
Proteochemometrics Modeling of Receptor-Ligand 
Interactions Using Rough Sets 

Helena Strömbergsson (1, 2), Peteris Prusis (1, 2), Herman Midelfart (1)                      
Jarl E. S. Wikberg (2) and Jan Komorowski(1) 

 
(1) The Linnaeus Centre for Bioinformatics 

Uppsala University 
Box 598 

SE-751 24 Uppsala 
SWEDEN 

helena.strombergsson@lcb.uu.se 
herman.midelfart@lcb.uu.se 
jan.komorowski@lcb.uu.se 

 
(2) Department of Pharmaceutical Pharmacology 

Uppsala University 
Box 591 

SE-751 24 Uppsala   
SWEDEN 

peteris.prusis@farmbio.uu.se 
jarl.wikberg@farmbio.uu.se 

 

 

Abstract: We report on a model for the interaction of chimeric melanocortin G-
protein coupled receptors with peptide ligands using the rough set approach. 
Rough sets generate If-Then rule models using Boolean reasoning. Two separate 
datasets have been analyzed, for which the binding affinities have previously been 
measured experimentally.  The receptors and ligands are described by vectors of 
strings. Different partitions of each dataset were evaluated in order to find an 
optimal partition into rough set decision classes. To obtain a measurement of the 
accuracy of the rough set classifier generated from each dataset, a 10-fold cross 
validation (CV) was performed. The Area Under Curve (AUC) was calculated for 
each iteration during CV. This resulted in an AUC mean of 0.94 (SD 0.12) and 
0.93 (SD 0.16) for the first and second dataset respectively. The CV results show 
that the rough set models exhibit a high classification quality. The decision rules 
generated from the rough set model inductions are easy to interpret. We apply this 
information to develop models of the interaction between ligands and receptors.  
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1 Introduction 

The melanocortins and adrenocorticotropins [WI99] are involved in a diverse number of 
physiological functions. The melanocortin system consists of some peptide hormones 
and the melanocortin receptors. Melanocortins include melanocyte stimulating hormones 
(MSHs) and adrenocorticotropic hormone (ACTH). The receptors for these are termed 
melanocortin receptors and belong to the G-protein-coupled receptor family. Five such 
receptors (MC1 through to MC5) have been identified and most of these show different 
binding affinities for each of the melanocortin hormones.  

Recently, we have developed proteochemometrics to model MC receptor-ligand 
interactions [PLW02, Pr01]. In proteochemometrics, descriptors of proteins and ligands 
are combined and correlated with binding affinity data. The linear method partial least 
squares (PLS) [GK86] was applied very successfully for the correlation. We have here 
evaluated rough sets [Pa82, Pa91], which is a Boolean method suited to investigate non-
linear phenomena to find out whether or not this approach adds information and/or gives 
new perspectives on MC receptor-ligand interactions.  

2 Materials and Methods 

2.1 Datasets 

Models were induced from two datasets describing the interaction between chimeric 
melanocortin receptors and peptide ligands. The binding affinities of highly selective 
melanocortin peptides for chimeras of the MC1 and MC3 receptors were reported [Mu01, 
Sh98]. (The same types of receptor chimeras were used in both datasets.) The chimeras 
are composed of four parts (A, B, C and D) (Fig. 2.1.1), each originating either from 
wild-type MC1 or MC3. The composition of each receptor is described by a vector whose 
elements are four strings. Thus the string “MC1” is assigned to parts originating from 
MC1 and the string “MC3” to parts originating from MC3. For instance, a receptor 
chimera in which parts A and B originate from MC1 and parts C and D originate from 
MC3 is described by the vector [MC1, MC1, MC3, MC3]. The wild-type receptors MC1 
or MC3 are described by the vectors [MC1, MC1, MC1, MC1] and [MC3, MC3, MC3, 
MC3], respectively.  
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Figure 2.1.1: Schematic overview of the division of MC-receptors into parts. 
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The first dataset contains 40 receptor-ligand complexes. Each object of the dataset is a 
description of the composition of MC receptor chimeras and α-MSH, MS04 peptides or 
chimeric analogues of these peptides together with the receptor-ligand binding affinity. 
The peptide α-MSH is a natural ligand while the MS04 peptide is a result from phage 
display selection [Sz97]. In the dataset, the middle part of the ligand is constant while 
the N-terminal and C-terminal parts originate either from α-MSH or MS04. The 
composition of each ligand in the dataset is described by a vector of two strings. The 
string “MSH” is assigned if the part originates from α-MSH and the string “MS04” if 
the part originates from MS04 (Table 2.1.1). Each receptor-ligand complex is thus 
described by a vector of six strings and one real number. The first four strings describe 
the composition of the receptors and the following two strings describe the properties of 
the ligand. The real number is the binding affinity between the receptor and the ligand 
given as pKi which is the negative logarithm of the inhibition constant Ki. The pKi values 
are taken from [Mu01]. For example, the object [MC3,MC3,MC1,MC1,MSH,MS04, 
6.38] is a receptor-ligand complex where the A and B parts of the receptor originate 
from MC3 and the C and D parts originate from MC1, the N terminal part of the ligand is 
from α-MSH and the C-terminal part is from MS04, and the binding affinity is 6.38. 

 

Peptide Sequence Descriptor 
α-MSH 
MS04 
MS05 
MS06 

SYSMEHFRWGKPV 
SSIISHFRWGKCN 
SSIISHFRWGKPV 
SYSMEHFRWGKCN 

[MSH, MSH] 
[MS04, MS04] 
[MS04, MSH] 
[MSH, MS04] 

 

Table 2.1.1: Sequences of the highly active melanocortin α-MSH/MS04 peptides used in the first 
dataset. The peptide ligands α-MSH and MS04 are used as building blocks for MS05 and MS06. 
The middle part of each ligand is constant while the shaded N- and C-terminal parts are variable.     
The two strings of each descriptor represent the origin of the N- and C-terminal part. 

The second dataset contains 60 receptor-ligand complexes. Each dataset describes the 
composition of MC receptor chimeras and six linear and cyclic peptide ligands. The 
ligands are various derivatives of α-MSH (Table 2.1.2) where one or several amino acids 
have been altered. An amino acid alignment of the ligands shows that there are four 
variable sites. Vectors of four strings have been used to describe the properties the ligand 
focusing on the amino acid composition at the variable sites. The receptors and the 
biding affinities are described in the same manner as the first dataset. The pKi values are 
taken from [Sh98]. A receptor binding complex is hence described by a vector of eight 
strings and one real number where the first four strings represent the receptor, the 
following four strings describe the ligand and the real number is the binding affinity. For 
instance, the receptor ligand complex [MC1, MC1, MC3, MC3, Tyr, Met, Phe, Gly, 
8.27] has part A and B of the receptor from MC1 and part C and D from MC3, the ligand 
has the residues Tyr, Met, Phe and Gly at the variable sites, and the binding affinity is 
8.27. 
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Peptide Sequence Descriptor 
α-MSH 

[125I]-NDP-MSH 
NDP-MSH 

[Nle 4]- α-MSH 
cCDC 
cCLC 

S Y S M E H F R W G K P V 
S I-Y S Nle E H dF R W G K P V 
S Y S Nle E H dF R W G K P V 
S Y S Nle E H F R W G K P V 
S Y S C E H dF R W C K P V 
S Y S C E H F R W C K P V  

[Y, M, F, G] 
[I-Y, Nle, dF, G] 
[Y, Nle, dF, G ] 
[Y, Nle, F, G] 
[Y, C, dF, C] 
[Y, C, F, C] 

Table 2.1.1: Amino acid sequence of the peptides used in the second dataset and their descriptors. 
The shaded positions are the alteration sites.  

2.2 Rough sets  

For an overview of the rough set method we refer to [Ko99]. All computations were 
performed using the Rosetta system [Øh98] (rosetta.lcb.uu.se). Rosetta implements 
inductive learning using the mathematical framework of rough sets [Pa82, Pa91]. This is 
a relatively new approach to representing and reasoning with incomplete or uncertain 
knowledge. It deals with the classificatory analysis of data tables. A dataset is 
represented as a table, where each row represents a case and each column represents an 
attribute. This table is called an information system. More formally, an information 
system is a pair where is a non-empty finite set of objects called the 
universe and

),( AU=Α U
A is a non-empty finite set of functions , called attributes; for 

each the set is called the value set of .  
aVUa →:

Aa∈ aV a

If there is a known outcome or classification, this a posteriori knowledge is expressed as 
one distinguished attribute called the decision attribute. An information system of this 
kind is called a decision system. Thus, a decision system is any information system of 
the form , where }){,( dAU ∪=Α Ad ∉  is the decision attribute. Two objects yx, are 
said to belong to the same decision class if .   )()( ydxd =

The output of the rough set algorithms is a set of minimal decision rules of the 
form βα → . Hereα is a Boolean function  built up of the logical 
connectives  and atom statements of the form  where , . 
Similarly  is built up from atom statements of the form 

where . An example of a decision rule will be given in section 3.3. The 
extracted set of minimal decision rules is applied to classify new objects.  

}false true,{→U
¬∨∧ ,, va =⋅)( Aa ∈ aVv ∈

true}{false,: →Uβ
vd =⋅)( dVv ∈

There are several numerical factors associated with decision rules. Most of these are 
derived from the support of a rule, which is the number of objects in the decision system 
that possess both properties α and β . The factor coverage, which is defined as     

, reflects the strength of a rule and gives 
a measure of how well 

)/support()support(  )coverage( ββαβα ∧=→
α  describes the decision class(-es) given by β .   
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2.2 Rough sets and proteochemometrics data  

Using the rough set terminology the two datasets are decision systems where the 
receptor-binding complexes are objects, the descriptors of the receptor-ligand complexes 
are attribute values and the binding affinities are decision attribute values. The first 
dataset will be referred to as Decision System 1 (DS1) and the second dataset will be 
referred to as Decision System 2 (DS2).  

2.3 Model validation 

The Rosetta system computes the Area Under Curve (AUC) (Hanley and McNeil, 1982) 
for an induced model. The AUC is the area under the Receiver Operating Characteristics 
(ROC) curve and it is a measurement of the discriminatory power of a classifier. The 
ROC curve results from plotting sensitivity against 1-specificity while letting the 
threshold value τ vary. For a binary classifier an AUC of 1.0 means that the 
discriminatory power is optimal while an AUC of 0.5 means that the classifier does not 
perform better than a random classification of objects.  

Rough set modeling is an inductive learning process. It begins with a division of the 
selected dataset into two subsets: a training set which is used to train the system and a 
test set which provides a means to evaluate the induced model. However for a small 
dataset, the reliability of the performance of one single partitioning can be questioned. 
The random division of the dataset could have been particularly “lucky” or “unlucky”. In 
order to deal with this issue, the Rosetta system implements k-fold cross validation 
(CV). From a Rosetta k-fold CV, the performance estimates accuracy mean and AUC 
mean are obtained. The accuracy mean is the average proportion of correctly predicted 
objects computed for the k blocks during CV. The AUC mean computed by Rosetta is 
the average AUC for the models induced by the k blocks during CV. The standard 
deviation (SD) is reported for both accuracy- and AUC mean.  

Three types of CVs were performed; 10-fold, leave-one-out and leave-one-receptor-out. 
In 10-fold CV the objects are randomly divided into 10 blocks. In leave-one-out CV the 

objects of a decision system are divided into blocks (each containing one single 
object). It is not possible to calculate AUC for each of the iterations. Instead an AUC of 
the overall performance is computed and the standard error (SE) of the computations is 
reported. In leave-one-receptor-out CV each block consist of one type of melanocortin 
receptor chimera. As information about one entire receptor type is left out this is a more 
rigid test than k-fold CV where the partitioning of blocks is at random.  

n n

2.4 Optimization of partitioning into decision classes 

Both decision systems have real and continuous decision attribute values without any 
obvious cutoff value for discretization into decision classes. In order to find an optimal 
partition of the decision systems into two decision classes, rough set models were 
systematically induced for a number of partitions. Each decision system was sorted by 
the decision attribute value. For DS1 in the first iteration, the decision attribute values of  
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the first two objects were assigned the number “1” (low binding) and the remaining 
objects were assigned the number “2” (high binding). A rough set model was induced 
and the model was validated using 10-fold CV, for which the AUC mean was calculated. 
In the next iteration the following two “high binding” objects were set as “low binding” 
objects while the remaining objects were unchanged and the 10-fold CV performed. This 
was repeated until all but the two last objects of DS1 were assigned as “low binding” 
objects. The same procedure was repeated for DS2 with the sole difference that three 
objects were reassigned in each of the iterations. In all, models of 19 partitions of each 
datasets were induced and validated. The AUC means and standard deviations are 
presented in Figure 2.4.1.    
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Figure 2.4.1: Optimization of partitioning of decision system 1 (DS1) and decision system 2 (DS2) 
into two decision classes. 

2.5 Export of decision rules 

From the 10-fold CV the set of minimal decision rules was exported from each induced 
model. The coverage of each rule was summarized and mean and standard deviation 
were calculated. Rules that occurred in less than 7 CV folds or had a coverage mean of 
less than 0.2 were omitted from interpretation. 
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3 Results 

3.1 Optimization of decision classes 

The plot (Fig. 2.4.1) of the AUC means and standard deviations for both decision 
systems shows that the AUC mean peaks and the standard deviations are at their lowest 
at partition 9. This suggests that a partitioning of objects into decision classes of equal 
cardinality is suitable for model induction in this particular case. The median value of 
each decision system was therefore used to discretize the systems into two decision 
classes.  

3.2 Model validation 

For DS1, 10-fold CV resulted in an accuracy mean of 0.9 (SD 0.13) and an AUC mean 
of 0.94 (SD 0.12). Leave-one-out CV produced an accuracy mean of 0.9 (SD 0.3) and an 
AUC of 0.94 (SE 0.04). Leave-one-receptor-out CV resulted in an accuracy mean of  0.8 
(SD 0.16) and an AUC mean of 0.85 (SD 0.21). For DS2, 10-fold CV resulted in an 
accuracy mean of 0.94 (SD 0.12) and an AUC mean of 0.91 (SD 0.19). Leave-one-out 
CV produced an accuracy mean of 0.93 (SD 0.25) and an AUC of 0.98 (SE 0.05). 
Leave-one-receptor-out CV resulted in an accuracy mean of AUC of 0.85 (SD 0.15) and 
an AUC mean of 1.0 (SD 0.0).   

3.3 Interpretation of rules 

The cross validations results show that the rough set models exhibit a high classification 
quality. Classification produced by a model is a direct consequence of the decision rules. 
In this study, the set of minimal decision rules associates a minimal number of receptor-
ligand descriptors with high or low binding affinity. It is therefore of biological and 
biochemical interest to study the set of rules exported from cross validations to discover 
patterns determining binding affinity. An example of a decision rule is “A(MC1) ∧  
D(MC1)  pos4_ligand(G) → Binding(2)“, associating the A and D part of MC1 and a 
glycine (G) at position 4 of a ligand with high binding affinity. Illustrations of high and 
low binding rules are shown in Figure 3.3.1.  

∧

The “high binding” decision rules are always associated with receptor parts from MC1. 
Within a receptor, a combination of part B and D results in a high binding. Within 
ligands, a high binding affinity is promoted by the N- and C-terminal part of α-MSH and 
a combination of the residues Nle and D-Phe. Between ligands and receptors chimeras, a 
high binding affinity is obtained by a combination of the N-terminal part of α-MSH and 
part B, a combination of a G residue and part A and D, and a combination of a Nle 
residue and part B and D. Receptor parts from MC3 are frequently associated with “low 
binding” decision rules. Within ligands, low binding is affected by a combination of Cys 
at position four and a F residue at position three. Between ligands and receptor chimeras, 
low binding is promoted by a combination of Cys-Cys bridge and part B and D, part A 
in combination with the N- or C-terminal part of MS04.  
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Figure 3.3.1: (1) Interpretation of low affinity decision rules, (2) interpretation of high affinity 
decision rules. Each arrow or combination of arrows represents one decision rule. For each 
decision rule we state the wild-type receptor associated with the rule and the RHS coverage mean 
for the rule.  

4 Discussion 

Rough set models have been induced and validated from two datasets containing binary 
descriptors of melanocortin receptor-ligand complexes and their respective binding 
affinity. In this context, the set of minimal decision rules can be used to understand and 
explore the biochemical nature of the interactions important for binding affinity. The 
decision rules suggest that part A, B and D of the receptor are involved in the 
interactions while part C seems to be of little significance. Within the ligands the first 
variable position of the DS2 ligands does not seem affect binding affinity. Receptor parts 
from MC1 are involved in high binding affinity interactions while parts from MC3 are 
involved in low binding affinity interactions suggesting that the peptides used in this 
study in general bind more weakly to MC3 parts than to MC1 parts. The rough set 
decision rules suggest that a high binding affinity may be achieved by an interaction  
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between receptor parts B and D. The rules also suggest that the N-terminal part of α-
MSH interacts with part B. A high binding affinity may be promoted by a Nle residue in 
the peptide interacting with part A and D, and a G residue in the peptide interacting with 
part A and D or part B and D. By counting the number of interactions suggested by the 
rules it is possible to suggest that part B and D of the receptor are the most important for 
high binding affinity. Low binding affinity is achieved by the presence of a Cys-Cys 
bridge in the peptide supposedly interacting with parts B and D. A F residue in the 
peptide interacting with part B or D may cause low binding. Low binding affinity may 
also be caused by a possible interaction between the N-terminal part of MS04 with part 
A and an interaction between the C-terminal part of MS04 with part A and B. By 
counting the number of interactions of each part of the receptor it can be assumed that 
the receptor B and D parts are the most influential on “low affinity” interaction.     

When comparing the induced rough set models to the recently reported PLS models 
[PLW02, Pr01], it is possible to conclude that the models have different strengths. PLS 
ranks all the attributes and cross terms from most influential to least influential for 
binding affinity. For instance, both PLS models single out part B of the receptor as the 
most important for binding affinity. Rough set modeling does not produce a ranking of 
attributes. Instead it selects minimal groups of essential attributes that have the same 
classification power as the full set of attributes. In this case, decision rules focus on 
combination of attributes important for binding, which from a biological point of view is 
desirable. One major advantage with the rough set approach is that it is independent of 
numbers as attribute values which facilitates the description of receptor-ligand 
complexes and the interpretation of the model. Moreover, the rough set decision rules 
are more specific as they associate high and low binding to certain attribute values while 
the PLS ranking is not relating to attribute value. For linear models such as PLS, non-
linear terms (cross terms) have to be defined before building a model and usually not 
more than two attributes can be combined in each cross terms. In the rough set approach 
the set of minimal decision rules is equivalent to cross terms without any restriction to 
number of attributes combined. For instance, the rule “B(MC1) ∧  D(MC1) ∧  
pos2_ligand(Nle)” combines the attributes B, D and pos2_ligand thus adding 
information about the interaction that could not have been generated by PLS. One 
disadvantage with the rough sets approach is that it is dependent on distinct decision 
classes which makes it necessary to discretize the binding affinity values into “high” and 
“low” binding, while PLS can deal with and predict real binding affinity values. 
However, as the rough set models of receptor-ligand interactions are essentially in 
agreement with the PLS models the discretization does not appear to be harmful in this 
particular study. In conclusion, rough sets provide an explicit model with parameters (i.e. 
attributes) that are easy to interpret. On the other hand PLS models, being multivariate 
regression models are better at predicting the numerical values of binding affinity. Thus 
the two approaches are in some respects complementary and may be used in 
combination to receive a better understanding of receptor-ligand interaction.      

To our knowledge these are the first rough set models induced on proteochemometrics 
data. We have shown that the rough set approach can be used as a modeling tool and that 
the resulting model agrees with and in some respects complements previously induced  
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PLS models. Additionally, we have proposed a novel approach to handling continuous 
decision attributes in rough sets. In the future, we would like to add some features to the 
rough set approach to select optimal boundaries for decision classes, a feature that will 
be useful when building models from larger dataset.    
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