Design and Implementation of Reconfigurable Tasks with
Minimum Reconfiguration Overhead

Markus Rullmann and Renate Merker
Dresden University of Technology, Germany
Circuits and Systems Laboratory
{rullmann, merker} @ieel.et.tu-dresden.de

Abstract: Dynamic reconfiguration in today’s architectures is associated with high
reconfiguration overhead. In this paper, we propose a method for reducing such over-
head and demonstrate its application in a real world example. A two step approach
is presented here: reconfigurable tasks are designed such that they have a very sim-
ilar structure; and an automated matching tool is used to identify the structural sim-
ilarities in tasks. An FPGA implementation flow is presented that takes account of
this information. A complete hardware/software integration of the tasks is described.
Performance results verify the performance gained with the reconfigurable hardware
accelerators in a real world system.

1 Introduction

Reconfigurable computing has received an ever increasing interest in the research commu-
nity in recent years. The associated problems cover all aspects of digital system design,
but a major driver is the potential in flexibility, performance and power consumption of
such systems. A disadvantage is still the amount of device programming data required to
reconfigure devices at runtime. The configuration data needs to be stored in the system
memory and transferred to the programming interface of the reconfigurable devices. A
large amount of configuration data has a negative impact on system cost, reconfiguration
time and power dissipation.

Many groups consider the tasks as being implementation independent [WP03, ABFT05,
UHGBO04]. Tasks are implemented as independent modules that can be loaded at runtime.
The fact that the implementation of many algorithms can include a large degree of struc-
tural similarities is usually neglected. There are several approaches to identify structural
similarities in tasks, e.g. [RWTO0S5, RV01, AS05, MBdSAOS]. However, we propose a
unique two step approach: At first, the tasks are designed to be as similar as possible and
secondly, the implementation tools are advised to reuse part of the configuration infor-
mation between tasks. This is supported by our matching tool which identifies structural
similarities automatically using a systematic approach. Our aim is to reduce the data re-
quired for partial reconfiguration.

The rest of this paper is structured as follows: At first we briefly introduce the concept of
hardware matching in Sect. 2. In Sect. 3 we present two algorithms that are implemented

132

as reconfigurable tasks. The implementation strategy is described and the similarity be-
tween both tasks is illustrated on a high level. The tasks were integrated into an embedded,
reconfigurable hardware/software system and performance measures are given. Finally, in
Sect. 4 we evaluate a design flow that integrates the hardware matching into a vendor’s
standard flow and show that it indeed reduced the required number of configuration bits.

2 Hardware Matching

Generally tasks are implemented by the placement and routing tools independent of each
other. Hence the tools generate different configurations for similarly structured logic in
each of the tasks. When such tasks are reconfigured, a large amount of configuration data
is used to implement the same similarly structured logic on different physical resources.
We call this redundant configuration. The overhead associated to reconfigurable systems
can be reduced by eliminating the redundant configuration.

In our approach we search for structural similarity of the different tasks, i.e. for such parts
that can be both mapped to the same resource types and placed and routed using the same
physical resources. An automated tool has been developed that identifies similar structures
in two different tasks. The input to the tool are netlists obtained from any HDL synthesis
tool. The netlists are internally converted into an equivalent graph representation. We
described the Maximum Edge Matching Problem for such graphs in [RMO06] and proposed
two possible algorithms to solve it.

The solution to the Maximum Edge Matching Problem defines the logic resources that
must be placed on the same physical resources in order to achieve a maximum routing
similarity between two tasks. The solution also provides a measure, the matching weight,
that states the number of routes that should use the same routing configuration. Ideally,
the implementation tools take advantage of these information and map, place and route the
given tasks accordingly. The reconfiguration will then consist of a reconfiguration of all
non-matching routes and the difference in the logic resources, e.g. configuration of look
up tables (LUT) etc.

3 Application Example

In our case study, we implement two functions of the H.264 Video Encoding Standard
as hardware tasks in a reconfigurable embedded system. Our hardware tasks are able to
support two of the most computation intensive functions in the video encoder. Task 1 will
implement the integer transform as it is defined by the standard and task 2 will support the
motion estimation engine as a hardware accelerator.

The implementation of both task is designed as processor array (PA) that consists of a
regular structure of identical processing elements (PE).

133

Task 1: Integer Transform

The integer transform (IT) is used in H.264 to convert the pixel data into a transform do-
main. The redundancy of the pixel data can be much easier exploited for compression in
the transform domain. The standard proposes the integer transform because its properties
are similar to the discrete cosine transform which has been used in earlier video compres-
sion standards, but its computational complexity is much less [WSBLO03]. Furthermore, it
allows for perfect reconstruction if no quantization is applied. The formal definition of the
IT is:

where B is an data block of 4 x 4 pixels. An entire frame is transformed on a block by
block basis.

Task 2: Motion Estimation

Our motion estimation kernel is based on blocks of 4 x 4 Pixels. It computes the sum of
absolute differences (SAD) operation for a block. A mathematical formulation is given
below:

3 3
§=3"5" | Bile.y) - Balary) | -

=0 y=0

Embedded in a motion estimation for video encoding, the search strategy defines for which
data blocks B; and By the SAD is computed. In consequence, the motion vector is derived
from the blocks with minimum SAD. The minimum SAD is selected by the software and
is not contained in the PA.

Algorithm Partitioning

Both tasks were divided into a hardware and software part. The hardware part performs
the arithmetic operations for one partition of the algorithm with data stored in a local
RAM. The software part organizes the execution order between partitions by means of
data transfers to the local memory of the task. The hardware part implements 4 parallel
PEs for the datapath operations. The required datapath in each PE for Task 1 consists of
one simplified multiplication and accumulator and for Task 2 of one subtraction and one
accumulator. A sequential hardware execution controller executes a partition of the overall
algorithm independently from the main CPU. Logically, this divides the implementation
of the regular algorithms in three levels: software control, sequential hardware execution
control and parallel hardware execution. The hardware partition has been designed to gain
maximum utilization of the local memory [SMO04]. This reduces the data transfer and
control overhead by the software and thus increases overall the performance.

134

3.1 Task Architecture Template

Our implementation is based on an architecture template which has been designed to allow
a straightforward implementation of tasks based on PAs. The template integrates the PA,
the global PA controller and local memory buffers for the PA. A generic task controller
implements the system bus interface and a task control, which is identical for all tasks
using this template. The template is depicted in Figure 1.

Peripheral

Task Controller

vt Gt
b ;

::‘ Local Memory I:l Processor Array

‘ Bus Macro

System Bus

Figure 1: Task Architecture Template

The global PA controller steers the execution of the algorithm on the PA. Therefore it gen-
erates the necessary control signals for the PA and also calculates the addresses to control
the dataflow between the local memory and the PA. The global PA controller is based on
a reconfigurable state machine and several reconfigurable address generators. The con-
figuration of the state machine and the address generators is automatically derived from
PA design parameters [KMSO03]. A reconfiguration of the control flow can be achieved by
reconfiguration of the CLB ROMs without additional overhead in the logic design.

The architecture template features a common task controller with a unified set of registers.
The controller supports the following functions: task identification register, start/stop of
the task, set the task execution for a defined number of cycles, read the runtime task state,
flexible task control via a generic control register and a reset to initialize the task to a
known state after reconfiguration. The controller registers can be accessed through the
system bus to control the execution of the task.

3.2 Processor Array Design

The control signals generated by the state machine of the global PA Controller drive the
execution schedule of the PA. The application data is directly transferred from the local
memory to the PA. All data delays and pipeline registers are implemented together with
the datapath operations in the PA.

In Figure 2(a) the PA for the task implementation is shown along with the structure of
the PEs for each task. The PA features the same datapath structure for both tasks. The
local RAMs contain the data specific to each task: RAM 1 — S Data, RAM 2 — H, B2
Data and RAM 3 — B and B1 Data. The PA is designed such that the implementation
of both tasks have a high structural similarity. Figure 2(b, c¢) shows the internal structure

135

of the PE. Most datapath connectivity is the same for both tasks, on the assumption that
the simplified multiplication and the subtract operation can be implemented with the same
physical resources in the target architecture. This is achieved with a custom design of the
simplified multiplier/accumulator datapath. Hence we do not only implement a similar
structure of the datapath, but also of the underlaying basic logic resources. It must be
pointed out that no additional logic is used to maximize similarities, hence we do not
introduce additional overhead here.

S Data
| BData | Data [[
" | Delay | | 1x/2x [| Add/Sub
| Control Control
" HData o
Control || Delay Reg
B\ Control r P E
RAM 1 RAM 2 RAM 3)
S Data
(a) Processor Array Datapath Struc- (b) Processing Element for the integer transform
ture
S Data
B] Datﬂ | Data [y [
" | Delay [| Sub ~ | Add/Sub
— Control Control
B2 Data| | _ 500
Control || Delay Reg Mux
> Control
Control f PE

S Data

(c) Processing Element for SAD

Figure 2: Architecture of the common processor array (a) and the processing elements (b, ¢) specific
for both tasks. Common datapath connectivity in (b, c¢) are drawn bold.

3.3 Hardware/Software Integration

The tasks have been integrated into our embedded hardware/software system [WRMOS].
This system consists of the embedded PowerPC processor on the FPGA and the Core-
Connect based system periphery. The reconfigurable module is connected via an On—chip
Peripheral Bus (OPB) slave interface. The CPU is clocked with 300 MHz, the bus speed is
100 MHz. The system is operated under Linux with the necessary drivers for the internal
configuration access port (ICAP) of the FPGA and drivers for the tasks. The current im-
plementation provides free resources for one module that can occupy 2 x 40 configurable
logic blocks (CLBs) and ten 18 KBit embedded RAM blocks.

136

3.4 Algorithm Performance

The algorithm performance has been measured with benchmark software implemented on
the embedded Linux OS. The results show a significant improvement over the software—
only implementation. The performance data were measured for two image sizes, e.g.
1024 x 1024 and 256 x 256 pixels.The results are slightly different because of a different
partitioning used for each size. This influences reused data form the local memory and
hence performance. The results are shown in Table 1. The hardware accelerated variants
gain a significant speedup of 2.5 and 11.6 for the integer transform and the motion estima-
tion, respectively. It could be further improved by attaching the hardware task directly to
the Processor Local Bus (PLB) and thus reducing the data transfer bottleneck.

The data transfer bottleneck also explains the different speedups gained. The integer trans-
form task has much less internal data reuse and requires a high I/O bandwidth. In contrast,
the motion estimator operates much more on data stored in the local RAM making the data
transfers to the CPU less critical.

Image IT SAD

Size SW HW SW HW

1024 Cycles/Block | 860 343 | 56302 4837
Speedup 2.5 11.6
#Blocks 65535 61504

2562 Cycles/Block | 938 431 | 50464 4646
Speedup 2.2 10.9
#Blocks 4096 3136

Table 1: Algorithm performance measured in the embedded system. Cycles are given in CPU cycles;
the #Blocks are the number. of transformed blocks and the number of processed reference blocks in
the IT and SAD algorithm respectively.

4 A Matched Implementation Flow

In this case study we demonstrate how the FPGA design flow given by the vendor can be
modified in order to incorporate the matching information into the final implementation.
The design can be described in any synthesizable hardware description language.

The synthesis results are then analyzed by our matching tool. The tool processes netlists
in edif format, because this format is supported by many commercial implementation and
synthesis tools. The user can configure the matching tool to optimize runtime and accuracy
of the result. He can also supply a priori information about matching instances. This will
speed up the matching process but is not vital for the tool. The matching tool transforms
the input netlists such that matching instances and connections (nets) have equal names
in both tasks. Additionally it outputs textual and statistic information about the matching
result.

137

The transformed netlists can be used directly as input for the implementation tools. The
netlists are translated like standard netlists first. Using Xilinx ISE tools, the steps consist
of translate, map, place and route. In addition during the map, place and route steps the
tools allow the designer to provide an already implemented reference netlist as a guide
file. The tools will apply the implementation information from the reference to the actual
design based on net names and connectivity — and instance names and types. The result is
an implementation that is much more similar to the reference than one that is implemented
independently. The benefit of the procedure are reduced reconfiguration costs.

In the example, we used two different implementation flows. The first flow, depicted in
Figure 3(a), is the standard flow provided by the FPGA vendor. It is used as a reference
to compare the reconfiguration overhead. In our matched implementation flow, the HDL
Designs A and B are processed by the matching tool first. HDL Design A is then imple-
mented without a reference netlist. The placed and routed design A is used later in guided
map, place and route steps as a reference for the implementation of HDL Design B.

Standard Flow Matched Implementation Flow
HDL Design HDL Design A HDL Design B
| Synthesis | | Synthesis | | Synthesis
Synthesis Netlist Synthesis Netlist Synthesis Netlist
| Match Netlists
Matched Netlist Matched Netlist
Translate Translate Translate
Map Map Guided Map
Mapped Design Mapped Design Mapped Design
Place’n’Route | | Place’n’Route | Guided Place’n’Route
Placed and Routed Design Placed and Routed Design Placed and Routed Design
(a) (b)

Figure 3: Standard implementation flow (a) and our implementation flow including matching (b).

4.1 Matching Results

In this section we will discuss the matching obtained by our matching tool. The task
implementation consists of two parts: the processor array and the control part including
the local memory, task controller and the PA controller. The control part is synthesized
from a common HDL description for both tasks. However, this part is not static. The PA
controller generates a control sequence for both tasks, which is achieved by programming
different data into the LUT ROM for the state machine. The synthesiszed netlists for this
part differ only in the LUT ROM contents — no matching is needed because instances and
nets have already equal names.

The matching tool has been applied to the processor array part in order to identify the struc-

138

tural similarities in both tasks’ implementations. The automated tool is able to identify a
large amount of similar structures. We compared the result to a user specified matching.
Furthermore we applied the tool to a single PE which gives some indication how the per-
formance of the tool depends on the problem size. The results are summarized in Table 2.
It can be seen that the tool identifies apparently all common structures for a single PE, but
lacks some matching for a full PA. However, the tool extracts the matching information
automatically which is vital in all cases where this information is not known in advance or
in automated tool flows. The matching tool does not rely on the self-simliarity of the PA
design but rather on the low level structure of the used logic resources.

‘ Matching Tool User defined

Processor Array 536 771
Processing Element 223 200

Table 2: Number of matching connections in both tasks extracted by the matching tool compared
to a user defined matching. The user defined matching is based on the assumption that logic at the
same PE and bit position in the datapath match.

4.2 Experimental Results

We applied the two flows to the two given tasks in order to explore the impact of matching
and guided implementation on the total reconfiguration costs. We compare the bitstreams
by the number of different configuration frames and the number of different bytes. Config-
uration frames are given by the granularity of the configuration logic in the FPGA and the
difference in bytes provides some hints about the real amount of reconfiguration needed.
The benefits in the byte measure can not turned into shorter reconfiguration times due to
the limitation of the configuration architecture.

The efficiency of the guide mode has also been evaluated. We analyzed the exact routing
of the implemented designs. Our analysis tool determines the number of nets that have
the same driver (based on the physical implementation) and the number of connections in
these nets that are configured equally in both designs.

We evaluated configurations generated by the standard flow only and the matched imple-
mentation flow for both options: Design A= Task 1, Design B= Task 2 and Design A=
Task 2, Design B= Task 1. The results are shown in Table 3.

The results clearly demonstrate that the implementations based on the matched implemen-
tation flow reduce the configuration difference in bytes by a factor of up to 2. The guide
tool clearly takes advantage of the structural similarity identified by our matching tool.
The number of common net pins and the number of programmable interconnects (PIP)
increase significantly. Still the result is not as impressive as we might have expected. The
tool’s report files and the routing analysis suggest that the guide mode of the implementa-
tion tool is not able to translate all mapping, placement and routing information from the
reference design into the new design. Hence an additional penalty in configuration over-

139

Design A 1T IT, SAD,
Design B SAD SAD, IT,
Matched Matched

#different bytes | 14041 9324 6714

#different frames 63 63 62
common net pins | 555 1876 1946
common net PIPs| 1484 5536 6017

Table 3: Difference in configuration data and routing obtained through various design flow options.
For each option, the resulting bitstream difference and common routing configuration is given.

head must be paid, which could be eliminated with reconfiguration aware implementation
tools. The input designs are optimally prepared as an input to such a tool.

5 Conclusion

In this paper we described a design and implementation method to reduce reconfiguration
overhead. It has been shown how the design parameters of two tasks can be chosen to
increase the structural similarity of this tasks. In the given examples, this has no impact
on the performance of the tasks and no additional implementation overhead is introduced.
Our matching tool is able to identify the structural similarities intended by the designer.
This enables an automated matched implementation flow. We found that the implemen-
tation tools can take advantage of such similarity to reduce the reconfiguration overhead,
e.g. the difference between the configuration bitstreams. The results also indicate that
there is more potential if the tools would be truly reconfiguration aware. The frame based
configuration architecture found in the VirtexIIPro platform poses additional restrictions
on our technique.

We have further shown how the reconfigurable tasks can be integrated into an embedded
hardware/software system. We compared a software—only to the hardware accelerated
implementation and found a significant speedup of 2.5 and 11.6.

References

[ABFT05] A. Ahmadinia, C. Bobda, S. Fekete, T. Haller, A. Linarth, M. Majer, J. Teich, and
J. van der Veen. The Erlangen Slot Machine: A Highly Flexible FPGA-Based Re-
configurable Platform. In In Proceedings of the 2005 IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 319-320, April 2005.

[ASO5] D Aravind and A Sudarsanam. High Level - Application Analysis Techniques & Ar-
chitectures - To Explore Design possibilities for Reduced Reconfiguration Area Over-
heads in FPGAs executing Compute Intensive Applications. In Parallel and Dis-

140

[KMS03]

[MBASAO05]

[RMO6]

[RVO1]

[RWTOS]

[SMO04]

[UHGBO04]

[WP03]

[WRMO5]

[WSBLO3]

tributed Processing Symposium, 2005. Proceedings. 19th IEEE International, April
2005.

Jiirgen Kelber, Renate Merker, and Sebastian Siegel. Systematische Generierung des
Steuerflusses von Prozessorarrays. In Proceedings DASS 2003 and SDA 2003, pages
49-54, 2003.

Nahri Moreano, Edson Borin, Cid de Souza, and Guido Araujo. Efficient Datapath
Merging for Partially Reconfigurable Architectures. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 24(7):969-980, July 2005.

Markus Rullmann and Renate Merker. Maximum Edge Matching for Reconfigurable
Computing. In 7o appear in: Proceedings of the 20th IEEE International Conference
on Parallel and Distributed Processing Symposium, April 2006.

Daler Rakhmatov and Sarma B. K. Vrudhula. Minimizing Routing Configuration
Cost in Dynamically Reconfigurable FPGAs. In Parallel and Distributed Processing
Symposium., Proceedings 15th International, pages 1481-1488, April 2001.

Krishna Prasad Raghuraman, Haibo Wang, and Spyros Tragoudas. A Novel Approach
to Minimizing Reconfiguration Cost for LUT-Based FPGAs. In VLSI Design, 2005.
18th International Conference on, pages 673—676, January 2005.

Sebastian Siegel and Renate Merker. Optimized Data-Reuse in Processor Arrays. In
Proc. IEEE Int. Conf. on Application-Specific Systems, Architectures, and Processors
(ASAP 2004), pages 315-325, September 2004.

M. Ullmann, M. Hiibner, B. Grimm, and J. Becker. An FPGA run-time system for
dynamical on-demand reconfiguration. In Proceedings 18th International Parallel
and Distributed Processing Symposium, pages 135-142, April 2004.

H. Walder and M. Platzner. Online scheduling for block-partitioned reconfigurable
devices. In DATE ’03: Proceedings of the conference on Design, automation and
test in Europe, pages 290-295, Washington, DC, USA, March 2003. IEEE Computer
Society.

Andreas Weder, Markus Rullmann, and Renate Merker. Ein Linux—basiertes, dy-
namisch rekonfigurierbares Hardware—Softwaresystem auf Basis der Xilinx ML300
Plattform. In Dresdner Arbeitstagung Schaltungs- und Systementwurf DASS 2005,
April 2005.

T. Wiegand, G.J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of the H.264/AVC
video coding standard. /[EEE Transactions on Circuits and Systems for Video Technol-
ogy, 2003.

141

