
Smart Files: Combining the Advantages of DBMS and
WfMS with the Simplicity and Flexibility of Spreadsheets

Alexander Hilliger von Thile, Ingo Melzer

DaimlerChrysler Research and Technology
P.O. Box 2360, 89013 Ulm, Germany

alexander.hilliger_von_thile@daimlerchrysler.com
ingo.melzer@daimlerchrysler.com

Abstract: Even though database management as well as workflow management
systems have significant advantages, spreadsheets exchanged by e-mail are still in
widespread use for many processes within an enterprise, causing problems such as
poor data-quality and lack of process monitoring. This paper analyzes reasons for
office-document based workflows (ODBWf) and presents an alternative solution
that combines the advantages of DBMS and WfMS with the flexibility and
simplicity of office documents.

This paper introduces an autonomous mobile document-management-system based
on a ‘smart’ file. This file is executable and contains a managed resource part
where files can be stored. Any read/write access to its resource part is managed by
the file itself; it controls who can do what and automatically synchronizes changes
to other systems such as process-monitoring or business intelligence tools. Proven
concepts from DBMS, such as triggers, integrity constraints and multi-user support
are utilized to improve ODBWfs without restraining their flexibility.

1 Introduction

Most processes within the automotive sector span between a changing network of
suppliers, are started spontaneously, are subject to frequent changes, and therefore need
to be highly flexible which is out of scope of many products on the market today.
Furthermore, these processes are executed by non IT experts without deeper knowledge
of DBMS or WfMS. For this group of users, the by far easiest way to define a schema
and process is by just creating a spreadsheet, assigning names to the columns, and
exchanging them via e-mail. In this case, simplicity and cost effectiveness dominates
over functionality causing serious problems such as poor data-quality, security problems,
lack of process monitoring, and missing concurrent multi-user-support.

175



Our paper solves this dilemma by combining the advantages of DBMS and WfMS with
the simplicity and flexibility of spreadsheets. It introduces an autonomous mobile
document-management-system based on a ‘smart’ file that is responsible for its contents.
It guarantees consistency, security, and role-based multi-user support. In addition, it
presents a solution to make the process-model and the process-activity-data transparent
to modern BI-systems without restraining the flexibility of these office document based
workflows.

The content of this paper is organized as follows: in chapter 2 we discuss reasons for the
widespread use of office-document-based-workflows, its advantages and disadvantages
and alternative solutions, in chapter 3 a new solution based on ‘smart’ files is introduced
and its features are described. Chapter 4 contains a technical view on how smart files can
be realized. The paper concludes with an overview of related work and a short summary.

2. Office document based workflows

The vast majority of processes managed with ODBWfs are ad-hoc workflows and
processes that are not supported by special applications. Such processes are enacted
spontaneously and are only partly specified prior to execution because responsibilities,
roles and activities are determined during execution of the process. As a consequence,
processes are changing frequently. Moreover, the process is usually infrequently
executed, complex, long-running and cross-organizational.

In the following, we want to briefly characterize advantages w.r.t. the user group of
ODBWfs and the process characteristics identified above, and describe missing features
compared to alternative solutions.

2.1 Advantages

From a technical perspective, listing ODBWf’s advantages might seem absurd because
disadvantages are predominating. However, for non IT experts in many cases other
criteria such as simplicity and flexibility are key criteria. The advantages of ODBWfs
can be briefly summarized as follows.

• ODBWfs allow process execution with a minimum-time of preparation.
• The process model is not required prior to process execution.
• Easy adoption to process changes is supported by adding/removing columns of

spreadsheets at any time.
• Office documents are easily exchangeable, even between companies.
• Data is available offline (i.e. if networks are inaccessible due to firewalls).
• Spontaneous integration of external partners is easily accomplished because e-

mail and office suites are available almost anywhere.

176



2.2 Missing features

The above advantages are contrasted by a number of disadvantages. In particular,
constraint checks, up-to-date data, process monitoring, triggers/alerters, concurrent
multi-user support and automatic integration of different versions are not supported.

2.3 Alternative solutions

There are plenty alternatives to ODBWf, therefore we will focus on the most common:

Web based three-tier-applications accessing a RDBMS: Development of such
applications requires too much time for spontaneous processes in general, is expensive
because the requirements are constantly changing (due to process changes) and require
an online connection. Workflow Management Systems require the process model, roles
and user-privileges prior to process execution. Groupware and Document Management
Systems are the most promising approach, because office documents remain as a central
element, keeping end users benefits. Documents are stored centrally and are therefore
available to other systems. Team members are limitedly able to track process-execution
by setting notifications on full document updates. Limited support for triggers and
alerters is available, and concurrent editing of office documents is not supported.
Additionally, these systems either require a client installed (such as Lotus Notes) or are
available online only.

3. Smart Files

None of the alternatives above satisfy all requirements; therefore we combined the
advantages into a new concept by integrating features of ODBWfs (ease of use,
flexibility, offline data availability, no need of a full process model prior to process
execution, maintainability by end users), WfMSs (multi-user support such as access-
control and synchronized concurrent access, no need to code, process monitoring
capabilities), DBMSs (constraint checking, specification of triggers and alerters), and
DMSs (file management features).

Figure 1: – Smart file concept

executable part managed
resource part

managed files

177



The basic principle is based on a mobile document management system consisting of a
single file (figure 1) that can easily be exchanged by e-mail. This file is executable and
contains a resource part where managed files can be stored. Since this concept enhances
traditional file-usage paradigms it is called ‘smart’ file (SF). A SF is a file-container,
comparable to self-extracting zip-archives. However, SFs have the advantage that read-
and write access within the resource part is possible. Any read/write access is managed
by the SF itself, it controls who can do what, when, and where. This concept enables an
SF to be autonomous and therefore responsible for its contents which opens great
possibilities for consistency and security. SF can be thought of as a mobile database, but
instead of relational tables with tuples, SFs use files as granularity. Instead of a query-
language like SQL, a file system is emulated allowing SFs to be mounted as a virtual
drive. Queries are therefore performed using file-access functions to retrieve (generated)
office-documents and changes are stored within the SF and are synchronized with a
smart file coordination server as soon as a connection is available. Therefore, all
process-data is available to other systems allowing report generation on up-to-date data.
Consistency checks can be performed by the SF, too, denying check-in of incorrect
managed files. An advantage is that working with SFs looks very much the same as
working with zips for end users. Because the SF (a single file) can be e-mailed as easily
as any other file, all advantages of office documents are preserved.

4. Inside Smart Files

This chapter illustrates required modules to realize a SF.

4.1 File System

The managed part of the SF must be able to store files and directories, therefore it needs
an internal file system (IF). In most common file systems files are stored within a set of
clusters. Since meta-data (e.g., for constraints and access permissions) must be
supported, fixed directory entries as used in a FAT-filesystem are insufficient. Because
file IO inside a SF is low and the meta-data needs to be extensible, XML can be used for
directory entries. To avoid loss of data or inconsistencies within the IF, logging and
recovery for IF-operations comparable to the respective features found in DBMS or
journaling file systems, such as Reiser FS [RFS] are recommended. To be able to store
multiple versions of files, the IF has to support a built-in versioning mechanism.

178



To integrate the IF into an existing file system, several protocols qualify, such as NFS,
SMB/CIFS [CIFS], FTP [FTP] or WebDAV [WDav] (used in our prototype). To avoid
installation of client-software all features of the file system are available using ‘file
system functions’: Assume the name of a file is /mySheet.xls. Opening this file returns its
latest version. To access other features supported by the IF, the operator “!/” can be
appended to the filename. For example, to list all versions of this file, a user can simply
“cd” into the virtual directory /mySheet.xls!/versions. To access the first version of this
file, /mySheet.xls!/versions/0 can be used.

4.2 Transaction

One of the key benefits of a SF is that its content is always consistent. This is ensured by
integrity constraints allowing valid changes only, others are rolled back. Since a SF
could be used by multiple users concurrently, isolation is required, too, and so are the A
and the D of ACID [HR99]. However, the standard ACID paradigm known from DBMS
is insufficient for SFs because user-TAs (editing of files) are always long-running
(human in the loop) and the granularity of files is coarse. Another problem of ACID is
the handling of constraint violations: if a constraint is violated within a TA inside a
DBMS, its changes are rolled back immediately. However, if a spreadsheet is stored
inside a SF, the user won’t accept that all of his changes are lost, just because of a single
cell containing a wrong value. Therefore, SFs have to allow error corrections detected by
constraint violations. This is realized supporting so-called pending transactions. A
rollback is executed only if the TA was aborted by the user explicitly.

The following figure gives an overview of the transaction states of a SF.

Figure 2: Transaction states

Working with files (using SFs) can be differentiated into three distinct categories: saving
a file into the virtual drive of the SF while the SF has a connection to the internet is
referred to as work online. If no such connection exists, we refer to this as work offline.
If the edited file is stored outside the SF, e.g. on the home directory of the user, it is out
of control of the SF and referred to as work external.

179



Depending on these work categories, some features of the SF, such as constraint-
validation, are unavailable. Constraints are differentiated into the following classes: on-
edit constraints can be checked by applications immediately, e.g. that a cell inside a
spreadsheet must be a date. More complex constraints such as multi-cell comparisons
would require macros for validation. However, macros are disabled for security reasons
in many cases and are not supported by all application used for editing. These constraints
can be validated by the SF at the time the file is saved within the SF (on-save).
Constraints that require a connection to a server, e.g. to validate an address, can only be
validated working online and are referred to as on-sync constraints.

SFs use transactions to ensure data-quality. A SF is always consistent (con, see figure 2)
w.r.t. specified constraints, such as data inside a DBMS. If a file is saved into the SF all
constraint classes are validated. If this validation was passed, the transaction commits
and the edited file is written to the SF (on sync ok) otherwise (on sync fail) the SF
changes its state to checks failed/ isolation mode (cfim). In this state the transaction is
still active. Violated constraints are displayed as error-messages to the user and the SF is
bound to this user, which means that this file can not be edited by others. This prevents
users from exchanging files with pending transactions. The user now has to correct all
errors to commit the transaction (on sync ok) or can abort the transaction causing all
changes to be rolled-back (ta rollback). Isolation guarantees that other users can not see
uncommitted (inconsistent) changes.

If on sync constraints can not be validated because the user is working offline, a SF
enters the checks pending/isolation mode (cpim), which indicates that the on edit and on
save constraints were passed and the on sync constraints are scheduled to be checked. In
this state the SF is bound to the user as well. If on save constraints were violated, the
cfim-state is entered (see above). If the user is working online again, pending checks are
performed. If those were passed, the transaction commits and the SF is consistent (con)
again, otherwise the cfim-state of working online is entered.

Of course, saving a file into the regular file system (file-checkout) outside the control of
a SF can not be eliminated. Those files are checked for inconsistencies (see above) after
file check-in.

4.3 User interaction

To allow begin and commit/abort of TAs and to display error messages, a SF needs to
interact with users via a GUI. Since all protocols used to integrate the SF into an existing
file system do not require a SF to be installed locally, user interaction is also designed to
be usable remotely without installation of additional tools. HTML is appropriate but
causes two problems: page-flickering because HTML pages are loaded entirely as well
as lack of update notifications, because the browser initiates the request to the server.
There is no support for a server to contact a browser to send a notification of updates.
Therefore, to pop up an error dialog when a TA fails, the browser would have to
constantly poll the server.

180



Both problems are addressed using javascript. Instead of reloading an entire page, only a
hidden frame is reloaded containing javascript statements that modify the document
object model (DOM) of the visible page for all parts that changed since the last page
access. To allow notifications, the same method is used within another hidden frame, but
the HTTP-GET request is not answered by the server until the page has changed. Client
side connection timeout is handled using javascript as well.

4.4 Meta-data

Meta-data is used to specify integrity constraints within the SF. These constraints are
functions that have to evaluate as true, false indicates violation of the constraint. We
realized a small web based integrated development environment (WIDE) [HMS04] that
can be used by non-programmers, too, because it supports visual programming.

However, the vast majority of users prefer wizards to easily specify constraints. We
realized a sample wizard that allows specification of constraints using drag&drop inside
an Excel spreadsheet without the need to write any macro: the SF connect to Excel’s
COM interface. A special XML-stylesheet (XSLT) renders the GUI described above as
Excel commands that display the wizard. Therefore, no specific macros have to be
programmed and other office products (even by other vendors) can be integrated easily
by only changing the XSLT.

4.5 Meta-meta data

DBMS have good support for schema changes, but DBMS are not used directly by end
users in general; access to the database is wrapped by applications. Therefore, changes
within the process requiring a schema change also require a change of the application as
well which are out of scope by end-users.

However, if office-documents such as spreadsheets are used, end users do have the
ability to easily change the schema, e.g. by adding a column. This flexibility must be
preserved by SF to allow fast adaptation to process-changes. Unlike DBMS, schema
changes can not be limited to database administrators. Nevertheless, to still keep control
over changes, constraints for the data-dictionary must be definable. This meta-meta-data
is stored within a ‘data dictionary dictionary’ (DDD) as mentioned above. How to
specify DDD constraints is currently under research by us.

181



4.6 Notification

In most ODBWfs, the process model evolves during process execution. Therefore, the
process model is not defined prior to its execution but reconstructed from the execution
log using methods such as process mining (PM) [Her00]. PM requires a log which is
maintained by the SF. Its log-entries store which file has been updated/created/deleted
by whom and when. To be able to log and monitor events in more detail, e.g. who
changed the value of a certain cell inside a spreadsheet, these events can be subscribed to
as well. As soon as this event occurs, the SF notifies the subscriber or logs this event if
the SF is used offline. Web Services Notification [GN04] qualified as an appropriate
standard for this because it allows an easy, hierarchical definition of events using topic
path expressions.

4.7 Smart File coordination server

The SF coordination server (SFCS) is used by the SFs to synchronize their changes and
can be used by external tools to monitor the process or to create reports, e.g. to create
Business Intelligence reports, SFs can be seen as a distributed logical OLAP-cube. Each
SF contains a unique identifier created on a SF’s creation (see section 3.1) and the host-
name of its SFCS to synchronize its changes. By making a copy of a SF and sending it to
a group of users via email the host-name is used to connect to the SFCS and the ID is
used by the SFCS to identify the SF’s instance and to merge the changes of the split
workflow. Since most office files are binary, delta-shipping and integration can not be
used for merging changes. We are working on an application-aware mechanism
comparable to “operation-based update propagation” [LLS99]. [KS93] gives an
overview of flexible and safe resolution of file conflicts using “application-specific
resolvers“ as used inside the Coda Distributed File System [Br98].

5. Related work

Even though many of the methods used to realize smart files are already in widespread
use, their combination is new. Smart files combine aspects of file system integrated
document-management-systems, WfMS and mobile DBMS and target the problems of
ad-hoc workflows. Therefore many aspects described in this paper are derived from
these systems. Creating virtual file systems based on a single file is very common under
Linux/Unix environments using loopback-devices. Self-modifying executable files were
used in the DOS-era but became rare recently.

182



The Coda File System [Br98] is a good example of a mobile file system that can be used
disconnected and with minimum bandwidth usage; [SK93] gives a comprehensive
overview of experiences made with Coda. Handling concurrency is an interesting
research topic, especially if data is edited in a disconnected manner; [LLS99] describes
operation-based update propagation in a mobile file system which is required to merge
changes of binary office documents. If changes cannot be serialized due to cycles within
the serialization-graph, conflicts must be handled; [KS93] describes flexible and safe
resolution of such conflicts. However, Coda does not support transactions (see section
4.2), and not a single file and therefore cannot be exchanged by e-mail.

Concepts from mobile DBMS, such as consistent data stores using integrity constraints
and access control can be utilized directly. To handle storage of files instead of tuples,
journaling file systems such as Reiser FS [RFS] and file versioning systems such as the
Concurrent Versioning System (CVS) and Subversion provide a good starting point.
Reiser FS allows its meta-data to be accessed without additional tools, too, by providing
virtual directories and files (see section 4.1).

6. Summary

It is obvious that database management systems (DBMS) and workflow management
systems (WfMS) have significant technical advantages over office documents being
exchanged by e-mail. DBMS and WfMS both support high data quality by constraint
checks and allow reaction to events by triggers and alerters. They contain up-to-date data
that can be accessed by other tools, e.g. to monitor the process or to visualize activity
data and they support concurrent multi-user access.

In contrast, office documents are easy to create without deeper IT-skills and allow
process execution with a minimum time of preparation and no specification of the
process model. The documents can be exchanged easily even between companies and
allow very flexible processes, because process changes can be adopted fast, e.g. by
adding columns of spreadsheets.

We combine these heterogeneous worlds by transferring the technical advantages of
DBMS and WfMS to workflows based on office documents without restraining their
advantages such as simplicity and flexibility.

A smart file (SF) is a single executable file with an embedded container that can hold
other files. All access to its container is managed by the SF itself, allowing it to be
responsible for its contents. It has support for long-running transactions and meta-data,
such as integrity constraints that can be specified to only allow consistent changes of the
data stored inside a SF. SFs contain an internal file system with versioning and event
notification support. Events can be subscribed to for external process monitoring
purposes. Concurrent multi user access is coordinated by the SF and changes within
documents are merged automatically.

183



Smart files can be used to store office documents. They can be copied and exchanged by
e-mail, just like a zip-file and can be used without installation of special software by
integrating into the user’s file system. Interaction with a SF is as easy as navigating a
directory tree. Even complex functions like versioning are accessible without extra tools
via virtual directories.

End-users can work with their applications the same way they did before, but with smart
files the advantages from DBMS and WfMS are available - even in spreadsheets.

Currently, we are continuing to implement our prototype and are collecting first
experiences of SFs being used in productive processes. Due to the fact that already
existing documents can be used unchanged, the migration from ODBWf to smart files
has been simple and effective.

7. References

[Br98] Braam, P. J.: The Coda Distributed File System. Linux Journal, #50 p. 46-50. June 1998.
[CIFS] Leach, P.; Perry, D.: Standardizing Internet File Systems with CIFS. MIND (Microsoft

Internet Developer Magazine). November 1996
[FTP] File Transfer Protocol, RFC 959: http://www.ietf.org/rfc/rfc0959.txt
[GN04] Graham, S.; Niblett, P. and others: Web Services Notification (WS-Notification).

January 2004. www.ibm.com
[Her00] Herbst, J.: A Machine Learning Approach to Workflow Management. Proceedings of the

11th European Conference on Machine Learning, p.183-194, June, 2000
[HMS04]Hilliger von Thile, A.; Melzer, I.; Steiert, H.-P.: Managers don’t code: Making Web

Services Middleware Applicable for End-Users. European Conference on Web Services.
Erfurt, Germany. September, 2004.

[HR99] Härder, T.; Rahm, E.: Datenbanksysteme. Springer Verlag 1999
[IFS] Oracle: Oracle Internet Filesystem:

http://www.oracle.com/technology/documentation/ifs_arch.html
[Kis93] Kistler, J.J.: Disconnected Operation in a Distributed File System. School of Computer

Science, Carnegie Mellon University, May 1993, CMU-CS-93-156
[KS93] Kumar, P., Satyanarayanan, M.: Flexible and Safe Resolution of File Conflicts.

Proceedings of the USENIX Winter 1995 Technical Conference. Jan. 1995, New
Orleans, LA.

[LLS99] Lee, Y.W.; Leung, K.S.; Satyanarayanan, M.: Operation-based Update Propagation in a
Mobile File System. Proceedings of the USENIX Annual Technical Conference. June
1999, Monterey, CA.

[RFS] ReiserFS File System, http://www.namesys.com/
[SC02] Sayal M., Casati F., Dayal U., Shan M.C.: Business Process Cockpit. Proceeding of the

28th International Conference on Very Large Databases, Hong Kong, China 2002.
[SK93] Satyanarayanan, M.; Kistler, J.J.; Mummert, L.B.; Ebling, M.R.; Kumar, P.; Lu, Q.:

Experience with Disconnected Operation in a Mobile Computing Environment.
Proceedings of the USENIX Symposium on Mobile and Location-Independent
Computing. June 1993, Boston, MA.

[SNIA] Storage Network Industry Association: Common Internet File System Technical
Reference. 2002, www.snia.org

[WDAV] WebDAV: Web-based Distributed Authoring and Versioning Protocol.
http://www.webdav.org/

184




