
Eliminating Trust From Application Programs
By Way Of Software Architecture

Michael Franz
University of California, Irvine

Abstract:
In many of today’s application programs, security functionality is inseparably in-

tertwined with the actual mission-purpose logic. As a result, the trusted code base
is unnecessarily large and audit costs are high. We present a software architecture in
which applications can be completely untrusted, even when they manipulate secrets.
Key to our approach is the use of a trusted multi-level security virtual machine, in-
side of which all secrets remain locked at all times. In an experimental prototype, we
were able to bring down the run-time overhead much lower than expected, by using
aggressive dynamic compilation and static analysis techniques.

1 Introduction
Before the widespread adoption of databases, concepts such as “transactions,” “commit,”
and “roll-back” had to be coded explicitly into application programs, and as a result often
wound up interwoven with the actual business logic. Today, almost every major applica-
tion program sits atop some kind of database system. Moreover, database interfaces have
been largely standardized, making it possible to even swap out the database layer without
a major rewrite of application code.

Interestingly, when it comes to information security, the state of the art today appears to
be pretty much where it was with respect to data integrity 25 years ago: We find secu-
rity functionality scattered all over application programs, and intermingled with the true
mission-purpose functionality. For programs handling sensitive data, this implies an un-
necessarily large trusted code base, simply because the critical parts cannot be separated
from the non-critical ones. As applications grow larger and larger, the scope for errors is
multiplied and auditing costs rise ever higher.

This leads to the question whether it would be feasible to do for information security what
databases accomplished for information integrity. Can we pull all of the relevant functions
out of application programs and move them into a standardized, exchangeable software
layer below?

Of course, even today there are many well-structured applications that have been designed
to minimize the proportion of the code that needs to be trusted. Our question, however,
focuses on software design in general: can we move trust out of application programs
altogether, so that even not-so-well designed applications cannot accidently (or mali-
ciously) leak sensitive information? We answer this question in the affirmative and point
to an architecture based on virtual machines.

112



A high-level virtual machine (VM) such as the Java VM is a good basis for an architec-
ture in which untrusted programs can manipulate secrets, because the VM has absolute
control over execution—an application program is merely interpreted on the VM, rather
than being executed directly on some hardware, and all data accesses go through the VM.
However, current VMs such as the Java VM lack a mechanism to differentiate between “se-
crets” and “non-secrets,” and an efficient mechanism to prevent leaking of secrets through
control flow.

We have constructed a prototype of a derivative of the Java VM that adds the missing
functionality for true multi-level security programming. First, our VM adds a security
label to every data item and prevents assignments that would leak secrets. Second, we
prevent security leaks via control flow by attaching a security label to the program counter
and coercing all data labels of assignment targets to the least upper bound of the assigned
value and the current program-counter label.

Historically, such multi-level security (MLS) schemes [DoD85] have suffered from per-
formance degradation and from the problem of “label creep,” and as a consequence never
reached widespread acceptance. Label creep refers to the effect that labels get coerced
“upward” easily, while “downward” declassification is rare and difficult to do correctly.
We were able to overcome these problems by employing compiler techniques that were
either not available in the early days of MLS, or not feasible back then, particularly due to
insufficient memory sizes.

Only recently have computer memories become large enough to support flow-sensitive
whole-program analyses. Indeed, storage addressability is often still the limiting factor
for this type of analysis today. However, due to the effects of Moore’s law, most desktop
machines will soon have sufficient RAM to routinely perform these kinds of analyses, and
thereby make our scheme practical.

The remainder of this paper is structured as follows. First, we discuss current security
architectures involving virtual machines. Then, we introduce a new Multi-Level Secu-
rity Virtual Machine architecture. We summarize preliminary experience with a prototype
implementation. We then discuss related work, followed by a short discussion and conclu-
sions section.

2 Security Architectures Involving Virtual Machines
Building on significant research accomplishments that were made in the 1960’s and 1970’s
[Gol69, GBE73, Gol74, PG74, PK75, KZB+91], virtual machines are currently enjoying
a major renaissance [FDF05]. One principal driver for this renewed interest in virtual
machines is security, another is software portability.

There are two major categories of VM that are very different from each other. The first
kind of VM (also often called a “low-level VM,” “virtual machine monitor,” or “virtual-
ization platform”) virtualizes a physical computer. Example contemporary VMs in this
category are VMware [Wal02, SVL01] and Disco [BDGR97]. This kind of VM presents
an interface exactly like, or very similar to, raw hardware, and one usually runs an ordinary
operating system on top of it. This technology is now in the commercial mainstream. Very

113



JVM JVM JVM

Java Virtual Machine
platform interface

virtual processor
platform interface

processor virtualization layer

actual (hardware) processor platform

OS OSOS
drivers drivers drivers

virtual
host 1

virtual
host 2

virtual
host 3

Figure 1: Web hosting scenario: VM provides isolation for replicated software stacks.

closely related to low-level VMs are “hypervisor VMs” such as Xen [BDF+03]. These
present a hardware-close interface that requires modifications to the operating system, but
not to application programs.

The second major category of virtual machine is the “high-level VM.” Today’s most pop-
ular representatives of this category are the Java VM and Microsoft’s .Net Common Lan-
guage Runtime (CLR). These virtual machines present an interface that is much richer than
typical hardware interfaces, particularly in respect to the data types that are available. Be-
cause they abstract away from the actual hardware and operating system that is running on
a computer system, high-level VMs have established themselves as the target platforms of
choice for the Internet Computing paradigm. High level VMs usually enforce type safety,
control safety, and memory safety, and thereby protect the host computer from malicious
or faulty actions of the programs running on the VM.

Curiously, there are many computers today that are simultaneously running both kinds of
VM. For example, in many web hosting scenarios, a customer purchases a “virtual host,”
a fraction of the physical resources of an actual host accessed through a “low-level VM.”
Customers are given the illusion of having their own dedicated remote computer, but in
fact these are multiplexed onto fewer physical computers (Figure 1). The virtualization
platform enforces complete separation between the various virtual hosts—in fact, the sep-
aration is so absolute that the complete software stack needs to be replicated on each of
the virtual hosts, including the operating system, device drivers, and the high-level virtual
machine that executes the users’ web applications.

Another use of virtualization platforms has been to implement multi-level security (MLS)
schemes [Rho75, Wei75, KLM88]. In this scenario, the different virtual hosts that are mul-
tiplexed onto a single physical computer have different security labels (Figure 2). There
may also be specific hardware components that are available to only certain subsets of
the virtual hosts, and not the others. For example, the different virtual hosts might be
connected to different, disjoint computer networks and must be prohibited from talking
to any but the appropriate networking hardware. As in the web hosting scenario, each of
the virtual hosts will be running its own private copy of the device drivers and operating
system, and if using platform-independent code, each will need its own private copy of a

114



OS OS OS
top secret network
hardware driver forhardware driver for

untrusted network

untrusted
application

secret
application

top secret
application

actual (hardware) processor platform

processor virtualization layer

untrusted
virtual
host

secret
virtual
host

top secret
virtual
host

hardware driver for
secret network

Figure 2: MLS Scenario: VM separates virtual computers with diverging security labels.

VM

secret
service

VM

service
public mixed

service

VM

OS providing Multi Level Security (MLS)

P

P

S

S

S

S

Figure 3: Using an OS that supports explicit security labels: applications still “mingle” secrets and
non-secrets and must be labeled with the least upper bound of all the labels that can occur in a
computation. P and S represent labels, with P < S.

high-level virtual machine such as the JVM. This security architecture is now deployed in
certain government agencies.

Quite obviously, replicating the complete operating system stack as well as a high-level
VM in this manner across multiple virtual hosts is not an elegant solution. However, it has
the advantage that an off-the-shelf OS and an off-the-shelf high-level VM can be used, and
it keeps a small “low-level VM” in charge of the separation. One might then argue that
this virtual machine monitor forms the trusted code base as far as separation between the
labels is concerned, but in each virtualization compartment taken separately, the OS and
high-level VM are still part of a “trusted code base.”

A somewhat better solution would be to use an operating system that explicitly supports
security labels, such as SELinux [SVS02] or Solaris Trusted Extensions [Sun]. In this
scenario (Figure 3), which represents the current state of the art, the “multiplexing” be-
tween different security levels needs to occur only above the OS layer, because the OS
can separate between “secrets” and “non-secrets” internally. However, every application
program still needs to carry a label that represents the least upper bound of all the labels
it manipulates. If the architecture contains a high-level VM (for example, the common
scenario of running Java services on top of Java VMs), then that high-level VM must also
be replicated for every security label.

115



boot
sequence

secure

TPM

&
tracking
tagging,

enforcement
driver for
public
network

driver for
secret
network

driver for
top secret
network co

nt
ro
ld
ep
en
de
nc
yfiles without

secretssecrets
files with

P

S P

TS

MLS−VM abstraction

untrusted applications (may manipulate secrets)

BIOS

trusted
code
base

dynamic compilation engine

Policy

Figure 4: MLS-VM locks all data inside and mediates all information flows, including those that
occur implicitly via control flow. The MLS-VM constitutes the trusted code base; all application
programs are completely untrusted, even those that manipulate secrets.

Note that when we say that an application “is labeled with the least upper bound of the
labels it manipulates,” then that really means that the application is trusted up to that
label. There is no general way we can prevent such an application (if it is malicious or
faulty) from leaking information between different channels it has simultaneous access to.
Hence, while the use of a multi-level security operating system can surely limit damage
(for example, by making sure that no “secret” data is ever read by a program that has only
“non-secret” access), this architecture still requires trust in programs that have simultane-
ous access to multiple channels. As a consequence, these programs need to be audited to
the standard implied by the highest label they manipulate.

3 MLS-VM: A New Security Architecture
A new security architecture removes this obligation. In this architecture, completely un-
trusted application programs can be allowed to perform computations on sensitive data
without the risk that any of the secrets would ever be leaked. Our approach takes the core
ideas of multi-level security schemes as they have been successfully used in operating
systems for decades, and brings them to the semantically much richer realm of high-level
virtual machines. The result is what we call a Multi-Level Security Virtual Machine, or
MLS-VM.

In our model, the MLS-VM forms the uppermost layer of the trusted code base on the
target platform. In a production environment, its integrity would need to be established
using techniques that have already been developed, such as secure boot [AFS97] using a

116



b <− 2

a <− 2

b <− 1

a,b: unclassified
s: secret

value of b
modified in control
dependent section

value of a
modified in control
dependent section

=> raise pc_tag
secret value
branch on a

a <− 0
b <− 0

s = 0?

1

2

3

4

5

6

7

automatically
generated code

a <− 1

=> raise b in other path(s)

=> raise a in other path(s)

control flow join
=> declassify pc_tag

original control flow information−flow aware VM

Figure 5: Hybrid information-flow enforcement combines load-time static analysis and code rewrit-
ing with dynamic run-time techniques.

Trusted Platform Module (TPM) [DLP+01, JSM01, Smi02, ML05]. Once that the MLS-
VM is running, it can give untrusted programs access to sensitive data while enforcing
information-flow policies. The MLS-VM achieves this goal by internally tagging every
single data item, tracking the tags through the lifetime of each data item, and by enforcing
policies on the interactions of data items among themselves and with the boundaries of the
VM. Such boundaries include the file system and the network.

Hence, the MLS-VM (Figure 4) achieves far more than simply lifting the separation archi-
tectures of Figures 1, 2, and 3 to a higher level in the software stack. The MLS-VM actu-
ally allows to write a single, untrusted application program that simultaneously has access
to channels with different security labels, and still can guarantee strict non-interference
[GM82]. Non-interference is the property that “secret” inputs to a program never inter-
fere/change the “publicly observable” values in the program. We explicitly exclude timing
channels [McH95] from our consideration since they reside “out of band” relative to our
approach; these will have to be dealt with using appropriate “out of band” countermeasures
such as processor clock-frequency variation.

Note that enforcing correct information flows is considerably more complicated than merely
prohibiting direct assignments of “high-label” values into “low-label” variables; one also
needs to consider implicit flows that are carried by a program’s flow of control. Consider

117



the program depicted on the left in Figure 5: Here, a branch is taken on a secret value. Any
store to a “low” value in a region that is dependent on such a branch may leak information,
unless the store is dead (i.e., later overwritten without reading the previous value). Even
more subtly, non-execution of a certain branch may leak as much information as taking
the branch. Traditionally, dynamic information-flow techniques have had trouble dealing
with this kind of situation because they only follow a single control-flow path rather than
considering all alternative paths simultaneously.

Our approach uses a combination of static analysis and dynamic tagging, tracking, and
enforcement techniques (in concert with aggressive just-in-time compilation) to handle
control-dependent information flows. The key to our solution is to perform static analyses
with binary rewriting ahead of actual execution on the MLS-VM. These analyses automat-
ically insert compensating tag instructions into alternative paths whenever any variable is
modified along just one path.

In the example of Figure 5, branching on a secret value raises the label of the program
counter to the least upper bound of its current value and secret. Every variable that
is modified has its own label coerced to the least upper bound of its current label and
the label of the program counter. For example, the assignment to the non-secret variable
a in basic block 3 will raise the label of a to secret because the program counter is
secret, preventing a leak of the contents of variable s via a. In spite of the coercion of
a’s label, we would still be able to infer the value of s in basic block 5 by observing the
non-secret variable b. This is prevented in our implementation by automatically inserting
compensation code, so that when any variable is modified in any branch, its label is coerced
in all branches. The right side of Figure 5 shows the instructions that are automatically
inserted after static analysis. In particular, b is coerced to secret in basic block 3 and a
is coerced to secret in basic block 4.

When the control flow re-joins in basic block 5 (the immediate post-dominator of blocks
3 and 4), the program counter’s label can be restored to the value it had before the branch
in basic block 1. Note that a and b remain classified past this control-flow join; a will be
declassified in basic block 6 and b in basic block 7, i.e., at the points that any data values
that could reveal the value of s are dead.

4 Preliminary Experience With an MLS-VM
In the course of the past four years, we have implemented two increasingly complex pro-
totypes of Java VMs that (in addition to the full functionality of a standard Java VM)
provide comprehensive information-flow-enforcement infrastructures. Our first imple-
mentation [HCF05] realizes only part of the MLS-VM vision: it performs labeling at the
granularity of objects rather than individual instance variables, and it does not track infor-
mation leaks via control flow. Our second implementation [CF07] is considerably more
ambitious and pushes the labeling mechanism down to the level of individual data fields.
It also correctly handles control flow as explained in the previous section. As a result of
these additional capabilities, the second implementation has a considerably higher runtime
overhead.

In both of the implemented systems, the new capabilities added to the Java VM are entirely

118



directed by policies that themselves reside outside of the VM and that are dynamically
changeable at will. These late-bound policies govern the functions of the labeling and
enforcement mechanism as follows:

• Tagging: A newly created object and its instance variables are assigned labels. What
labels are assigned in particular depends on the context of the object’s creation (in-
cluding the label of the program counter) and an external policy.

• Tracking & Enforcement: Any interaction between two objects is governed by poli-
cies. Among such interactions are instance variable accesses and method invoca-
tions. Method calls result in indirect information flow through parameters and return
values. A policy determines whether or not the interaction is allowed, and if yes, if
any tags are modified as a result of the interaction. If the interaction is disallowed,
an exception is raised.

• Output Channels: Of particular interest are object interactions at the system’s bound-
ary, e.g. with the file system or the network interface. Such interactions can now be
controlled based on the label of the information that wants to be written to a file or
to the network.

The surprising result is that the cost of performing these labeling operations at the granular-
ity of whole objects (first implementation) throughout a full Java VM using the technique
of binary rewriting of the bytecode at load-time amounts to only about 6% overhead after
only very rudimentary tuning.

But even when performing labeling at the granularity of individual fields (second imple-
mentation), the overhead is still remarkably low. In our measurements using the Java
Grande [MCH99] benchmarks, among the Section 1 microbenchmarks that measure prim-
itive operations, only the assignment operation stands out with a slowdown factor of
slightly more than 3 (Figure 6). This makes sense, because it is during assignment that
labels need to be calculated and modified. However, few realistic programs consist en-
tirely of assignments. Looking at Java Grande Section 2, which contains library kernels,
the largest slowdown is just slightly more than a factor of 2.5. And looking at Java Grande
Section 3, which contains larger applications representative of “real world” programs,
the overhead of our scheme (Figure 8) represents a slowdown factor of about 2 in the
worst case. In many security-relevant contexts, people would probably gladly accept such
a slowdown in exchange for information-flow security, or simply wait three years until
Moore’s law had erased the costs.

It is important to note that our approach does not require any immediate changes to existing
software that already runs on the underlying VM platform (in our case, the Java VM).
While eventually one would probably stop writing application programs that intertwine
the mission-critical and security functionalities, the immediate benefit of a security layer
such as ours is that it can guarantee correct information flows even if the applications
running on top are faulty or malicious. As long as application programs behave correctly,
our system is completely invisible. However, the cost of auditing applications disappears
because we can now automatically detect and abort misbehaving programs.

Second, our approach does not hard-code any particular policy. In fact, the labeling mech-
anism we have implemented and that we propose as a general architectural approach is

119



completely policy-agnostic. While it can be used to implement standard Bell-LaPadula
style [BL73] information-flow control, the exact same mechanism can be used for other
information-flow schemes. For example, we have successfully implemented a Perl-style
taint propagation for Java on top of our basic infrastructure [HCF05]. This allows us to
fix faulty web applications after the fact. No modification of any application program is
required—all correct programs will continue to function exactly as before. However, if
there is some path in some application program along which a tainted input can reach a
critical sink such as an SQL database query, and that path is triggered by an actual execu-
tion under our modified VM, then the VM will detect this fact and throw an exception. We
tested our framework with a well-known suite of vulnerable web application samples and
our framework was able to prevent the attacks that these sample applications are vulnerable
to.

Third, our system provides completely dynamic policies that can be changed even while
a program is already running. This is in contrast to previous approaches such as Myers’
Jflow and Jif [Mye99a, Mye99b] that extend the Java language with statically checkable
information-flow annotations. At compilation time, the information-flow policy then be-
comes “frozen.” In Erlingsson and Schneider’s approach [ES99, ES00], a security au-
tomaton [Sch00] is in-lined into each program prior to execution, which again “freezes”
the security policy; furthermore, this solution is limited by what is decidable by a security
automaton. In our system, the policy is entirely separate from the enforcement mechanism
and remains separate and modifiable during program execution.

5 Related Work
Information security is important, and hence there is a large body of related work. Of
particular relevance to our work is previous research in system dependability, information
flow and static analysis. Due to space constraints, we can address only a small selection
of related work that is most relevant to particular issues mentioned in this paper.

The software engineering community has studied a wide range of dependability issues
[Kni04], of which information security (a combination of confidentiality and integrity) is
just a subset. In fact, one could argue that we are only able to make confidentiality and
integrity a main focus today because the community has been so successful at getting a
grip on the remaining dependability properties (reliability, availability, safety, and main-
tainability), which has enabled the construction of large networked information systems in
the first place.

In his survey of dependability assessment of software-base systems, Littlewood [Lit05]
observes that the main focus in the past has been on reliability and safety, and that the field
of security assessment is still in its infancy. A system such as ours would make it possible
to exclude the application program from such an assessment and focus on the MLS-VM
layer and the correct specification of policies.

Leveson et al. [LSST83] used the term “safety kernel” to describe an architecture in which
the safety-relevant mechanisms are concentrated in a centralized location. We have used
the more modern term “trusted computing base,” but our approach is very much in the
spirit of their pioneering work.

120



Bell and LaPadula [BL73] pioneered the use of a state machine to model security policies
that specify security levels for data, and access rules for users with different clearance
levels. Every event in a system is mapped to a transition in a corresponding state machine.
Safety of a system is ensured by allowing transitions only to secure states. A secure state
is defined as one in which the user has adequate clearance, as defined by the security
policy, to access the data. The model also ensures data integrity by only allowing processes
or users with the same clearance level to perform destructive writes to an object. Non-
destructive writes are allowed to low-level clearance processes as long as this does not
lead to an information leak.

Denning [Den76] extended the Bell-LaPadula model to use a lattice for sensitivity labels,
with labels higher up in the lattice being more sensitive. Denning’s model allows data
to be relabeled only to a label higher up in the lattice, thereby ensuring that information
always flows to a label that is at least as sensitive as the current one. Denning was also one
of the first to point out that the information flow property should be enforced statically to
contain label creep, and to avoid leaks through implicit flows.

More recently, the non-interference property has been studied and formulated in terms of
type systems. Volpano et al. [VS97] formalize the soundness of Denning’s analysis by
developing a type system that is equivalent to the rules proposed by Denning. They then
prove that this type system observes non-interference. Banerjee and Naumann [BN02]
extend the scope of Volpano’s work to encompass data-flow via mutable object fields and
control-flow in dynamically dispatched method calls. The non-interference property is
proved in much richer context with constructs of pointers and mutable state, private fields
and class-based visibility, dynamic binding and inheritance, casts and type tests, and mu-
tually recursive classes and methods.

Bernardeschi and et al. [BFL02] use type-based abstract interpretation (which is similar
to bytecode verification) to prove information flow safety of Java bytecode. They, like
Denning, handle implicit flows and make use of the immediate post-dominator relation
to declassify the security label of the execution context. Our approach is different from
their purely static analysis as we use both dynamic and static techniques, which makes the
analysis more flexible and precise.

Several research projects apply static analysis to C programs. Evans’ Split static analyzer
[EL02] takes as input C source code annotated with “tainted” and “untainted” annotations.
This is accompanied by rules for how objects can be converted from one into the other, and
which functions expect what kinds of arguments. Shankar et al [STFW01] use a similar
approach in which C source code is annotated, but they use type qualifiers instead.

The WebSSARI [HYH+04] project analyzes information flow in PHP applications stat-
ically. It inserts runtime guards in potentially insecure regions of code. It differs from
approaches such as Myers’ Jflow and Jif [Mye99a, Mye99b] in that it does not require
source annotations.

RIFLE [VBC+04] is a system that tracks information flow dynamically. This is accom-
plished by using a combination of hardware and software. The underlying hardware archi-
tecture is modified to have labels for each register and storage word. At load time, binaries
are rewritten to make implicit flows explicit using a reaching analysis. This work comes

121



closest to our approach; however, the major difference between RIFLE and our system is
the semantic level at which labeling occurs. Because RIFLE analyzes native binaries, it
needs to be very conservative in its reachability analysis. Our approach uses a high-level
virtual machine with strong memory safety guarantees and builds information-flow on top
of semantically much richer abstractions.

6 Discussion And Conclusion
Most contemporary approaches to multi-level security are focusing on the operating sys-
tem layer. For example, SELinux [SVS02] and Solaris Trusted Extensions [Sun] associate
labels with OS-level abstractions such as files and sockets, and assign labels to whole
applications. An application program that needs to manipulate data with multiple labels
will itself require a label that is the least upper bound of all the labels occurring in the
computation.

Conversely, the use of virtual machines makes it possible to distinguish labels at a much
finer granularity. A VM environment has two unique advantages over executing binary
code: (1) applications execute under full control of a VM that is itself part of the trusted
code base, and (2) rather than manipulating data directly, an application running atop a
VM really only manipulates capabilities to data, while the data itself remains “locked”
inside the VM at all times. The combination of these properties leads to the idea of an
MLS-VM that retains the advantages of “high-level” virtual machines such as the Java
VM and Microsoft’s .Net Common Language Runtime, and combines them with informa-
tion labeling, information-flow tracking, and policy enforcement capabilities. This in turn
makes it possible to move all application programs (running atop a VM now) out of the
trusted code base.

Unlike typical binary instruction set architectures that provide direct support for only a
very small set of data types (and in particular cannot distinguish between integers and
pointers), virtual machines can enforce strong type safety, memory safety, and referential
integrity. This in turn can be used as a foundation for layering true information-flow
controls on top.

Of course, a virtual machine is in itself a substantial piece of software, perhaps raising
concerns about having it serve as a trusted computing base. In the scenario we have de-
scribed, however, the effort of certifying the VM layer could be amortized across a very
large number of users and application programs, making it cost-effective to apply auditing
standards that are commensurate with high-assurance software.

Architectures such as the we have presented here will simplify the process of developing
software that simultaneously handles sensitive and non-sensitive information. Currently,
such software must be part of the trusted code base. Unfortunately, our trust in this type of
software is often misplaced. For example, many “phishing” attacks have exploited errors
in web browsers that allowed sensitive information inside the web browser to be sent to
unintended remote parties [Fra07]. Our MLS-VM is able to prevent such information
flows even if a web browser were malicious rather than merely faulty. In our approach,
application programs need never be trusted.

122



7 Acknowledgement

Parts of this effort have been sponsored by the National Science Foundation under grants
TC-0627747 and TC-0209163, and by the United States Homeland Security Advanced
Research Projects Agency (HSARPA) and Air Force Research Laboratory (AFRL) under
agreement number FA8750-05-2-0216. The author is also extremely grateful for generous
unrestricted gifts supporting his research from Intel, Microsoft Research, Mozilla Corpo-
ration, and Sun Microsystems.

Any opinions, findings, and conclusions or recommendations expressed here are those
of the author and should not be interpreted as necessarily representing the official views,
policies or endorsements, either expressed or implied, of HSARPA, AFRL, NSF, any other
agency of the United States Government, or any of the companies mentioned above.

References

[AFS97] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap architec-
ture. In 1997 IEEE Symposium on Security and Privacy, pages 65–71, 1997.

[BDF+03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. In Nineteenth ACM Symposium on
Operating Systems Principles, pages 164–177, 2003.

[BDGR97] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: Running commodity op-
erating systems on scalable multiprocessors. ACM Transactions on Computer Systems,
15(4):412–447, 1997.

[BFL02] C. Bernardeschi, N. De Francesco, and G. Lettieri. Using standard verifier to check
secure information flow in Java bytecode. In 26th International Computer Software
and Applications Conference, pages 850–855, 2002.

[BL73] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Foundations.
Technical Report Report MTR 2547 v2, MITRE, 1973.

[BN02] A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement in a
Java-like language. In 15th IEEE Computer Security Foundations Workshop, page 253,
2002.

[CF07] D. Chandra and M. Franz. Fine-grained information flow analysis and enforcement in
a Java virtual machine. In 23rd Annual Computer Security Applications Conference,
2007.

[Den76] D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, 1976.

[DLP+01] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and S. Wein-
gart. Building the IBM 4758 Secure Coprocessor. IEEE Computer, 34(10):57–66,
2001.

[DoD85] DoD United States Department of Defense. Trusted Computer System Evaluation Cri-
teria, DoD Standard 5200.28-STD. 1985.

123



[EL02] D. Evans and D. Larochelle. Improving security using extensible lightweight static
analysis. IEEE Software, Jan/Feb, 2002.

[ES99] U. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a retrospec-
tive. In New Security Paradigms Workshop, pages 87–95, 1999.

[ES00] U. Erlingsson and F. B. Schneider. IRM Enforcement of Java Stack Inspection. In IEEE
Symposium on Security and Privacy, pages 246–255, 2000.

[FDF05] R. Figueiredo, P. A. Dinda, and J. Fortes. Guest editors’ introduction: Resource virtu-
alization renaissance. IEEE Computer, 38(5):28–31, 2005.

[Fra07] M. Franz. Containing the ultimate Trojan Horse. IEEE Security and Privacy, 5(4):64–
68, July 2007.

[GBE73] U. O. Gagliardi, L. Bolliet, and R. P. Goldberg (Eds.). Workshop on Virtual Computer
Systems, 1973.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Sympo-
sium on Security and Privacy, pages 11–20, 1982.

[Gol69] R. P. Goldberg. Virtual Machine Systems. Technical Report MS-2686, MIT Lincoln
Laboratory, 1969.

[Gol74] R. P. Goldberg. A survey of virtual machine research. I.E.E.E. Computer, 7(6):34–45,
1974.

[HCF05] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation for Java. In 21st
Annual Computer Security Applications Conference, pages 303–311, 2005.

[HYH+04] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing web
application code by static analysis and runtime protection. In 13th International World
Wide Web Conference, pages 40–52, 2004.

[JSM01] S. Jiang, S. Smith, and K. Minami. Securing web servers against insider attack. In 17th
Annual Computer Security Applications Conference, pages 265–276, 2001.

[KLM88] P. A. Karger, T. E. Leonard, and A. H. Mason. Computer with Virtual Machine Mode
and Multiple Protection Rings, U.S. Patent No. 4787031, November 1988.

[Kni04] J. C. Knight. An introduction to computing system dependability. In 26th International
Conference on Software Engineering, pages 730–731, 2004.

[KZB+91] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn. A retrospec-
tive on the VAX VMM security kernel. IEEE Transactions on Software Engineering,
17(11):1147–1165, 1991.

[Lit05] B. Littlewood. Dependability assessment of software-based systems: State of the art.
In 27th International Conference on Software Engineering, pages 6–7, 2005.

[LSST83] N. G. Leveson, T. Shimeall, J. Stolzy, and J. Thomas. Design for Safe Software, 1983.

[McH95] J. McHugh. Covert Channel Analysis, Technical Memorundum 5540:080A, Naval Re-
search Laboratory, Washington D.C., 1995. A Chapter of the Handbook for the Com-
puter Security Certification of Trusted Systems, 1995.

[MCH99] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and development of Java
Grande benchmarks. In ACM Java Grande Conference, pages 72–80, 1999.

124



[ML05] J. P. McGregor and R. B. Lee. Protecting cryptographic keys and computations via vir-
tual secure coprocessing. SIGARCH Computer Architecture News, 33(1):16–26, 2005.

[Mye99a] A. C. Myers. JFlow: Practical mostly-static information flow control. In Symposium on
Principles of Programming Languages, pages 228–241, 1999.

[Mye99b] A. C. Myers. Mostly-static Decentralized Information Flow Control. PhD thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Sci-
ence, 1999.

[PG74] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third generation
architectures. Communications of the ACM, 17(7):412–421, 1974.

[PK75] G. J. Popek and C. S. Kline. The PDP-11 virtual machine architecture: A case study.
In Fifth ACM Symposium on Operating Systems Principles, pages 97–105, 1975.

[Rho75] R. Rhode. Secure Multilevel Virtual Computer Systems. Technical Report ESD-TR-74-
370, MITRE Corp., Bedford, Massachussetts, 1975.

[Sch00] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30–50, 2000.

[Smi02] S. W. Smith. Outbound authentication for programmable secure coprocessors. In 7th
European Symposium on Research in Computer Security, pages 72–89, 2002.

[STFW01] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string vulnerabil-
ities with type qualifiers. In USENIX Security Symposium, pages 201–220, 2001.

[Sun] Sun Microsystems, Inc. Trusted Solaris Operating System.

[SVL01] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O devices on VMware
Workstation’s hosted virtual machine monitor. In USENIX Annual Technical Confer-
ence, pages 1–14, 2001.

[SVS02] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux Security
Module, NAI Labs Technical Report. Technical report, May 2002.

[VBC+04] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A.
Reis, M. Vachharajani, and D. I. August. RIFLE: An architectural framework for user-
centric information-flow security. In 37th International Symposium on Microarchitec-
ture, pages 243–254, December 2004.

[VS97] D. Volpano and G. Smith. Eliminating covert flows with minimum typings. In 10th
Computer Security Foundations Workshop, pages 156–168, 1997.

[Wal02] C. Waldspurger. Memory resource management in VMware ESX server. In Fifth Sym-
posium on Operating Systems Design and Implementation, pages 181–194, December
2002.

[Wei75] C. Weissman. Secure computer operation with virtual machine partitioning. In National
Computer Conference, Anaheim, California, pages 929–934, 1975.

125



0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Arithmetic Assignment Cast Create

Array

Create

Objects

Exceptions Math

Functions

Method

Calls

Serial

read/write

Figure 6: Java Grande benchmarks, Section 1 (primitive operations); normalized slowdowns relative
to the unmodified benchmarks.

0

0.5

1

1.5

2

2.5

3

Series LUFact HeapSort Crypt FFT SOR Sparse

Matmult

Figure 7: Java Grande benchmarks, Section 2 (library kernels); normalized slowdowns relative to
the unmodified benchmarks.

0

0.5

1

1.5

2

2.5

MolDyn MonteCarlo RayTracer AlphaBetaSearch

Figure 8: Java Grande benchmarks, Section 3 (large applications); normalized slowdowns relative
to the unmodified benchmarks.

126




