A tool approach for supporting integration projects

Stefan Kiihne, Maik Thrénert

University of Leipzig
Augustusplatz 10-11, 04109 Leipzig, Germany
{kuehne|thraenert} @informatik.uni-leipzig.de

Abstract: Integration projects involve expert groups with different backgrounds and
skills. Coordination mechanisms that manage the close collaborative work are given
through the concepts of procedure models. An effective use of procedure models re-
quires tool support that covers easy-to-use documentation aspects as well as sophisti-
cated run time support for the complete development life cycle. Therefore we intro-
duce a multi-layer tool architecture capable of supporting all stages of the application
of procedure models. In particular we focus on the transformation of models between
different abstraction layers. The practicability of our approach is discussed on the base
of a prototypical implementation of its tool components.

1 Introduction

Business application integration is critical for organizations because it has strong influence
on the flexibility of organizations to react to changing business requirements, e.g. to de-
liver new IT-enabled services. Existing applications must be combined with new technolo-
gies to create an integrated information system structure that supports flexible, dynamic,
cross-organizational business processes [Lin0O1, Bus03]. Methods, tools and techniques
for the development of adequate solutions are the topic of the so-called integration engi-
neering that combines aspects of classical software engineering with specific approaches
to integration problems.

According to [OFAO1] business application integration can be covered on three different
layers. On the top layer, the strategic layer, business solutions are adjusted to the spe-
cific needs of different customer segments. On the underlying business layer collaboration
processes including e-services are defined, analyzed and optimized according to their spe-
cific business requirements. The mapping of these processes to an integrated IT-structure
is done on the technical layer. Here it is considered which technical systems can be used
for the implementation and how their integration can be reached.

Integration projects have strong cooperative characteristics [SDT05]. The development
process involves different expert groups with different backgrounds and skills (e.g. cus-
tomers, business analysts IT architects, integration specialists and software developers)
that closely have to work together. Development tools (e.g. business process modeling
tools, integration tools and software development tools) also differ from each other. This
leads to several kinds of problems that tend to increase project risks. Political aspects

arise when design decisions, e.g. the decision whether a legacy system should be used
for the implementation of an IT-enabled service, is affected by interests of political influ-
ences. Communication problems arise when different terminologies affect the communi-
cation between people with different backgrounds. Methodical aspects cover the effective
combination of business- and technical-oriented methods and techniques for an adequate
integration solution. These are supplemented by fechnical aspects that enable a seamless
integration of development tools.

Methodical and technical aspects of a comprehensive support for an integration project
are covered by concepts of the so-called computer aided integration engineering (CAIE)
[SDTOS]. This term is inferred from the sustained discussion about computer aided soft-
ware engineering (CASE) with respect to the specific characteristics of the integration
engineering domain. CAIE includes functional requirements like the management of the
engineering process, the management of development artifacts as well as the management
of resources.

Aim of this paper is to describe a CAIE tool that is capable of supporting the main aspects
of integration engineering processes. Our approach assumes that methodical aspects are
modeled on an abstract level in terms of a domain-specific, environment-independent pro-
cedure model. From this abstract representation an environment-specific process schema
is derived that is executable by a runtime engine. The remainder is organized as follows.
Section 2 gives an overview about the CAIE tool, its components and the relationships
between them. Section 3 describes the modeling component in more detail. Section 4
introduces the general architecture of the CAIE tool runtime environment and describes
concepts and implementation issues of its transformation component in particular.

Our CAIE tool approach is principally generic. It can also be applied in other engineering
domains with strong cooperative characteristics, e.g. the IT service engineering [SS04]
that combines aspects of classical software engineering and business oriented service en-
gineering.

2 The CAIE tool approach
2.1 General tool approaches

Computer aided integration engineering can be classified into two general approaches —
passive and active tool support. Passive support is focused on descriptive aspects, i.e. it
covers the documentation of project issues independent of the state of the engineering
process. This includes general guidelines, static project guides, implementation aids, glos-
sary support and access to documentation of similar projects. An active support is focused
on engineering process dependent issues, e.g. the delivery of artifact templates and sam-
ple documents for running activities, resource and capacity planning, process monitoring,
integrated document management, quality management as well as support for user com-
munication and cooperation.

163

As mentioned in section 1 engineering processes in the integration engineering domain
involve specific development tools. This includes task-specific development tools (vertical
tools), e.g. analysis tools, modeling tools and validation tools, as well as task-unspecific
tools (horizontal tools), e.g. configuration management tools and documentation tools.
Active tool support approaches can further be subdivided as to whether these domain-
specific tools (horizontal and vertical) are integrated into one comprehensive development
environment or not.

According to [Was89] there are five levels of tool integration in software engineering en-
vironments. The first level is platform integration. It stands for a virtual operating en-
vironment for tools, which provide distributed services. Presentation integration means
a common look-and-feel of the tools from a user’s perspective. Data integration has its
focus on the sharing of data among tools and the managing of their relationships. The
idea of control integration is that tools are able to notify other tools as well as to perform
notifications. The most sophisticated integration level is process integration. It includes
the track of software development activities as well as the management and improvement
of the process in general.

It supports well-defined engineering processes, including the track of software develop-
ment activities as well as the management and improvement of the process in general.
The process based tool integration requires well-defined engineering processes. As will be
shown later this could be done via a top-down approach by using procedure models.

A procedure model is a generic model of the development process and the maintenance and
modification of systems. It consists of general guidelines, e.g. quality recommendations
and “values”, a development process model as well as implementation guidelines and aids.
The definition of the development process model contains a set of activities, techniques,
roles and results and describes the relationships between them.

2.2 The process of procedure model application

A procedure model is not intended as a direct support for real projects. It is abstracted in
such a way that it is independent of organizational or project-specific conditions. Therefore
it comprises the main aspects and is reusable in different problem scenarios.

To be applicable to a real problem scenario a procedure model must be adapted to the
specific organizational and project-specific environment. The adaptation of a procedure
model involves some transformation steps that break down the procedure model to an
executable process model (see figure 1). In a first tailoring step the relevant procedure
model components are selected according to a project type that is determined by project-
specific property combination. The result is a project type specific procedure model. In
a second tailoring step project specific instantiations and adaptations are made, e.g. a
generic placeholder for a business process modeling tool is instantiated by a concrete tool
reference. The next step transforms the project specific procedure model into an executable
procedure model. This model is loaded into a runtime engine, where it is instantiated and
applied to a specific integration engineering project. The reverse direction includes the

164

propagation of problems and optimizations to higher layers. These aspects are left out of
the scope of this paper.

CAIE tool

Procedure
modelling
Modelling
‘component
Procedure model and
fragments
nalysis: fragment: Static tailoring 1
and rules (choice)
Project type specific \ Tailoring
rocedure model component
alysis: component] Static tailoring 2
types and rules (precision)
Project specific
rocedure model

o Feedback) Transformation
(process)

]

Design time,gjoct

Run time,, .
Executable profet

rocedure model

Executable

project instance

Instantiation

Dynamic tailoring Run time

environment

Figure 1: Application of a procedure model.

A comprehensive tool approach requires support on all layers. With the help of a modeling
component procedure models or rather fragments of it are modeled. A tailoring compo-
nent supports the adaptation to specific organizational or project-specific boundaries and
requirements. The runtime environment supports the engineering process during its exe-
cution.

3 Representation of integration engineering procedure models
3.1 Related work

One of the main aspects of procedure models is the representation of the contained de-
velopment process model or rather in the area of software engineering the contained soft-
ware process model. These models are expressed by software process modeling languages
(SPM). In the last few decades many SPM languages were developed. According to their
language primitives they can be classified into textual and graphical languages.

Textual approaches are mostly extensions of programming languages and therefore can
be classified very similary to them. Rule-based languages, e.g. SPELL [JLCO92], rep-
resent activities with rules with pre- and post-conditions. Functional approaches, e.g.
HFSP [Kat89], represent activities as functions with input and output objects. Procedural
languages, e.g. APPL/A [SHO95], describe the control-flow with command statements.

165

Object-oriented approaches, e.g. PML IPSE [Rob88] are focused on organizational as-
pects, e.g. the message flow between artifacts.

Graphical SPM languages are more user friendly than the textual ones. Data model ori-
ented approaches, e.g. SOCCA [EG94], are extensions of classical data modeling ap-
proaches. They represent processes through pre-defined object types. Data flow oriented
approaches, e.g. Improvise [BKCO95], represent the data flow and describes the trans-
formation processes of data entities. Petri net based languages are the most expressible
graphical approaches. Examples of this category are SLANG [BFG94] and FUNSOFT
Nets [DG9Y4].

Other characteristics that can be used for a classification of the mentioned SPM approaches
are the existence of a well-defined language syntax, a formal semantic and constructs
that enable extensibility. They can be further differentiated according to their expressible
power, usability, tailoring flexibility and analyzing capabilities. The choice of a language
depends on the aim of use.

A comprehensive tool support requires an approach that covers usability as well as execution-
oriented aspects. Usability is focused on a graphical representation of the process model,
e.g. the generation of process documentation. Furthermore an intuitive semantic that
enables abstractions understandable to people without any technical background, e.g. cus-
tomers or business experts, will increase the acceptability of the procedure model. The
process of procedure model application mentioned in section 2.2 establishes a framework
for a combined approach. On the top layer an abstract, documentation-oriented approach
can be used. After refinements during a tailoring process an executable process represented
in a language with a formal syntax and a formal semantic is derived from that.

3.2 Modeling procedure models with the ARIS Software Engineering Scout

The Software Engineering Scout [IDS03] by IDS Scheer AG describes a procedure model
for software engineering projects. It contains general guidelines, a static process guide (the
so-called Software Engineering Scout Assistant) as well as implementation guidelines and
aids. The Software Engineering Scout Assistant contains a detailed description of the
most important activities, results, milestones, roles and their dependencies. It is used for
the direct support of software engineering projects (planning and execution). The content
can be published, e.g. in the form of HTML-content in an organizations’ intranet. In the
following we want to describe the meta-model of the Software Engineering Scout.

On the top level the procedure model is modeled with a value added chain diagram (VAC).
The VAC diagram is used to structure the model into phases and milestones. Each phase
is detailed by an additional VAC diagram. On the second level a phase is structured into
working packages and activities. Activities are more detailed in additional diagrams with
respect to different views. Timing dependencies (the successors of an activity) are mod-
eled in an additional VAC. Input and output artifacts as well as responsible and involved
roles are modeled in an additional function allocation diagram (FAD). Connections of ac-
tivities with external tools or data entities are represented in an additional product/service

166

exchange diagram. The hierarchical structure of artifacts is modeled in product/service
tree diagrams. The organizational structure, e.g. organizational units and roles, is repre-
sented in organizational charts.

The Software Engineering Scout meta-model is available as modeling conventions in the
form of a method filter for the ARIS Design Platform [IDS05] by IDS Scheer. Through this
it can be used by ARIS modeling tools, like the ARIS Web Designer or the ARIS Toolset.
Figure 2 shows two screenshots of the ARIS Web Designer — a definition of a phase in a
second level VAC diagram and a detailed description of an activity in an assigned FAD
diagram.

W - [B]x|
Qo Gewiten Araan iy Angeian He
"}HH!S BLAGKH AT SLA0REY BBeH I DOOTAND

Figure 2: Software Engineering Scout.

The Software Engineering Scout by IDS Scheer has several advantages. It enables formal
representations of procedure models. The modeling conventions are structured clearly,
so the practice efforts are limited. With the help of the ARIS Process Platform there are
matured tools available to model procedure models. Furthermore it is possible with the
same tools to make project-specific adaptations in a tailoring process. The result can be
exploited by different kinds of reports, e.g. the Scout Factory report enables the publishing
of the procedure model as HTML content (see figure 3).

The Software Engineering Scout has several disadvantages, too. The process view is mod-
eled in VAC diagrams. Through this the expressible power of control-flow dependencies
is limited. An evaluation on the base of workflow patterns [AHKO02] shows that basic con-
structs (Sequence, Parallel Split, Synchronizing Merge) can be modeled, but in contrast
advanced workflow patterns [AHKOO] (e.g. Deferred Choice, Multiple Instances Patterns)
cannot. The hierarchical refinement of activities is also limited.

167

5 Snftware Fnginereing Seoint 5|

Integration Engineering Scouf

G O

Ik]
IF]

12 = v her s el ‘i . . i
He bt Ungsphise H,;.;‘ Terminalgie angleichan

Sy

BeschreibungiDefinition Untarlagan

Firohiban ke o en
O leeraticrzphaze
O Chek

-l Arzait avalsieran

abiz 1glaic wen.
Deitd e e kowhoen Sopl end abcrde Lo cwhe ol m 38l 10738

1wl et Azzerscaalt zu dberartzizer

tvsnk it o marine o Ergabnizzs
Llze Cazze s12sbelizn Sl r

Tazorar 27Fas50 us et Twveck
Gyeert bz npanersisie an » Cine sinhe licks T 1olog 3 fur spaters Scitiste € e <la stior sn
ek [ETNIT]
onh e el » Fzzhtzer aolcgie b2i ez bzte iczer ntemieaneq ir Z2zog o

i — &ing e urd 2 walwsizer Disrzhe ists wls e v wolog an 2atzan

DL L et T sk e T o)
4 | K| [+

Figure 3: Integration Engineering Scout HTML export.

The workflow patterns represent control-flow aspects that are required on an execution
level. The representation of procedure models takes place on a higher level of abstraction.
Therefore not all patterns are required. Figure 4 shows the result of an evaluation according
to their relevance in the area of integration engineering procedure models. Two advanced
patterns with a high relevance have been identified — the Deferred Choice and the Multiple
Instance with priori runtime knowledge.

The Deferred Choice enables the exclusive choice of two (or more) action alternatives
offered to the environment. The decision is not made explicitly, e.g. it is independent from
data that is available to the workflow system. This pattern enables a kind of late binding
flexibility for the decision base. In the domain of integration engineering this is important
for agile processes.

In engineering processes tasks often have to be processed several times for different inputs,
e.g. in the integration engineering domain a unit test must be designed for different sub-
components. Of course, the number of sub components is not known at design time.
Therefore only at runtime can one determine how many unit tests have to be designed. To
express this issue the workflow pattern Multiple Instances with priori runtime knowledge
can be used. Here the number of instances of a task is defined at runtime before the
instances are created.

To be able to express the workflow patterns Deferred Choice and Multiple Instances with
priori runtime knowledge the modeling conventions of the Software Engineering Scout
were extended to the so-called Integration Engineering Scout modeling conventions. The
Deferred Choice can be expressed by setting the XOR-split attribute to true. The use
of the Deferred Choice implies the introduction of an XOR-join attribute to synchronize
exclusive execution paths. Both, the XOR-split and the XOR-join are expressed graph-
ically by “xor”-marks (as later shown in figure 6). The pattern Multiple Instances with

168

Pattern Rel. | Pattern Rel.
Sequence @ | Multiple Choice ()
Parallel Split @® | Synchronizing Merge ()
Synchronization @ | Multiple Merge (e
Exclusive Choice © | Discriminator o
Simple Merge @® | N-out-of-M Join o
Arbitrary Cycles O | Cancel Activity ()
Implicit Termination O | Cancel Case ©
MI, without synchronization O | Deferred Choice []
M, priori design time knowledge © | Interleaved Parallel Routing ©
MI, priori runtime knowledge @® | Milestone ()
MI, no a priori runtime knowledge [))

® .. relevant, © .. useful, O .. not relevant

Figure 4: Relevance of patterns according to procedure models.

priori runtime knowledge can be expressed by setting a MI attribute to true. This is shown
graphically by an “MI”-mark.

4 The CAIE tool runtime environment
4.1 Architecture

Figure 1 shows the CAIE tool components according to the application process of pro-
cedure models. Having described the modeling component the following part will focus
on the runtime environment and the part of transforming graphical models into executable
processes. Figure 5 shows the architecture of the runtime environment in more detail. It is
designed as a web application which enables user and tool integration in distributed coop-
erative engineering processes. The architecture of the runtime environment corresponds
to a hub and spoke architecture, which enables a seamless integration of external compo-
nents. The hub, named CAIE core, integrates external components like a workflow engine,
a data repository and others. The CAIE core is based on Apache Struts [Apa05a], a frame-
work for Java web applications. Through this a strict model view controller architecture
(MVC) [KKO00] is enforced.

The controller is divided into the layers application logic and integration logic. The inte-
gration layer consists of generic interfaces for different types of external tool components,
e.g. a workflow engine, as well as specific stub implementations. The application layer
combines connected external components and implements the business processes of the
CAIE tool. The result is an integrated solution that can be seen as a realization of a so-
called cockpit concept. The runtime environment enables a comprehensive user guide
through the complete engineering life cycle. A workflow engine is responsible for the
process execution. It computes what should be done, when and by whom. The workflow
engine also integrates underlying engineering tools. A document management component
manages the artifacts that are created in the engineering process. It also enables the ac-

169

cess to artifacts produced in similar projects. Integration projects are knowledge intensive
processes. In addition to project-specific information, e.g. task descriptions or document
templates, the developer needs problem-specific information according to his specific con-
text. These pieces of information can be provided by a process-oriented knowledge man-
agement system, e.g. the PreBIS engine [BHO5]. Other functionalities, like analyzing
aspects, can be easily added by integration of other components.

<<component>> gl
CAIE core

1
user interface
(JSP)

1
application logic
(Apache Struts)

I I
model repository integration logic
(XML, domdj) (interfaces, stubs)
=
- - uses / \ > ~
uses - - / uses \ ~
A N >
<<component>>] 2 <<component>> & | <<component>> | <<component>> =]
workflow engine data repository knowledge others
(YAWL engine) (Cvs) management
system
(PreBIS engine)

Figure 5: Architecture of the CAIE runtime environment.

In the following we want to concentrate on the choice and the integration of an appropriate
workflow component. The connection requires a transformation of project-specific proce-
dure models to the workflow language used by the workflow engine. This is described
afterwards.

The design of the runtime environment enables the integration of workflow engines, which
provide an interface for remote communication. There are many workflow systems avail-
able, commercial and non-commercial ones [AADO3]. A classification of workflow sys-
tems according to the kind of processes they support is given in [RRA03]. Explicitly
structured processes are supported by classical production workflow systems. Case han-
dling systems extend the application domain to implicitly structured processes. Ad-hoc
structured processes are supported by ad-hoc workflow systems. The CAIE tool approach
assumes structured engineering processes; therefore production workflow and case han-
dling systems can be applied.

Amongst others we evaluated the Oracle BPEL Process Manager [Ora05], the YAWL sys-
tem [AADO3] and the jBPM system [JBP0OS5]. We selected the YAWL system because it
provides several advantages that facilitate an integration. It is open source and runs like the
CAIE core under a Java Servlet and JavaServer Pages (JSP) compliant servlet container,
e.g. the Apache Jakarta Tomcat [ApaO5b] or the JBoss Application Server [JBo0O5]. Fur-

170

thermore the YAWL system was designed to support the workflow language YAWL (Yet
Another Workflow Language) [AHO3]. According to the workflow patterns YAWL is a
very expressible language. Except for Arbitrary Cycles it supports all workflow patterns
mentioned in [AHKO02, AHKOO]. Therefore the relevant patterns in the area of procedure
models (see figure 4) are supported, too.

4.2 Transformation

A workflow-based execution support for procedure models requires the mapping of tai-
lored project-specific procedure models to process models executable by the runtime en-
vironment. The mapping includes the transformation of the control-flow perspective, the
data perspective, the organizational perspective and the functional perspective. In the case
of the CAIE tool the control-flow perspective and the data perspective are handled by
external tool components, i.e. the connected YAWL engine and the document manage-
ment component respectively. In the following we want to focus on the transformation of
the control-perspective, which requires a mapping from the modeling conventions of the
Integration Engineering Scout (the extended Software Engineering Scout) to the YAWL
language.

A process model in YAWL, defined as a YAWL specification, consists of a set of extended
workflow nets (EWF-net). Each EWF-net may contain atomic and composite tasks. A
composite task refers to unique EWF-net. A YAWL specification has exactly one EWF-
net, called top level workflow that is not referred to by a composite task.

The concept of a tree-like structure of EWF-nets is similar to assignments of the top level
VAC in the Integration Engineering scout. Therefore an intuitive mapping is the transfor-
mation of each VAC diagram to an EWF-net and the contained VAC symbols to atomic
tasks. Each VAC symbol that has an assignment to another VAC diagram (according to the
modeling conventions: the VAC symbols in the top level VAC diagram) is transformed to
an atomic task followed by a composite task that refers to the corresponding EWF-net of
the assigned VAC diagram.

For the mapping of the control-flow perspective of a VAC diagram the framework of work-
flow patterns (see [AHKO02, AHKO0O]) is used again. They are applicable for this purpose
because they represent the full range of control-flow aspects in a language independent
manner. The identification of a workflow patterns representation in the “source” and the
“sink” language is a direct hint to a transformation rule. Figure 6 shows the relationships
between VAC diagrams (according to the modeling conventions of the Integration Engi-
neering Scout) and YAWL specifications on the base of workflow patterns. The Parallel
Split has two representations in VAC diagrams. The first one is the connection of a VAC
symbol with two (or more) successors with the help of “is predecessor of ’-relationships in
an assigned VAC diagram. This is mapped to a YAWL-task that is connected with succes-
sors by an “AND”-split. The second representation is the set of VAC symbols that don’t
have any predecessor. This set represents process lines that are processed in parallel. This
variant of Parallel Split is transformed to an unnamed YAWL-task that is connected with

171

successors by an “AND”-split. The Parallel Join also has two representations. The first one
is the connection of two (or more) VAC symbols with the same successor. This is mapped
to YAWL-tasks that are connected with a YAWL-task that is decorated by an “AND”-join.
The second representation is the set of VAC symbols that don’t have any successor. This
is mapped to YAWL by an unnamed task that is decorated by an “AND”-join.

VAD symbols and assi VAD di Sequence

-0 -]

My

Parallel Split Parallel Join

b1 al

b2 a2

s
iy

&
¥

Deferred Choice Simple Merge

b1 at

xor a xor b

b2 a2

Figure 6: Mapping rules of VAC constructs to YAWL constructs.

The transformation algorithm is straightforward. It starts on the top level VAC diagram,
applies the mentioned transformation rules and repeats the processing for each assigned
second level VAC diagram. The technical realization of the mapping is done via an XML
transformation. The project-specific procedure model is exported as an XML document,
which is processed. The result is a valid XML document that can be directly uploaded
to the YAWL engine. In a first version the transformation was implemented in the form
of an XSLT stylesheet [W3CO05]. The functional programming style of XSLT proved to
be too slow and memory consuming, e.g. the computation of VAC symbols without any
predecessors in VAC diagrams has a recursion depth that is linear to the number of VAC
symbols. Therefore in a second version the transformation algorithm was implemented in
Java using the open source library dom4j [dom05] for XML processing.

172

4.3 The presentation layer

The view consists of JavaServer Pages (JSP), data containers and static HTML content.
The functionality of JSP is enlarged through custom tag libraries.

Figure 7 shows two screenshots of the CAIE runtime environment. The left one presents
the control-flow perspective. Here the user gets a list of available and checked-out work
items according to his permissions. The right one shows the functional perspective, where
detailed pieces of information of the selected work item is presented, e.g. a description of
what should be done, predecessor and successor activities, and input and output artifacts.

L St T
[t e v e g 1ok

Fomm

[@ .
®m integration engineering Integration engineering
ﬂi - www.integration-engineering.de ewwintegrtionenginenrng o o
ga———

Vorhandene Aufgaben

1-|r.iﬁi‘2‘:‘
I
i
ui(‘[‘jf:

Ausgechecide Aufgaben

| BEL

Figure 7: Screenshots of the CAIE runtime enviroment.

5 Conclusion and outlook

This paper presented a tool approach for computer aided integration engineering. It is
based on the assumption that the engineering process should be derived from an abstract,
project independent procedure model. With the Integration Engineering Scout we sug-
gested a practical modeling approach for the representation and adaptation of procedure
models. With the example of YAWL we presented a mapping from those models to exe-
cutable workflow models. These workflow models can be loaded into a workflow based
runtime environment that leads the user through the whole engineering process.

A focus for further research lies in the data perspective. There are high dependencies
between artifacts of an engineering process, e.g. a platform independent business process
model can be the base for several platform dependent implementation models [SDTO5].
Here it has to be considered which relationships between artifacts exist and what notation
independent concepts can be used for which transformation approaches. Another focus
lies on the knowledge perspective. Here it has to be considered what knowledge based
information retrieval concepts can be applied in the CAIE tool approach.

173

References

[AADO3]

[AHO3]

[AHKO00]

[AHK02]

[Apa05a]

[Apa05b]

[BFG94]

[BHOS5]

[BKC95]

[Bus03]
[DGY4]

[domO5]
[EG94]

[IDS03]

van der Aalst, W. M. P, Aldred, L., Dumas, M., ter Hofstede, A. H. M.: Design and
Implementation of the YAWL System. QUT Technical report, FIT-TR-2003-07,
Queensland University of Technology, Brisbane, 2003.

van der Aalst, W. M. P., ter Hofstede, A. H. M.: YAWL : Yet Another Workflow
Language (Revised Version). QUT Technical report, FIT-TR-2003-04, Queensland
University of Technology, Brisbane,
http://is.tm.tue.nl/staff/wvdaalst/Publications/pl98.pdf,
2003.

van der Aalst, W. M. P, Barros, A. P, ter Hofstede A. H. M., Kiepuszewski, B.:
Advanced Workflow Patterns. In: 7th International Conference on Cooperative
Information Systems, volume 1901 of Lecture Notes in Computer Science, Springer,
Berlin, 2000; 18-29

van der Aalst, W. M. P, ter Hofstede, A. H. M., Kiepuszewski, B., Barros, A. P::
Workflow Patterns. QUT Technical report, FIT-TR-2002-02, Queensland University of
Technology, Brisbane,
http://is.tm.tue.nl/staff/wvdaalst/publications/pl59.pdf,
2002.

The Apache Software Foundation: Struts. Website:
http://struts.apache.org/, 2005.

The Apache Software Foundation: Apache Jakarta Tomcat. Website:
http://Jjakarta.apache.org/tomcat/, 2005.

Bandinelli, S., Fuggetta, A., Ghezzi, C., et. al.: SPADE : An Environment for Software
Process Analysis, Design, and Enactment. In: Finkelstein, A., Kramer, J., Nuseibeh, B.
(eds): Software Process Modelling and Technology, Research Studies Press, 1994;
223-247

Karsten Bohm, Jorg Hartwig: Prozessorientiertes Wissensmanagement durch
kontextualisierte Informationsversorgung aus Geschiftsprozessen. In: 7. Internationale
Tagung Wirtschaftsinformatik, 2005; 943-962

Barghouti, N. S., Koutsofios, E., Cohen, E.: Improvise : Interactive Multimedia Process
Visualization Environment. In: Proceedings of the 5th European Software Engineering
Conference, 1995; 28-43

Bussler, C.: B2B integration : concepts and architecture. Springer, Berlin et. al., 2003.

Deiters, W., Gruhn, V.: The FUNSOFT Net Approach to Software Process Management.
In: International Journal of Software Engineering and Knowledge Engineering, 4(2),
1994; 229-256

dom4j: dom4j. Website: http://www.dom4 j.org/, 2005.

Engels, G., Groenewegen, L.: SOCCA : Specifications of Coordinated and Cooperative
Activities. In: Finkelstein, A., Kramer, J., Nuseibeh, B. (eds): Software Process
Modelling and Technology, Research Studies Press, 1994; 71-102.

IDS Scheer: ARIS Software Engineering Scout. Website:
http://www.ids-scheer.com/international/english/products/
aris_scouts/23227,2003.

174

[IDS05]

[JBo05]

[JBPO5]

[JLCI2]

[Kat89]

[KKO00]

[Lin01]

[OFAO01]

[Ora05]

[Rob88]

[RRAO3]

[SDTO5]

[SHO95]

[SS04]

[Ver98a]

[Ver98b]

IDS Scheer: ARIS Design Platform. Website: http://www.ids-scheer.com/
international/english/products/aris_design_platform/23247,
2005.

JBoss: JBoss Application Server. Website:
http://www. jboss.org/products/jbossas, 2005.

jBPM.org: Java Business Process Management. Website: http://www. jbpm.org/,
2005.

Jaccheri, L., Larsen, J.-O.; Conradi, R.: Software Process Modeling and Evolution in
EPOS. In: Proc. Fourth International Conference on Software Engineering and
Knowledge Engineering, 1992.

Katayama, T.: A hierarchical and functional software process description and its
enaction. In: Proceedings of the 11th International Conference on Software Engineering,
1989; 343-352

Kassem, N., Kassem, N., et. al.: Designing Enterprise Applications : Java 2 Platform.
Addison-Wesley, Boston et. al., 2000.

Linthicum, D. S.: B2B Application Integration: e-Business-Enable Your Enterprise.
Addison-Wesley, Boston et. al., 2001.

Osterle, H., Fleisch, E., Alt, R.: Business Networking, Shaping Collaboration between
Enterprises, Springer, Berlin et. al., 2001.

Oracle: Oracle BPEL Process Manager. Website: http:
//www.oracle.com/technology/products/ias/bpel/index.html,
2005.

Roberts, C.: Describing and acting process models with PML. In: Proceedings of the 4th
international software process workshop on Representing and enacting the software
process, 1988; 136-141

Reijers, H., Rigter, J., van der Aalst, W. M. P.: The Case Handling Case. In:
International Journal of Cooperative Information Systems, Download:
http://is.tm.tue.nl/staff/wvdaalst/Publications/p212.pdf,
2003.

Specht, T., Drawehn, J., Thrénert, M., Kiihne, S.: Modeling Cooperative Business
Processes and Transformation to a Service Oriented Architecture. In: Proceedings of
IEEE Conference on E-Commerce Technology, 2005.

Sutton, S. M., Heimbigner, D., Osterweil, L. J.: APPL/A. ACM. In: Transactions on
Software Engineering and Methodology (TOSEM), v.4 n.3, 1995; 221-286

Scheer, A.-W., Spath, D.: Computer Aided Service Engineering : Informationssysteme
in der Dienstleistungsentwicklung. Springer Berlin et. al., 2004.

Verlage, M.: Vorgehensmodelle und ihre Formalisierung. In: Kneuper, R. (ed.):
Vorgehensmodelle fiir die betriebliche Anwendungssystementwicklung, B.G. Teubner,
Stuttgart, Leipzig, 1998; 60-75

Verlage, M.: Modellierungssprachen fiir Vorgehensmodelle. In: Kneuper, R.:

Vorgehensmodelle fiir die betriebliche Anwendungssystementwicklung, B.G. Teubner,
Stuttgart, Leipzig, 1998; 76-94

175

[Was89] Wassermann, A. I.: Tool Integration in Software Engineering Environments. In: Long, F.
(ed.): Software Engineering Environments, Volume 467 of LNCS., Springer, Berlin et.
al., 1989; 137-149

[W3C05] W3C: XSL Transformations (XSLT). Website:
http://www.w3.0rg/TR/1999/REC-xs1t-19991116, 2005.

176

