
Peter Dencker et. al.; Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 75

Exploring and Understanding Multicore Interference from

Observable Factors

Benjamin Lesage1, David Griffin 1, Iain Bate1 and Frank Soboczenski1

Abstract:

Multi-core processors bring a wide variety of challenges to the development, maintenance and
certification of safety-critical systems. One of the key challenges is to understand how tasks sharing
the processing resource affect one another, and to build an understanding of existing or new platforms.
Industry reports that interference can lead to large variations in execution times which can lead
to a wide variety of problems including timing overruns. To support performance improvements,
debugging and timing analysis, a framework is presented in this paper for reliably establishing the
interference patterns of tasks using simple contenders. These contenders systematically manipulate the
shared resources so the effect on interferences can be understood and analysed. The approach relies
on guided exploration of the interference space and existing performance monitoring infrastructure. It
has been implemented on a Tricore AURIX platform to analyse the behaviour of multiple real and
kernel applications.

Keywords: Inter-core interferences, timing analysis, Shared resources, measurement-based, perfor-

mance monitoring

1 Introduction

The drive for performance in modern systems has to face an increasing energy wall; merely
increasing clock speeds to achieve higher performance is no longer a viable solution. On the
other hand, multicore platforms offer improved performances through the use of multiple
processing units on the same chip. Tasks are running concurrently on different cores while
sharing off-core resources such as lower levels of the memory hierarchy or external IO
channels. The introduction of resources shared by concurrent tasks introduce new sources
of interferences. Accesses to a shared resource may suffer arbitration delay when multiple
cores compete for said resource. The behaviour of a request may also be altered due to
interferences, e.g. the eviction of a cache block by a concurrent task.

Preemption-related interferences, similarly to inter-core interferences, exhibit both direct
and delayed effects after the occurrence of an interference event. Inter-core interferences
however do not occur as a single point of interference, as opposed to a preemption, but
interleave with the normal execution of a task. During inter-core interference analysis, this
requires to more pessimistic assumptions where each request is assumed to be in conflict
with a request from a co-runner [Al15], or complex models of the underlying architecture
requiring precise knowledge of its behaviour [JHH15]. Various mechanisms have been

1 Department of Computer Science, University of York, York, United Kingdom



76 Benjamin Lesage et. al.

proposed instead to limit or preclude interferences in time and space between concurrent
cores, such as cache partitioning [SM08] or leaky bucket schemes [Ji13]. Such schemes
require often costly support from the underlying platform. To identify the solution adapted
to a specific task, a necessary step is the building of an understanding of its sensitivity to
interferences and the underlying factors.

Modern architectures exhibit performance monitoring counters (PMCs) as a tool to evaluate
the behaviour of a task. PMCs provide an estimate of the occurrences of low-level events
on the platform. The information they expose can be used in particular to evaluate how
often and how much a task makes use of particular resource, private or shared [An97], with
minimal knowledge on the platform. As an example, consider an architecture with a single
private instruction cache on top of a shared SRAM memory. Without further knowledge of
the platform, one can safely assume that a task with a large observed miss rate is more likely
to access the shared memory and be sensitive to inter-core interferences. Some factors are
thus more pertinent than others to the execution time variations of a task. Moreover, there
are typically more events to be counted than registers available to track those events.

This paper proposes an approach to identify the main factors of variability in the temporal
behaviour of a task. The analysis operates without knowledge of the underlying platform
and the implemented policies for shared resources. The technique exposes the PMCs which
are tied to variations in the execution time of a task. Through systematic and reproducible
exploration of the interference space, this allows the isolation of the effect of interferences.
The selection of most relevant factors provides feedback on the sources of interferences that
need to be tackled to improve the predictability of a task’s behaviour and the robustness a
task or the system as a whole w.r.t. interferences. Focused testing on the factors identified by
the analysis can further provide for a partial multi-variate model of the temporal behaviour
of a task in relation to said factors. We provide general guidelines on how synthetic
contenders can exercise inter-core interference in the analysed system.

2 Related Work

Current state of the art techniques for the analysis of the effects of inter-core interferences
focus on either taking into account possible effects or precluding them. The work of
Altmeyer and al. [Al15] belongs to the first category. The authors propose a generic
framework to compute the response time of task, taking into account the delays that might
rise from the arbitration of accesses to the shared bus. While focused on a single shared
resources, the technique needs to take into account a wide range of effects, such as memory
refreshes, cache hits and misses, to build a reasonable model of interleaved accesses. More
integrated approaches [JHH15] further improve the precision of the estimates but require
an extensive knowledge of the underlying platform or complex models capturing a large
portion of the system state.

Approaches such as partitioning divide the shared resource space into segments dedicated to
the sole benefit of a single task. They focus on precluding interferences at the expense of lim-
iting the resources available to each task [Al14; SK11; SM08]. Leaky bucket schemes [Ji13]



Exploring and Understanding Multicore Interference from Observable Factors 77

offer an alternative solution to reduce interferences. Accesses to a shared resource by a
task are budgeted to limit the amount of interferences they might generate in a given time
interval. In either case, the interference problem becomes an optimisation one to derive the
budget allocated to each task in the system, satisfy the system’s constraints, and maximise
the use of the shared resource. Such techniques should therefore be applied with care, and
their underlying assumptions and impact empirically validated. As an example, considerable
interferences might still occur in partitioned caches due to shared miss handling status
registers [VYF16].

Radojković et al. [Ra12] evaluate the effect of inter-core interference from co-runners
through empirical experiments. Their work demonstrates that shared resources can con-
tribute to large variations in the temporal behaviour of a task. Their evaluation relies on
resource stressing kernels, thus identifying the slowdown which may be induced by a
specific component on the platform. We instead aim at identifying which components
or combinations thereof contribute to variations in the behaviour of a specific task. This
reduces the pessimism of the following analyses by focusing on the components known to
impact the analysed task. Testing can then proceed by focusing on said components, e.g.
allowing for the empiric validation of selected inter-core interference management methods.
Our approach also relies on a wider exploration of the interference space as the worst-case
scenarios do not stem from stressing a single resource.

3 Overview

Our approach to evaluate the impact of inter-core interferences on the execution of a task
can be broken down into simple steps. Data is first collected by running the task of interest
against selected competitor tasks while collecting data related to both execution time and as
many performance counters as possible. All collected measurements capture the end-to-end
behaviour of the analysed task; instrumentation primitives surround the analysed task. We
then identify a set of representative factors to understand which factors drive variations in
the execution of the analysed task, and whether or not they relate to inter- or intra-core
effects.

Without prior knowledge of the usefulness of PMCs, it is necessary to build a small dataset
with all PMCs in order to determine their usefulness. To this end in Section 6, Principal
Components Analysis is used for an automatic feature selection phase, i.e. to find a set of
PMCs which is capable of representing the variability of the data. The identification of the
PMCs relevant to the analysed task can help direct later testing phases, to evaluate selected
inter-core interferences management approaches or build a model of the analysed task.
Further data collection phases and the exercised contenders can be focused on the factors
known to contribute to variability in the behaviour of the analysed task. Without refining
the selection of components exercised during analysis, more different types of contenders
need to be considered to exercise all possible sources of interference. This is turn leads to
more testing or less significant data available.

While the factor selection is platform-agnostic (§ 6), the available factors and their inter-
pretation depend on the underlying system. The methods thus relies on platform-specific



78 Benjamin Lesage et. al.

instrumentation. Instrumentation and contenders are expected to respectively capture the
available PMCs alongside timing information and exercise the different sources of variabil-
ity in the platform. We discuss the requirements inherent to those steps in Section 5. To
illustrate our approach, we focus in the following on an Infineon AURIX Tricore platform
as presented in the next section.

4 Evaluation Platform

Our evaluation platform is composed of the OSEK/VDX compliant Erika Enterprise [En16]
real-time operating system running on top of an Infineon AURIX Tricore TC27x [In14].
Figure 1 outlines the architecture of the AURIX platform. The AURIX cores have different
capabilities and fulfil different roles in the system:

∙ Core 0: Error checking, Energy Efficient Tricore 1.6E core

∙ Core 1: Error checking, High Performance Tricore 1.6P core

∙ Core 2: No error checking, High Performance Tricore 1.6P core

Fig. 1: Overview of the Infineon AURIX Tricore platform.

Each core has access to a crossbar which connects a SRAM unit, flash memories, and
external peripherals through a bridge. Interference across cores typically stem from con-
current accesses to either of those resources, e.g. congestion on the flash due simultaneous



Exploring and Understanding Multicore Interference from Observable Factors 79

requests requiring arbitration. In the following, we focus on interferences caused by either
the SRAM and one of the code ROM. The default memory mapping in Erika does not map
data into the secondary ROM or segments located in remote scratchpads.

Core 1 and 2 expose 12 PMCs, 9 in the case of Core 0, which have the capability to monitor
performance metrics such cache hits/misses, executed branches, or stalls in the pipeline.
Only 3 registers are available per core to track PMCs, and each PMC can only be tracked
by a specific register. This restricts the set of PMCs which can be monitored during a single
run. For example, there is no configuration of said registers which allows tracking both data
and instruction cache misses for Core 1.

In the best case, to capture data on all PMCs from the AURIX, it would be necessary to
run each test four times. This is undesirable in that it increases the amount of testing that is
required from the user to understand the impact of interferences on a task. Other platforms
may expose more PMCs which renders this approach infeasible for large sets of tests3.
Redundancy between factors or a lack of correlations to interferences further reinforces
the need to reduce the set of collected PMCs to a significant one. Consider for example a
computationally intensive program mapped into its core local scratchpads. Monitoring its
cache hits will not yield conclusive results.

5 Data Collection

Our approach relies on task-level instrumentation to capture end-to-end timing traces. The
collected traces include both the execution time of the analysed task and related metrics
pertinent to the behaviour of the platform. We thus rely on the PMCs exposed by the
hardware. PMCs expose counts for specific events or latencies suffered by a task, e.g. the
number of executed branches acts as an observable proxy for the path executed during an
observation. Increases in stalls suffered by the load/store unit can be indicative of increased
contention in the shared memory. Our implementation automates the whole trace collection
process, allowing for the automated collection of traces capturing all available PMCs on
the platform or a selection thereof.

The PCA requires the presence for each run of all available factors, PMCs on the target
platform, to establish their relation to the execution time of the analysed task. The anal-
ysed task is ran multiple times, under the same inputs, merging the results obtained for
identical runs but different configurations of PMCs. While we aimed at improving the
reproducibility of the framework between runs, the platform still exhibit some uncontrolled
sources of variability, e.g. uninitialised values on processor start. Those prevent the perfect
reproduction of the runs of a task. We validated that the error between reproduced runs
is both minimal and characterised as random noise, by fixing a performance counter and
comparing its value across identical runs and varying PMCs configurations. The error is
minimal (< 5%). The use of the Wald-Wolfowitz [St06] further confirmed that it could be
reasonably characterised as random noise and would not introduce systemic failings [St06].

3 For example, the P4080 platform [Se], which we have also applied the technique to, exposes approximately 128
PMCs with 4 registers per core, and would require each experiment to be repeated 32 times.



80 Benjamin Lesage et. al.

A dedicated instrumentation buffer is used to log the timing and PMCs values on each
core. A full instrumentation buffer interrupts all execution on the platform and triggers the
collection of the data through the debugger interface. The same debug interface is used
to configure the PMCs exercised during a set of runs. A single binary and test vector can
thus be used to collect different PMCs. Instrumentation buffers are mapped into a debug
memory segment, itself mapped onto local scratchpads during analysis or unmapped on
a deployed system. Writes to the unmapped debug segment are simply discarded by the
platform. The event instrumentation routines can therefore be kept in the deployed system.
Each request for an instrumentation point is broadcast to all cores in the system to capture
PMCs across all cores.

5.1 Synthetic contenders

We developed a set of synthetic contenders to drive the exploration of the possible inter-core
interference configurations. The contenders aim to exert the variability inherent to the
analysed task in reaction to inter-task conflicts. Knowledge about the potential sources of
variability in a system is required to exert them in a significant way. As such, contenders are
strongly platform-dependent. While contenders for one platform may not apply to another,
similar principles apply, e.g. varying accesses across cache lines, cache sets or physical
pages, interleaving sequences of reads or writes, etc.. The use of the complete system as
deployed would help understand the main sources of variability in the analysed task, but
may not highlight the impact of contention should it suffer a constant interference rate.

A single set of platform-wide contenders has been derived for the AURIX. Controlled
accesses to the shared memory segments, through non-cacheable addresses, are used to
generate interferences. Those are restricted to the Shared RAM and a segment of flash.
Given the default memory mapping implemented by the OSEK/VDX-compliant Erika OS,
a core is restricted to either its local scratchpads, the shared memory, or one of the flash
segments. While the method is not restricted to a specific platform, taking into consideration
its underlying restrictions helps reducing the configurations that need to be considered
during testing. Contending accesses interleave with non-interfering one; accesses by a core
to its scratchpad do not contribute to the overall inter-core interferences. Each contender
loops upon a determined access sequence to generate a controlled, continuous amount of
contention. To preclude any impact on the functional behaviour of the analysed tasks and
preserve data coherency, there is no sharing of data between contenders and analysed tasks.

The level of interference generated by a contender is expressed as and controlled by the
portion of its instructions generating contention. Both the interference level and pattern
exercised by a contender are set dynamically within user-defined bounds. An interference
level is first randomly selected. Then a permutation of instructions is generated to select the
conflicting ones. The code of each contender is stored in a local scratchpad such that it can
be rewritten to enforce the selected interference pattern. The interference patterns exercised
by a contender during an experiment can easily be reproduced.

Contenders run on all cores effectively acting as an idle task in the system. On each core a
preemptive task with the lowest priority runs the main loop of a contender. Variation in the



Exploring and Understanding Multicore Interference from Observable Factors 81

observed interference patterns relies on periodic reconfiguration of the contenders, upon a
signal from the analysed task. The process can proceed without explicit synchronisation
between contenders and analysed task. This signal is triggered at the end of the periodic
analysed task allowing for the reconfiguration to occur between activations of the task. Like
the instrumentation routines, the primitives can thus be kept into the deployed system.

6 Feature Selection

Due to the impracticality of capturing vast amounts of data for each and every PMC, as
well as a desire to focus on high-quality PMCs, it is necessary to reduce the number of
observed PMCs4. The goal for this step is to identify the PMCs which are correlated, and
then select a set of representative PMCs which can be captured in a single configuration
while still describing the majority of the data. While it is inevitable that some detail in the
data will be lost at this stage, the reduction in the amount of effort required to get a single
data point enables more data to be collected.

In order to accomplish this, we use the technique of PCA [Jo02]. PCA is a technique which
identifies correlations within a dataset by finding the Principal Components (PCs) of the
data. Each PC describes one of the main axes of variance in the analysed dataset such
that variations on each axis can be attributed to a specific set of factors. Correlated factors
are thus captured as part of the same PC. For example, the main axis of variation on a
data-sensitive application, its main PC, will include factors such as hits in the cache or stalls
in the memory units. This is further illustrated in Figure 2, which shows the main axes of
variations in a 2-dimensional dataset; PC1 captures the axis along which the majority of the
variance in the data occurs.

Additional metrics are attached to the PCs and each factor inside a PC to measure their
respective impact on the whole dataset and the PC. The PCs specify a loading on each
factor that indicates the weighting that must be assigned to its observations such that they
lie on the axis defined by the PC. In other words, the loading of a factor on a PC captures its
correlation to the PC, how it evolves alongside the axis defined by the PC. A loading of near
0 indicates that the observations are not correlated on the PC, whereas loadings of 1 and
-1 indicate perfect positive and negative correlation respectively, i.e. a factor which values
respectively increase or decrease with values along the PC. Considering the same example
of a memory intensive task, accesses to the bus from the task or contenders are likely to
increase its execution time, thus being positively correlated to the principal components.
Conversely, a decrease in executed integer instructions may be correlated to an increase
in the memory traffic, and the task’s execution time. In the Figure 2 example, x has a high
loading in PC1, indicating a high degree of correlation to PC1, but a much lower loading
on PC2.

PCs themselves have an overall magnitude assigned to them which can be seen as a proxy
for their contribution to the variations in the dataset, i.e. the amount of variance in the
dataset captured upon the axis of the PC. The right-hand side of Figure 2 shows how it is

4 In statistical literature, this is commonly referred to as dimensionality reduction or feature selection.



82 Benjamin Lesage et. al.

possible to reduce the 2-dimensional dataset to a single dimension on which accounts for
the majority of the variability.

A standard use of PCA is to identify which PCs do not significantly contribute to the overall
distribution of a dataset using their respective loadings. For example, if a PC accounts for
less than 10% of the variance in the entire dataset, as accounted for by its loading, then
variation along that PC can be simply dismissed as sampling error and the PC ignored; this
quickly and simply reduces the number of dimensions in the analysed data set. However, in
this application it may be necessary to reduce the number of factors further, and select only
the high quality PMCs which yield information on the observed interferences multiplier.
Hence it is necessary to filter the PMCs further, such that only the highest quality PMCs
are used.

The first step to finding the highest quality PMCs is to remove all PCs which are not
correlated to the execution time of the task under analysis, as these are unlikely to yield
useful information. This relies on the absolute loading of the analysed task’s execution
time on the PC to measure their correlation. In addition, components which explain a low
amount of the overall variance are removed, as these represent factors which are unlikely to
have a high impact on the result. The remaining components are weighted by the amount of
variance they explain, through their respective loadings, and then the PMCs with the highest
degree of correlation to these components are selected. For example, if 2 components A,B
remain, of which A explains 60% of the variance and B 30%, then for each PMC that is
selected correlated to B, two PMCs will be selected that correlate to A. The exact PMCs
selected will be those with the highest correlation to the components A and B respectively.

It is also possible to add additional constraints to factor selection. Depending on the
platform, and the amount of effort a user is prepared to undertake when gathering data, it
may be desirable to place a restriction on the number of runs required to gather the data.
This may not always be the case, or the user may not be able to expend the additional effort
to capture them. Therefore, if the user wishes to impose additional constraints to reduce
the burden of data gathering, these constraints should be formulated and applied at this
stage. This is implemented by using a Integer Linear Programming (ILP) solver [Gu15] to
perform the maximisation step, and so any ILP constraints can be used.

A pseudocode implementation of the application of PCA in our approach to select n relevant
factors is given in Algorithm 1. Once PCA has identified which PMCs must be collected,
the main data collection process can now take place and is only required to record values
for these PMCs, which reduces the burden of instrumentation.

Quality of the selected factors and contenders

One issue that may be encountered during feature selection is the selection of poor quality
factors. This can happen if user constraints prevent high quality factors from being selected,
or high quality features simply don’t exist. If this is the case then the outcome of the
algorithm may be a limited number of factors (< n) or factors with a low correlation to the
execution time of the analysed task.



Exploring and Understanding Multicore Interference from Observable Factors 83

1 Function GetBestPMCs(dataset, n)

2 P← PCs of dataset given by PCA
3 discard any c ∈ P not correlated with execution time
4 discard any c ∈ P not accounting for a substantial amount of variance (e.g. < 10%)
5 compute relative weighting of remaining c ∈ P

6 select n PMCs maximising the sum of loadings subject to the weightings (and additional user
constraints) by ILP solver

7 return PMCs

8 end

Algorithm 1: Pseudo-code implementation of PCA as used to extract the best possible
PMCs for instrumentation

xx x xxx xx x xx xx xx xPC1

x x
x

x
xx
x

x x
xx
xx
x x x PC1

PC2 x xx x xxx xx xx xxxPC2

x

y

Fig. 2: Graphical Example of PCA

The use case for the analysis also drives requirements on the exercised contenders during
the construction of the analysed dataset. If the observations focus on a subset of shared
resources of interest, the selected factors then offers a relative classification of those
resources which contribute the most to variations in the analysed task. Similarly for a
conclusive feature selection, it is important for a contender to exercise various sources of
interferences; focus on a single of the shared resources of interest, e.g. the shared memory,
may lead to orthogonal variations of available PMCs hindering the analysis process.

Variability within the analysed dataset is an important factor to discriminate the PMCs
that correlate to the behaviour of the analysed task. The exercised contenders should aim
not only at generating worst-case interference scenarios but also produce a wide gamut of
scenarios. Our feature selection focuses on factors correlated to the execution time of the
analysed task. Therefore, variation on the inputs, executed paths, and observed scenarios is
only captured by the analysis if it has a noticeable impact on the analysed task’s temporal
behaviour.

7 Evaluation

We evaluated our approach on various benchmarks deployed on the Erika OS running atop
the AURIX platform, as described in Section 4. Two sets of benchmarks were investigated:
simple examples from the Taclebench suite [Co] and three real-world applications. The



84 Benjamin Lesage et. al.

collection of end-to-end timing and PMCs values relies on the instrumentation of the
analysed task, i.e. the insertion of a call to the instrumentation routine before and after
calls to the analysed task. We use the Rapita Verification Suite [Ra] to that purpose.
All benchmarks are set to run in a single periodic task concurrently with our synthetic
contenders. Input vectors are either provided as part of the benchmark [Co] or randomly
generated during our experiments. Similarly, explored interference levels and patterns are
randomly generated for each execution before each execution of the analysed task. To
enforce the occurrences of inter-core interferences, portions of the data manipulated by
some benchmarks have been mapped into the shared memory.

7.1 Understanding the sources of execution time variability

We present the factors identified as relevant to the variability of a selection of benchmarks
in Table 1. The temporal variability for a benchmark is captured by the ratio between
the maximum and minimum observed execution time during our experiments (in the
last column). The real-world benchmarks investigated were missile-c, a missile control
program converted from Ada to C [Hi], and the powerwindow and lift benchmarks from the
Taclebench [Co] suite. ALU, LSU, LU stalls represents stalls in the Arithmetic, Load/Store
and Loop unit respectively. Each factor is prefixed by its measuring core.

The largest ratios between maximum and minimum execution times are observed as an
example for anagram, binarysearch, dijkstra, and missile_c. Our analysis selects in such
cases factors such as the number of executed branches, multiple issues, or stalls in the
ALU, as most relevant to the observed variations. This suggests that variability in these
benchmarks stems first and foremost from the observations capturing different execution
paths; variations in the execution time of such tasks is not driven by the variations in
inter-core interferences but changes in executed paths and input vectors. The analysis of the
impact of inter-core interferences on those benchmarks should therefore distinguish between
different execution scenarios. Considering dijkstra as an example, the path searching
algorithm includes a short, special case if the source and target nodes are the same.

The identification of factors from other cores as relevant, e.g. C2 Data Memory Stalls for
compressdata or matmult, is an indicator of the sensitivity of an application to variations in
the behaviour of concurrent tasks as triggered by our contenders. The strong contribution
of factors such as memory stalls further identifies those tasks as data intensive applications.
On compressdata, variations due to contentious data accesses further trumps those due to
small variations in the execution path. Further testing should therefore focus on contenders
exercising the shared memory to exploit variability in these benchmarks.

The results of the application of the analysis to different benchmarks and cores also points
towards an asymmetry on the platform. Tasks running on Core 1 are more likely to be
impacted by contenders on Core 2 than on Core 0; factors from Core 2 are more often
selected on their own for benchmarks running on Core 1 than factors from Core 0. This
may stem from lower contention levels from the energy efficient Core 0, or asymmetry in
the arbitration of accesses to the shared resources.



Exploring and Understanding Multicore Interference from Observable Factors 85

Tab. 1: Representative factors identified for each benchmark.
Benchmark Core Select Factors Max/Min runtime ratio

MÄLARDALEN

adpcm_encoder C0 C0 Data Memory Stalls C0 ALU Stalls 1.00276

C0 Executed branches C2 LSU Stalls

adpcm_encoder C1 C1 Data Memory Stalls C1 Executed branches 1.00412

C2 Data Memory Stalls C2 ALU Stalls

anagram C1 C1 Data Memory Stalls C1 LSU Stalls 3.4214

C1 Multiple instructions issue C1 Executed branches

binarysearch C0 C0 Data Memory Stalls C0 ALU Stalls 1.85784

C0 Executed branches C2 Data Memory Stalls

binarysearch C1 C0 Data Memory Stalls C1 Data Memory Stalls 1.9

C1 ALU Stalls C1 Executed branches

bitcount C0 C0 Data Memory Stalls C0 ALU Stalls 1.2179

C0 Executed branches C1 LSU Stalls

bitcount C1 C1 ALU Stalls C1 LSU Stalls 1.22467

C1 Executed branches C2 LSU Stalls

codecs_dcodrle1 C0 C0 Data Memory Stalls C0 LSU Stalls 1.43177

C0 Executed branches C2 Data Memory Stalls

codecs_dcodrle1 C1 C1 Data Memory Stalls C1 LSU Stalls 1.53956

C1 Multiple instructions issue C1 Executed branches

compressdata C0 C0 Data Memory Stalls C0 Executed branches 1.55328

C1 Data Memory Stalls C2 Executed branches

compressdata C1 C0 Data Memory Stalls C1 Data Memory Stalls 1.63359

C1 Executed branches C2 Executed branches

countnegative C0 C0 Executed branches C1 Data Memory Stalls 1.25762

C1 LSU Stalls C2 Data Memory Stalls

countnegative C1 C1 LSU Stalls C1 Multiple instructions issue 1.06209

C1 Executed branches C2 LSU Stalls

dijsktra C0 C0 ALU Stalls C0 Executed branches 1577.23

C1 LSU Stalls C2 LSU Stalls

dijsktra C1 C1 Data Memory Stalls C1 LSU Stalls 147.27

C1 Multiple instructions issue C1 Executed branches

duff C0 C0 Data Memory Stalls C0 ALU Stalls 1.51672

C1 Data Memory Stalls C2 Data Memory Stalls

duff C1 C0 Data Memory Stalls C1 Data Memory Stalls 1.51595

C1 ALU Stalls C2 Data Memory Stalls

matmult C0 C0 Data Memory Stalls C1 Data Memory Stalls 1.32437

C2 Data Memory Stalls C2 Multiple instructions issue

matmult C1 C1 Data Memory Stalls C1 LSU Stalls 1.31893

C2 Data Memory Stalls C2 Multiple instructions issue

ndes C0 C0 Data Memory Stalls C0 ALU Stalls 1.09869

C0 LSU Stalls C1 Data Memory Stalls

ndes C1 C1 Data Memory Stalls C1 ALU Stalls 1.112

C1 LSU Stalls C2 Data Memory Stalls

qurt C0 C0 Data Memory Stalls C0 ALU Stalls 1.35984

C0 Executed branches C2 Data Memory Stalls

qurt C1 C1 Data Memory Stalls C1 ALU Stalls 1.33716

C2 Data Memory Stalls C2 Executed branches

rijndael_encoder C0 C0 Data Memory Stalls C2 Data Memory Stalls 1.03466

C2 Multiple instructions issue C2 Executed branches

rijndael_encoder C1 C1 Data Memory Stalls C1 LSU Stalls 1.0344

C2 Data Memory Stalls C2 Multiple instructions issue

statemate C0 C0 Data Memory Stalls C0 LSU Stalls 1.00501

C0 Executed branches C2 LSU Stalls

statemate C1 C1 LSU Stalls C1 Multiple instructions issue 1.00509

C1 Executed branches C2 LSU Stalls

st C0 C0 Data Memory Stalls C0 ALU Stalls 1.10449

C1 Data Memory Stalls C1 Multiple instructions issue

st C1 C1 Data Memory Stalls C2 Data Memory Stalls 1.13961

C2 Multiple instructions issue C2 Executed branches

REAL-WORLD EXAMPLE

lift C0 C0 Data Memory Stalls C0 ALU Stalls 1.46235

C0 Executed branches C2 Multiple instructions issue

lift C1 C1 ALU Stalls C1 LU Stalls

C1 Multiple instructions issue C1 Executed branches 1.48444

missile_c C0 C0 Data Memory Stalls C0 ALU Stalls 24.3645

C0 LSU Stalls C0 Executed branches



86 Benjamin Lesage et. al.

7.2 Exploring the impact of inter-core interferences

We focus in the following on the matmult benchmark running on Core 0. The application
comprises a single path computing the multiplication of two matrices mapped into the main
memory. Variability in the temporal behaviour of the benchmark is thus mostly related to
inter-core interferences and accesses to the shared main memory, as captured by our method
in Table 1. Using our framework, we collect observations under different configurations
of interference levels, i.e. the portion of accesses to the shared memory, from each core.
The collected execution times are then normalised over the execution time for matmult in
isolation, without contenders. The median of the observed execution times for each inte
rference level are presented in Figure 3.

Fig. 3: Normalised execution time for matmult under inter-core interferences

As expected, the execution time of the matmult benchmark increases alongside the inter-
ferences generated by the synthetic contenders. This is however not a strictly increasing
curve; high execution times are more likely to be observed when about 80% of Core 1
memory accesses hit the shared memory, and at least 60% of Core 2 do. This reinforces the
observation that the arbitration policy on the AURIX shared memory may be asymmetric.

Furthermore, maximising the interferences generated by other cores does not guarantee
maximising the impact on the analysed task as contending cores start interfering with
themselves, restricting their maximum bandwidth to the main memory, and each other.
Similarly, focusing solely on the impact of a single source of interferences at a time, e.g.
Core 1, does not lead to maximised observed execution time. To understand the impact of
interferences, we advocate the need to explore a wide variety of configurations, in terms of
types of interferences but also strength of those interferences.



Exploring and Understanding Multicore Interference from Observable Factors 87

8 Conclusion

This paper introduces a feature selection approach to understand the main source of variabil-
ity in an application. Our approach draws the relation between the temporal behaviour of an
application and the observable factors on the platforms through the performance monitoring
infrastructure. We focus on the impact of inter-core interferences stemming from the use of
shared resources by concurrent tasks. To exercise a sufficient level of variability, we rely on
synthetic, configurable contenders to exercise different interference patterns, sources, and
levels.

We implemented our approach on the OSEK/VDX-compliant Erika OS running atop the
Tricore AURIX TC277x platforms. Our framework allows the joint collection of timing and
PMCs information, under user-controlled interference ranges. The evaluation demonstrates
that the method is able to classify the main sources of variability in different categories of
applications, from control code to more data-centric kernels. Using such a simple kernel, we
further illustrated the importance of variability in the test conditions to highlight variability
and the worst-case configurations in the analysed task.

We evaluated our process on other platforms, such as the Freescale P4080, and plan to
expand to other architectures or sources of interferences. Our approach requires only
minimal knowledge of the underlying platform. Namely, potential sources of interferences
need to be identified and contenders designed to exercise them. Work is further required to
interpret the meaning behind the PMCs selected by the analysis. However, similar design
principles still apply across platforms, such as varying access patterns, data-centric kernels,
etc., and similar performance monitoring infrastructure are available.

Acknowledgments

This work was partially funded by EU FP7 IP PROXIMA (611085), and the UK EPSRC
Project MCCps (EP/P003664/1). EPSRC Research Data Management: No new primary
data was created during this study.

References

[Al14] Altmeyer, S.; Douma, R.; Lunniss, W.; Davis, R. I.: Evaluation of Cache Parti-
tioning for Hard Real-Time Systems. In: 2014 26th Euromicro Conference on
Real-Time Systems (ECRTS). July 2014.

[Al15] Altmeyer, S.; Davis, R. I.; Indrusiak, L.; Maiza, C.; Nelis, V.; Reineke, J.: A
Generic and Compositional Framework for Multicore Response Time Anal-
ysis. In: Proceedings of the 23rd International Conference on Real Time and
Networks Systems. RTNS, 2015.



88 Benjamin Lesage et. al.

[An97] Anderson, J. M.; Berc, L. M.; Dean, J.; Ghemawat, S.; Henzinger, M. R.; Le-
ung, S.-T. A.; Sites, R. L.; Vandevoorde, M. T.; Waldspurger, C. A.; Weihl, W. E.:
Continuous Profiling: Where Have All the Cycles Gone? ACM Trans. Comput.
Syst. 15/4, Nov. 1997.

[Co] Contributors: Taclebench Benchmark Suite.

[En16] Enterprise, E.: ERIKA Enterprise | Open source RTOS Osek/VDX Kernel, 2016,
URL: http://erika.tuxfamily.org/drupal/.

[Gu15] Gurobi Optimization, I.: Gurobi Optimizer Reference Manual, 2015, URL:
http://www.gurobi.com.

[Hi] Hilton, A.: SPARK Missile Guidance Simulator.

[In14] Infineon: Aurix (TM) Family TC27xT Documentation, 2014, URL: www.
infineon.com/aurix.

[JHH15] Jacobs, M.; Hahn, S.; Hack, S.: WCET Analysis for Multi-core Processors with
Shared Buses and Event-driven Bus Arbitration. In: Proceedings of the 23rd
International Conference on Real Time and Networks Systems. RTNS, ACM,
New York, NY, USA, 2015.

[Ji13] Jing, W.: Performance Isolation for Mixed Criticality Real-time System on
Multicore with Xen Hypervisor, MA thesis, Uppsala University, Department of
Information Technology, 2013.

[Jo02] Jolliffe, I.: Principal component analysis. Wiley Online Library, 2002.

[Ra] Rapita Systems: Rapita Verification Suite, https://www.rapitasystems.com/.

[Ra12] Radojković, P.; Girbal, S.; Grasset, A.; Quiñones, E.; Yehia, S.; Cazorla, F. J.:
On the Evaluation of the Impact of Shared Resources in Multithreaded COTS
Processors in Time-critical Environments. ACM Transactions on Architecture
and Code Optimization 8/4, 34:1–34:25, Jan. 2012.

[Se] Semiconductor, F.: EREF: A Programmer’s Reference Manual for Freescale
Embedded processors.

[SK11] Sanchez, D.; Kozyrakis, C.: Vantage: scalable and efficient fine-grain cache
partitioning. In: SIGARCH Computer Architecture News. Vol. 39. 3, ACM,
pp. 57–68, 2011.

[SM08] Suhendra, V.; Mitra, T.: Exploring locking: partitioning for predictable shared
caches on multi-cores. In: Design Automation Conference (DAC). 45th ACM/IEEE.
June 2008.

[St06] Stephens, L. J.: Schaum’s Outlines: Beginning Statistics. McGraw-Hill, 2006.

[VYF16] Valsan, P. K.; Yun, H.; Farshchi, F.: Taming Non-Blocking Caches to Improve
Isolation in Multicore Real-Time Systems. In: IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). Apr. 2016.


