Test Driven Infrastructure

Schlomo Schapiro
Systems Architect & Open Source Evangelist

Immobilien Scout 24
Andreasstr. 10
10243 Berlin
schlomo.schapiro@immobilienscout24.de

Abstract: DevOps is one of the biggest trends in modern IT environments.
Interdepartmental walls are coming down, developers gain production access and
learn to be responsible for their own code in production. Admins learn to code their
infrastructure and to build delivery chains. Test Driven Development (TDD) is a
common topic for both developers and admins. This paper explores the challenges
that infrastructure development poses for TDD and how they were overcome at
ImmobilienScout24.

1 DevOps

IT organizations “traditionally” have different departments for software development
and operations. Opposing goals, different backgrounds, skill levels and ingrained
prejudice have lead in some organizations to deep rifts between the departments. As a
result, delivering changes from development into production is a slow, cumbersome and
even unpleasant process.

In recent years, software development was reformed by Agile' methods like Scrum.
Many agile methods have in common that they structure the communication between
client and developer through backlogs and help to organize the development work itself.
Agile teams are staffed cross-functional to include all required skills in the team.

In many organizations Agile was introduced to improve the software development
process without changing the way how software is run in production or how the
developers interact with the operations department. As a result admins suddenly faced a
significant increase in developer output and developers felt more than ever before that
operations is slowing them down.

'The Agile Manifesto for Software Development (http:/agilemanifesto.org/)

215



DevOps is the extension of Agile methodology to cover all IT departments and to find a
new base for cooperation between development and operations. It is based on four
guiding principles: Culture, Automation, Measurement and Sharing.

At the core of DevOps culture are common human guiding principles: Respect for each
other, understanding for the challenges and worries of others and the motivation to find a
common solution by working together. Working together is also the base for learning
important skills like operational awareness or development best practices from each
other.

To reach understanding and respect, one must make his own work transparent and allow
others to experience it themselves. The Agile way of creating transparency through
backlogs, daily status meetings and visible task tracking works equally well for
operations. Staff exchanges between development and operations are therefore an
important tool to achieve the cultural change. Setting common goals and sharing
responsibilities are the other important steps. Shared responsibility also entails granting
all involved persons the same power to enact changes in the system they are responsible
for. In practice this means giving developers production access and the same power as
admins.

Sharing administrative privileges with a much larger group of persons brings its own
challenge. Many organizations implemented “tight security” by allowing only a small
number of admins to work on the production servers. A low degree of automation added
another layer of perceived security since all important decisions and actions had to be
done by humans. Human error was viewed as inevitable, checklists and four-eyes
principle where common methods to reduce the risk of change.

All of this does not scale to the amount of people who eventually get administrative
access with the shared responsibility model common with DevOps. On the other hand,
not granting developers production rights usually leads to developers not caring about
the troubles in production thereby nullifying the goal of shared responsibility.

2 Trust the Code

A solution to this dilemma can be changing the way how trust to do the right thing is
handled within the organization (trust not to do evil is implied here). Instead of building
up security by trusting only a few people it is also possible to build up security by
trusting code and automation. This is very similar to how Open Source projects
guarantee security: Everybody can look into the source code and development process.
This openness makes it very hard to inject bad code (or at least to keep it there for a long
time).

Applied to an IT organization that means to automate the tasks previously only admins
could do. Then everybody can perform them — through trusted code. Typically the first

216



candidates for automation are systems provisioning, code deployment, configuration
management and database management. Good automation that helps in most or all
situations reduces the actual need for administrative privileges. Eventually developers
and admins alike feel less need to actually login onto servers.

If the code for automation should serve as a trust base then it needs to be especially
trustworthy. Test Driven Development (TDD) is a very common and well proven
practice to ensure the long-term quality of software projects. The core of TDD consists
of automating the testing in such a way that the automated testing can become part of the
regular development process.

3 Test Driven Infrastructure Development

Infrastructure development is somewhat different from typical software development.
The main difference lies in the fact that infrastructure development also covers the lower
levels of systems administration like OS provisioning and systems setup, patch
management, configuration management, email configuration, database migration, router
and switch configuration and others. Some of these areas require elaborate setups to be
able to run a single test: For example to test the installation procedure that installs an
operating system into an empty server one must automate a system that does not yet run
an operating system.

Consequently the two test types most useful in infrastructure development are the unit
test and the system test. Our use of these terms is somewhat different from software
development. The unit test will test the smallest possible component in an artificial
environment. The system test will test the entire application in a real(istic) environment
together with other applications.

An important aspect of any kind of tests is the right level of mocking. Mocking replaces
external dependencies with fakes that provide the same result. Mocking is very
important to focus the test on the actual code under scrutiny and not to test the new code
together with other components or external systems. Those could fail on their own
accord and falsify the test, misleading the developer to look for errors in his code that are
not there.

Unit tests are typically run as part of the build process and can be run on the developer
workstation or on a build server. Unit tests should not have any external dependencies
and run shortly so that they can be run very often or even after each small code change.
A maximum of mocking is common with unit test. Typical examples for infrastructure
development are syntax checks and running Shell scripts with mock input.

System test are the opposite. They test a complete build of the software that could be
also used in production. System tests require therefore a production-like setup that
should be as close to production as possible. External dependencies are either

217



implemented in suitable test configurations or mocked at a systems-level. For example,
to test the email server configuration one must setup a system that will not send any
emails to the outside so that the test emails will not reach customers. To test OS
provisioning a new VM is started, installed, checked and thrown away all in one go.

System tests consist of many steps: Build the software from source, install it on the test
systems, setup the test environment, run the tests and propagate the software artifact into
production or at least to the next stage. Automating this process creates a delivery chain.

4 Delivery Chains

Ideally people trust the test more than manual procedures, so that code changes will be
deployed to production after they pass all tests. If the developers and admins (and
product managers) do not trust the tests and require a manual release process then they
should improve the tests instead of babysitting the test automation.

If each application — no matter if it is application software, an infrastructure service or
data management, is covered by automated tests which are organized in automated
delivery chains then the whole IT organization starts to profit. Everybody can focus on
creating new values instead of dealing with repetitive manual steps (which are error
prone) and systems administration.

5 Test Driven Infrastructure at ImmobilienScout24

The biggest learnings from development in operations was in the area of TDD. Over the
last years all important infrastructure services where covered with extensive automated
tests: ESX server and VM provisioning, Subversion repository hosting, database setup
and migration, DKIM key rotation® and many more.

The operations teams also adopted a “test first” philosophy and create unit and system
tests wherever possible. With new projects the test coverage is systematically built up
during development, work on existing projects often starts from creating a test
environment.

Trust in tests is well established and widespread and code changes are deployed
automatically to production. The teams now focus much more on developing new
features and less on system administration.

Further practical examples can be found in Linux Magazin 09/2014 “Testgetrieben”* and
a EuroPython 2014 talk “DevOps Risk Mitigation — Test Driven Infrastructure™.

*https://www.heinlein-support.de/mk/2014/vortrag/automatische-rotation-von-dkim-schluesseln, Stefan Neben
*http://www.linux-magazin.de/Ausgaben/2014/09/Testgetrieben, Schlomo Schapiro
*http://www.slideshare.net/schlomo/europython-2014-devops-risk-mitigation, Schlomo Schapiro

218



