in these approaches, we
replay the applied refactorings after all atomic changes are merged. The check of the refac-
toring’s preconditions before its execution in order to proof its applicability and detect po-
tential refactoring conflicts is also done in [EA04]. In contrast to [EA04] and [DMJN08]
we discuss refactoring-aware versioning for models and not code. Beside that, our ap-
proach has three main advantages over [EA04] and [DMJN08]. First, we do not restrict the
language of the artifacts under version control. In AMOR any language based on Ecore
is supported. Second, AMOR allows the user to define custom refactorings by-example
and does not only support a fixed range of refactorings. Finally, AMOR does not rely on
an editor-specific operation tracking which is done in [EA04] and [DMJN08]. Our ap-
proach detects refactorings state-based, i.e., only by analyzing the modified models and
their common base version. Consequently, any editor may be applied to change and refac-
tor the models.

Conflict Resolution Support. One of the key challenges in versioning is the resolution
of conflicts in an automatic way [Men02]. To the best of our knowledge, automatic conflict
resolution has not been achieved so far. As the conflict resolution involves many user
decisions in general, total automatic resolution will probably never be possible. Semi-
automatic approaches offering resolution suggestions to the user are realized for example
in MolhadoRef [DMJN08] for code versioning. PROMPT [NM00], a tool for ontology
versioning, uses a manual approach, but supports the user by pointing to conflicts as well
as giving some hints how to resolve them.

AMOR provides a recommender component suggesting conflict resolution patterns, which
are automatically executed, if the user has selected them. The resolution patterns are
learned from conflict resolutions manually done by the users. However, therefore we need
solutions of high quality capturing all user intentions. AMOR provides a synchronous and
collaborative resolution approach (cf. [BLS+09a]) inspired by the work of Dewan and
Hegde [DH07], who consider collaborative merge techniques only for software code but
not for models.

6 Conclusion and Future Work

In this paper, we presented the adaptable model versioning system AMOR. AMOR extends
a standard optimistic versioning system with respect to three aspects. (1) AMOR provides
a conflict detection component which may be enhanced with user-defined composite op-
erations. This additional information allows a more precise conflict detection on the one
hand, and a more compact conflict report on the other. (2) AMOR provides a recommender
component which offers suggestions how to resolve a previously detected conflict. These
suggestions may be either manually defined or they are learned from the situations when
the modelers resolve the conflicts by hand. (3) Finally, AMOR provides collaborative con-
flict resolution features, which allow the implementation of conflict resolution policies. In

Adaptable Model Versioning in Action 235

order to ensure that the intentions of all modelers are captured in the merged version, it is
sometimes necessary that they perform the conflict resolution together.

In future work, we will investigate the impact of different similarity heuristics for the
lookup of similar conflicts in the Resolution Pattern Storage. These heuristics are of par-
ticular importance if legacy modeling tools are used which either have no metamodel or a
less object-oriented one. Then it is not possible to make use of inheritance relationships.
Also then the Lookup Component should be able to find applicable patterns. This will also
involve more sophisticated higher-order transformations in order to adapt the transforma-
tions which incorporate the resolution solution in the merged model version.

Furthermore, we will perform an evaluation of the Conflict Detection Component of AMOR
by defining multiple refactorings for the Operation Repository and running tests based on
artificially provoked conflict scenarios. Finally, we will conduct an extensive case study in
the context of a real world project.

References
[AKK+08] Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Martina

Seidl, Wieland Schwinger, and Manuel Wimmer. AMOR—Towards Adaptable Model
Versioning. In Proceedings of the 1st International Workshop on Model Co-Evolution
and Consistency Management @ MoDELS’08, 2008.

[Alt08] Kerstin Altmanninger. Models in Conflict — Towards a Semantically Enhanced Ver-
sion Control System for Models. Models in Software Engineering, pages 293–304,
2008.

[AP05] Marcus Alanen and Ivan Porres. Version Control of Software Models. Advances in
UML and XML-Based Software Evolution, 2005.

[ASW09] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A Survey on Model Ver-
sioning Approaches. International Journal of Web Information Systems, 5(3), 2009.

[BLS+09a] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, and Manuel Wimmer.
We Can Work It Out: Collaborative Conflict Resolution in Model Versioning. In Pro-
ceedings of the 11th European Conference on Computer Supported Cooperative Work,
ECSCW’09, pages 207–214, 2009.

[BLS+09b] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel Wimmer, Gerti
Kappel, Werner Retschitzegger, and Wieland Schwinger. An Example is Worth a Thou-
sand Words: Composite Operation Modeling By-Example. In Proceedings of the 12th
International Conference on Model Driven Engineering Languages and Systems, MoD-
ELS’09, pages 271–285. Springer, 2009.

[BP08] C. Brun and A. Pierantonio. Model Differences in the Eclipse Modeling Framework.
UPGRADE, The European Journal for the Informatics Professional, 2008.

[CRP08] Antonio Cicchetti, Davide Ruscio, and Alfonso Pierantonio. Managing Model Con-
flicts in Distributed Development. In Proceedings of the 11th International Conference
on Model Driven Engineering Languages and Systems, MoDELS’08. Springer, 2008.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version Models for Software Configuration
Management. ACM Computing Surveys, 30(2):232, 1998.

236 Petra Brosch et al.

[DH07] Prasun Dewan and Rajesh Hegde. Semi-Synchronous Conflict Detection and Resolu-
tion in Asynchronous Software Development. In Proceedings of the 10th European
Conference on Computer-Supported Cooperative Work, ECSCW’07. Springer, 2007.

[DJ06] Danny Dig and Ralph Johnson. How Do APIs Evolve? A Story of Refactoring. Journal
of Software Maintenance and Evolution: Research and Practice, 18(2):83–107, 2006.

[DMJN08] Danny Dig, Kashif Manzoor, Ralph E. Johnson, and Tien N. Nguyen. Effective Soft-
ware Merging in the Presence of Object-Oriented Refactorings. IEEE Transactions on
Software Engineering, 34(3):321–335, 2008.

[EA04] Torbjörn Ekman and Ulf Asklund. Refactoring-Aware Versioning in Eclipse. Electronic
Notes in Theoretical Computer Science, 107:57–69, 2004.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactor-
ing: Improving the Design of Existing Code. Addison-Wesley, 1999.

[KGE09] Jochen Malte Küster, Christian Gerth, and Gregor Engels. Dependent and Conflicting
Change Operations of Process Models. In ECMDA-FA, pages 158–173, 2009.

[Kög08] Maximilian Kögel. Towards Software Configuration Management for Unified Models.
In Proceedings of the 2nd International Workshop on Comparison and Versioning of
Software Models @ ICSE’08. ACM, 2008.

[MCPW08] Leonardo Murta, Chessman Corrêa, Joao Gustavo Prudêncio, and Cláudia Werner. To-
wards Odyssey-VCS 2: Improvements over a UML-based Version Control System. In
Proceedings of the 2nd International Workshop on Comparison and Versioning of Soft-
ware Models @ ICSE’08. ACM, 2008.

[Men02] Tom Mens. A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

[NM00] Natalya Fridman Noy and Mark A. Musen. PROMPT: Algorithm and Tool for Auto-
mated Ontology Merging and Alignment. In Proceedings of the 17th National Con-
ference on Artificial Intelligence and 12th Conference on Innovative Applications of
Artificial Intelligence, pages 450–455. AAAI Press / The MIT Press, 2000.

[OS06] Takafumi Oda and Motoshi Saeki. Meta-Modeling Based Version Control System for
Software Diagrams. IEICE Transactions on Information and Systems, E89-D(4):1390–
1402, 2006.

[OWK03] Dirk Ohst, Michael Welle, and Udo Kelter. Differences Between Versions of UML
Diagrams. ACM SIGSOFT Software Engineering Notes, 28(5):227–236, 2003.

[SZN04] Christian Schneider, Albert Zündorf, and Jörg Niere. CoObRA - A Small Step for
Development Tools to Collaborative Environments. In Proceedings of the Workshop
on Directions in Software Engineering Environments @ ICSE’04, 2004.

[TJF+09] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the Use of Higher-Order
Model Transformations. In Proceedings of the 5th European Conference on Model
Driven Architecture-Foundations and Applications, pages 18—33. Springer, 2009.

