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Abstract: We propose a method to segment a real world point cloud as perceptual
grouping task (PGT) by a deep reinforcement learning (DRL) agent. A point cloud is di-
vided into groups of points, named superpoints, for the PGT. These superpoints should be
grouped to objects by a deep neural network policy that is optimised by a DRL algorithm.
During the PGT, a main and a neighbour superpoint are selected by one of the proposed
strategies, namely by the superpoint growing or by the smallest superpoint first strategy.
Concretely, an agent has to decide if the two selected superpoints should be grouped together
and receives reward if determinable during the PGT. We optimised a policy with the proxi-
mal policy optimisation (PPO) [SWD+17] and the dueling double deep q-learning algorithm
[HMV+18] with both proposed superpoint selection strategies with a scene of the ScanNet
data set [DCS+17]. The scene is transformed from a labelled mesh scene to a labelled point
cloud. Our intermediate results are optimisable but it can be shown that the agent is able
to improve its performance during the training. Additionally, we suggest to use the PPO
algorithm with one of the proposed selection strategies for more stability during the training.

Keywords: Point Cloud Segmentation, Deep Reinforcement Learning, Superpoints, Per-
ceptual Grouping Task, Virtual Reality

Figure 1: Textured mesh of an anaesthesia room that was generated by point cloud scans
(left) and the visualization of the corresponding wireframe (right). The scene has to be
segmented to develop interactive VR elements.

1 Introduction

The real world can be captured in 3D with methods such as photogrammetry and laser
scanning. The acquired data of this methods is used to generate a point cloud from which



a 3D mesh can be calculated. The resulting mesh can be used for virtual, augmented or
mixed reality applications. Currently, we captured different rooms of a hospital to produce
a VR tour for the patients (see Figure 1). All objects of a room will be connected when
transforming a room to a 3D mesh without any processing. Hence, the objects have to be
extracted from the mesh or the point cloud to realize any interactions with the objects of
a room in VR [TGG20]. This extraction process can be done by a segmentation algorithm
and can take hours if it is done manually. Our research goal is the segmentation of objects
from a point cloud by a certain semantic as, e.g., the level of detail of single objects can be
controlled individually during the mesh reconstruction to enhance the creation of interactive
VR environments.

On the one hand, the object segmentation can be conducted by a classifier where an
object with a certain semantic should be recognized [QSKG17, QYSG17, WLG+17, CZZ+19,
ZHW+19, MS15]. On the other hand, the segmentation can be applied by a geometric
algorithm such as the region growing or the random sample consensus (RANSAC) algorithm
[GMR17]. Obviously the former classification methods are able to work fully automatic as no
expert parameters with certain approaches such as [QSKG17] have to be set, they may only
are able to recognise the object classes of a specific domain accurately. The latter geometric
methods are mainly unbiased and not automatic as certain expert parameters have to be set.
Besides that, the segments of a geometric segmentation method do not necessarily represent
semantic objects as often homogenous regions are clustered. Hence, the question arises:
What is a real-world, cross-domain, automatic, semantic object segmentation solution that
does not include the estimation of specific object classes?

In this contribution, a real world, automatic, semantic segmentation is realised as a per-
ceptual grouping task (PGT) that is done by an agent that learns by deep reinforcement
learning (DRL). The agent sees two superpoints1 that originate from the voxel cloud connec-
tivity segmentation (VCCS) algorithm [PASW13] and has to decide if they belong together.
The two superpoints are rendered from different perspectives and are fed in into a multiview
convolutional neural network (MVCNN) which finally outputs the grouping decision. We
implemented two prototypical environments with different superpoint selection strategies to
choose the superpoints that can be potentially grouped together (see Section 4). Concretely,
the contribution consists of:

• Two PGT environments, namely the superpoint growing and the smallest superpoint
first environment, that can be used with any data set where only the segments are
labelled. Both environments are experimentally evaluated to decide with which one
we should continue our research. Furthermore, the superpoint representation for the
training of the agent can be switched arbitrarily which is not possible with previous
approaches.

• The experimental optimisation of a MVCNN with the dueling double deep q-learning

1By superpoints we refer to a group of points that share common characteristics [PASW13].



(D3QN) and the proximal policy optimisation (PPO) algorithm (see Section 6) to
decide if we should continue our research with an off-policy or on-policy method.

• The extension of the reward function of our previous segmentation approach [TGG20]
to reward the agent during the segmentation process. The function is described in
Section 5.

2 Background & Related Work

We consider point clouds of the form P ∈ R|P |×6 as a matrix of points. There are |P | points
in the point cloud and an i-th point pi ∈ P has 3 spatial features and 3 colour features.
A segment of a point pi is characterised by the value si ∈ N ∪ {0}. The objective of the
segmentation of a point cloud is to assign each point pi to a segment si 6= 0 such that each
segment represents an object. Initially, each point pi is unsegmented what we encoded with
si = 0. The output of the segmentation is a vector ŝ ∈ (N∪{0})|P |. We will denote the true
segment vector with s and the assigned segments with ŝ.

Recently, we proposed a framework for the segmentation of point clouds with DRL
[TGG20]. We could show that simple self-generated point clouds can be segmented by an
agent that chooses seed points of a region growing algorithm. Thus, the point cloud is seg-
mented semantically and automatically without setting any expert parameters. In contrast
to our previous work, we applied the DRL segmentation approach to segment real-world
point clouds and extended our reward function to reward the agent during the segmentation
process.

2.1 Perceptual Grouping

“Perceptual grouping refers to the process of determining which regions and parts of the visual
scene belong together as parts of higher order perceptual units such as objects or patterns.”
[Bro14]. Richtsfeld et al. [RMP+12] proposed systems to group model based patches such as
planes from RGB-D images. They used the RANSAC algorithm, NURBS and B-Splines to
represent those patches. A neighbourhood relationship for the patches is constructed such
that two Support Vector Machines (SVMs) can decide if the patches belong together. After
that, a graph cut algorithm [FH04] which uses probabilities of the SVMs is applied for the
global segmentation. Richtsfeld et al. work on the RGB-D domain and used handcrafted
features as opposed to us. Furthermore, they trained the SVMs in a supervised setting with
annotated samples from humans [RMP+12] where the superpoints that belong together are
labelled to train the SVMs. Therefore, a relabelling of the whole data set would be necessary
if another superpoint representation (e.g. from planes to circles) is introduced. In contrast
to [RMP+12], we only need the segment labels of the point cloud scenes and we are able to
switch the superpoint representation arbitrarily.

Xu et al. [XHTS17] proposed a pure geometric segmentation of point clouds by the use
of voxels and graph clustering. Geometrical features between the voxels are calculated by



Figure 2: The two leftmost images show a mesh scene of the ScanNet data set: the coloured
mesh scene (left) and the corresponding semantically labelled mesh scene (right). The two
rightmost images show these scenes as point clouds after their processing: The point cloud
scene used for the training as input for the agent (left) and the same point cloud scene where
the colour represents the segment label (right).

the perceptual grouping laws of proximity, similarity and continuity. Their workflow can
also be applied to superpoints which are calculated by the VCCS algorithm [PASW13] that
we used, too. To calculate the final segments, they merged local adjacency graphs. The
local adjacency graphs consist of supervoxels that are grouped by a distance metric and are
calculated a certain partition method. In contrast to us, Xu et al. do not use an agent
which can learn to decide the grouping of supervoxels. Moreover, the usage of handcrafted
features [XHTS17, RMP+12] can be biased to certain domains. Therefore, we leverage neural
networks where dozens of features are learned during the training process.

2.2 Observation Representation

A certain observation representation as input for a neural network has to be chosen when
processing point clouds with DRL. Most of the state of the art point cloud processing
approaches with neural networks work with a fixed sized input for the network [QSKG17,
QYSG17, WLG+17, CZZ+19, ZHW+19, MS15]. Hence, sampling techniques such as the
farthest point sampling [QYSG17] or the voxel based filtering are applied to sample this
fixed size. This sampling techniques introduce the problem of choosing the relevant points
for the neural network such that a retraining is may necessary when using point clouds
with different number of points. Hence, we decided to render a point cloud as images from
multiple perspectives by a simple perspective camera model such as Chen et al. [CZZ+19]
as the sampling of certain points is not required. Moreover, Chen et al. [CZZ+19] proposed
a neural network architecture, the MVCNN, for the processing of the features of different
rendered views which we also applied in this work as some important features may occluded
in certain views.

3 Ground Truth Data Generation

Labelled ground truth data is necessary to reward an agent with the DRL segmentation
approach [TGG20]. Therefore, we choose the ScanNet data set of Dai et al. [DCS+17] for
the training of the segmentation agent. The data set consist of real world living room scenes



Figure 3: Schematic of a PGT environment with the superpoint growing selection strategy.
A green box visualises the point cloud and the state of the PGT. An agent should group
the coloured isles such that the black rectangles are fitted optimally. A more elaborate
description can be found in Section 4.1.1.

as meshes. We consider two files per scene, a coloured mesh scene (see Figure 2 upper left)
and a mesh scene where the colour represents the semantic label of an object (see Figure
2 upper right). To use the data set for our problem, a point cloud P and a true segment
vector s have to be created from the meshes.

For our experiments, we focus on the first scene of the data set. We sampled a coloured
point cloud P with 44.965 points with the mesh sampling tool of the PCL [RC11]. The
sampling size was chosen as trade-off between the training speed and the representation of a
real world point cloud scan. The resulting point cloud which can be seen in Figure 2 (second
image from the left) is transformed in the origin and rotated such that the bounding box
is parallel with the axis of the coordinate system. We sampled the same number of points
in the same manner as above from the labelled mesh scene to get a point cloud where the
colour of the points express their semantic label. After that, we sort that cloud by its colour
values and fed it into a euclidean distance based region growing where the distance threshold
is set to 0.4 to split distant objects with the same semantic label. Furthermore, two or more
objects with the same semantic can be represented as different segments in our opinion as,
e.g., a classification of the segmented objects can be applied afterwards. The resulting 53

regions are used as the segments of the true segment vector s (see rightmost image of Figure
2).

4 Environments

4.1 Perceptual Grouping Environments

The proposed PGT environments share common mechanisms. According to Figure 4, a
ground plane segmentation is applied with the RANSAC algorithm. After that, the VCCS
algorithm calculates the superpoints with their adjacency graph. Subsequently, a selection
of a superpoint with its neighbour according to a superpoint selection strategy is done. An
agent gets the point cloud and the point indices of the two superpoints that could be grouped
as observation. If there are superpoints left to group in the node “TODO?”, the agent will
be asked if the superpoints should be grouped. The actions of the agent are to say yes or
no. The neighbourhood connection will not be considered for the remaining episode if the



agent says no. If the agent says yes, the main superpoint will be extended with the points
and the neighbourhood of the neighbour superpoint. This process is repeated till no more
superpoints are available in the “TODO?” node. After that, the next point cloud can be
processed in the node “Get P ” in the same manner. In sum, we used 163 superpoints for the
PGT environments.

Start Get P RANSAC VCCS

SelectionTODO?

Merge?

Merge
1

0

1

0

Figure 4: Conceptual flow diagram of a
PGT environment.

rel_majs = ← list();
foreach k where ckj > 0 do

if m(k) exists then continue;
if any ckl > ckj then continue;
uk ← TraverseNeighbourhood(j);
if ckj < uk then continue;
rel_majs.append((k, ckj, |sk|));

k ← argmax|sk|(rel_majs);
m(k) = j;

Algorithm 1: Creation of a mapping m
which maps a finalised superpoint group
j to a true segment k.

4.1.1 Superpoint Growing Environment

The superpoint growing as superpoint selection strategy is similar to the region growing
algorithm when segmenting point clouds. A superpoint is chosen as main superpoint and
the agent is asked if a neighbour superpoint should be grouped to the main superpoint.
After the grouping, the neighbours of the neighbour superpoint will also be considered as
neighbours of the main superpoint and put on top of a FIFO queue. The main superpoint
region is grown with grouping suggestions till all neighbours are visited. After that, the next
main superpoint is chosen and the procedure begins from the beginning.

The superpoint growing principle is depicted in Figure 3 as 2D visualisation for simplicity.
The black rectangles should visualise the true segments and a whole green box a point cloud.
The coloured isles visualise the superpoints. Generally, the agent should group the coloured
superpoints such that the true segments are fitted optimally. The optimal grouping should
result in the maximum reward which is described in Section 5. The grouping suggestions are
highlighted with coloured dots in the middle of the coloured isles. The main superpoint has
a red dot and the neighbour superpoint a blue dot. The neighbourhood adjacency graph is
visualised by the black line connections between the superpoints. If a grouping suggestion
is confirmed by the agent, then the neighbour superpoint will be also coloured in the colour
of the main superpoint.

4.1.2 Smallest Superpoint First Environment

Inspired by the divide and conquer problem solving strategy, the superpoints are sorted by
their number of points in every step. Subsequently, the smallest superpoint is chosen as main



superpoint and its smallest neighbour. Hence, the agents starts with the smallest problems
in the PGT. After a grouping is confirmed by the agent, the subsegments are grouped
such as in Section 4.1.1. After that, the superpoints will be sorted again and the smallest
superpoint will be chosen again. If a grouping is declined, the next unseen neighbour of the
main superpoint is chosen. If all neighbours of a main superpoint were visited, the superpoint
will not be considered for the main selection or as neighbour superpoint any more.

5 Reward Function

In general, the agent should be rewarded for correctly segmented points and may punished
otherwise. In our PGT environments, the agent must perform at least as many decisions
as the number of superpoints. This results from the case if the agent just confirms every
grouping decision. The number of decisions is even higher if the agent confirms and declines
some grouping suggestions which is an expected behaviour for complex scenes.

r = 1− e+ u

|P |
(1)

The reward perception of the agent will be very sparse if the reward of Equation 1 is
calculated at the end of the episode such as in our previous approach [TGG20]. This would
make the PGT hardly learnable. Therefore, we tackle this problem and propose a procedure
to calculate the reward of Equation 1 during the segmentation process. The reward function
in Equation 1 expresses the normalized fraction of the correctly segmented points whereas
the number of incorrectly segmented points are denoted by e and the number of unsegmented
points are denoted by u.

In [TGG20], we defined a mapping function m that is constructed to reward the segmen-
tation at the end of an episode which we also need for the PGT approach. The mapping
function m(j) = k maps an assigned segment value j ∈ ŝ to a true segment value k ∈ s. This
is done by taking the mode jmax over the distribution of assigned segment values within a
true segment value k. If a mode jmax already exists in the mapping m, the next best mode
will be selected. If every assigned segment is already mapped in m, all assigned points
within the true segment will be considered as erroneous. In contrast, the mapped assigned
segment values within a true segment will be considered as correct. Hence, all points can be
categorised as erroneous, unsegmented or correct such that a reward can be calculated (see
Equation 1).

Our aim is also to construct a mapping function m such as in [TGG20]. During the
grouping process of the PGT, all points of a superpoint j will be assigned to one segment
value. For the following analysis, we consider a bidirectional adjacency graph such as the
graph which is generated by the VCCS algorithm [PASW13]. To find the mode jmax, the
coverage ckj is defined which represents the number of points of an assigned superpoint
j within a true segment k. Additionally, the coverage uk is defined which represents the
maximum number of unsegmented points that could be potentially grouped together within



Table 1: Reward of the best models of the different approaches. The reward for the ground
plane segmentation as preprocessing step is not considered.

Reward (Nr. of Objects) PPO D3QN
Superpoint Growing 0.27 (67) 0.22 (22)
Smallest Superpoint First 0.18 (49) 0.13 (13)

a true segment k by following the neighbourhood edges of j within k. If uk is greater than
every ckj for a certain true segment k, then the largest coverage cannot be clearly determined,
i.e. most of the points are unsegmented points within a true segment k. However, if a ckj
is greater than uk, then the superpoint j with the largest ckj could potentially be assigned
to the true segment k if it not appears in the mapping m. Thus, a superpoint j could be
assigned to a true segment k during the segmentation if (a) ckj ≥ ckl ∧ ckj ≥ uk for all
assigned superpoints l 6= j and (b) m(j) is not defined yet. This properties must be fulfilled,
except for the case when a superpoint without any neighbours exists exclusively in a certain
true segment. In this case, the mapping relationship for the assigned segment can be created
directly.

An assigned superpoint group can intersect multiple true segments. For instance, consider
the rightmost green box of Figure 3. The red superpoint group intersects with six true
segments which are represented by black rectangles. In this case, we search for the largest
true segment k that fulfils the properties (a) and (b). Hence, it is ensured to find largest mode
ckj of the distribution of the assigned segment values within a true segment k such that the
reward function of Equation 1 can be calculated during the segmentation process. However,
we do not consider the constraint ckj ≥ uk of property (a) in [TGG20] such that superpoints
without the relative majority over a true segment k could be potentially assigned. This
scenario is relevant if two different segment values appear within a true segment whereas
the majority of the points is unsegmented or if not all points are assigned by the agent.
Both cases can be neglected in this work since the VCCS algorithm covers the whole point
cloud with superpoints. Furthermore, note that condition (a) can only be determined with
bidirectional adjacency relationship. Algorithm 1 depicts the mapping creation procedure
after a superpoint group j is finalised. We consider a superpoint group j as finalised if it
will not change any more during the segmentation process. For instance, if the agent of the
superpoint growing environment of 4.1.1 declines every grouping suggestion when considering
a certain assigned segment.

6 Experiments

We tested the prototypical superpoint growing environment (see Section 4.1.1) and the small-
est superpoint first environment (see Section 4.1.2) in a DRL setting. We used a hexa-core
i7 processor and a NVIDIA RTX 2080 graphics card.



Figure 5: Representative episode rewards of the test episodes with the PPO (left) and the
dueling DDQN algorithm (right) during the training.

6.1 Deep Reinforcement Optimisation Algorithms

We applied the D3QN [HMV+18] optimization algorithm with a prioritized replay memory
with importance sampling and the PPO algorithm [SWD+17] to evaluate if the sample
efficiency of a replay memory of an off-policy network is advantageous. Sampling from the
PGT environments can be time consuming as an episode with about 230 steps can last for
≈ 2.76 seconds. The bottlenecks are the rendering of the images which is realised on the GPU
with Tensorflow (≈ 10ms) and the action estimation of the neural network (≈ 2ms) which
is described in Section 6.1.1. We used the same network architecture for both optimisation
algorithms.

6.1.1 Neural Network

A MVCNN [CZZ+19] for the image feature detection with two heads is used. One head
outputs the action and the other head output a state value. The MVCNN processes each
of the four rendered images (see Section 2.2) by the three CNN units to output a feature
vector with 256 units. A CNN unit consist of a convolution and max pooling operation and
uses the ReLU activation function. The four resulting feature vectors are processed by a
element-wise max operation to choose the best features for further processing. After that,
we each apply three fully connected layers with ReLU operations to calculate the action and
the state value. The last fully connected layers are activated by a linear activation function.
Only the action activation is followed by a softmax layer to confirm or decline a superpoint
grouping suggestion. The network has 407.971 weights and the configuration was found on
initial experiments with the PPO algorithm.

7 Results

According to Table 1, the models achieved much higher reward in the superpoint growing
environment than in the smallest superpoint first environment. Moreover, the training is
much more stable with the PPO algorithm (see Figure 5). The corresponding segmentation
results are depicted in Figure 6. The model that is trained with the PPO algorithm in the
smallest segment first environment produces large superpoint groups and is most far away
from the true number of segments which is 53. It grouped more segments but produces
a high error as a lot of object boundaries are not respected. The models that are trained
in the superpoint growing environments are not perfect but respect the object boundaries



Figure 6: Segmentation results of the best models which correspond to Table 1. The upper
images depicts the results with the superpoint growing environment. The results of the
smallest superpoint first environment are depicted at the lower images. The images on the
left show the results with the PPO algorithm. The images on the right show the results with
D3QN algorithm.

better. According to the right plot of Figure 5, the optimization with the D3QN algorithm
produces no fruitful results in our experiments as the performance drops drastically when the
training begins with the first target network update. After this first update, the model learns
very slowly. With the PPO algorithm, we need two by five hours to reach an appropriate
improvement of the performance. This is not case after training nine hours with the D3QN
algorithm.

8 Conclusion & Future Work

The results of Figure 6 show that the models are far away from a perfect segmentation.
However, the learning process with the PPO algorithm in both environments seems to be
promising as the training produces high, but noisy, episode rewards. A reason for this
behaviour could be the reward function in Section 5. The agent only receives reward if the
grouped superpoints are finalised. Hence, some decisions are rewarded very delayed such that
it is hard to determine which actions lead to a specific portion of the reward. In this context,
we should try other network architectures to reach eventually a more stable learning process.
Another consideration to reach more stability would be to lower the learning rate or the clip
range of the PPO algorithm, but this produces longer duration of the training. The highest
rewards that we have seen during the training with the policies with exploration components
such as ε-greedy or entropy regularisation are ≈ 0.33. Note, that the maximum performance
is limited by the superpoints that are generated by the VCCS algorithm. To reach a fully end
to end system, we have to develop a system which generate appropriate superpoints with an
adjacency graph automatically. This can be realised by another agent which estimates the
parameters of a superpoint algorithm. The long term aim is to train a model on the whole
ScanNet data set [DCS+17] and to test it on unknown scenes. Additionally, we have to test



the system with different data sets to test the cross-domain abilities of the approach. Some
objects can be composed of other objects and this level of detail is kept fixed with the data
set. An appropriate upper bound level has to be chosen with care such that a hierarchical
decomposition of the segmented objects can be applied.
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