
Multi-Level Test Models for Embedded Systems

Abel Marrero Pérez, Stefan Kaiser
Daimler Center for Automotive IT Innovations

Technische Universität Berlin
Ernst-Reuter-Platz 7, 10587 Berlin

abel.marrero@dcaiti.com, stefan.kaiser@dcaiti.com

Abstract: Test methodologies for large embedded systems fail to reflect the test pro-
cess as a whole. Instead, the test process is divided into independent test levels fea-
turing differences like the functional abstraction levels, but also similarities such as
many functional test cases. Desirable instruments such as test front-loading feature
a considerable test effort and test cost reduction potential, but their efficiency suffers
nowadays from the strict separation of the test levels and the consequent lack of ap-
propriate mechanisms for reusing tests across test levels. Multi-level test cases have
shown to provide the means for a seamless test level integration based on test case
reuse across test levels. This paper extends this concept by introducing multi-level test
models which are capable of systematically integrating different functional abstraction
levels. From these models, we can derive multi-level test cases that are executable at
different test levels. With this novel approach, multi-level testing benefits from the
principles of model-based testing while the requirements for providing multi-level ca-
pabilities to any test models are analyzed and described.

1 Introduction

The complexity of large embedded systems leads to particularly long development and
testing cycles. The long time span between the availability of the first software components
and the first system prototype (e.g. an automobile) highlights the importance of testing
earlier on in the development process. In this context, the introduction of test front-loading
is essential, since the sooner a fault is revealed, the cheaper its correction becomes.

Test front-loading addresses the earlier execution of test cases conceived for higher test
levels. For instance, a system test case might be executed on a software component. Com-
mon lifecycle models such as the V model do not explicitly consider front-loading. More-
over, their strict separation of test levels constitutes an obstacle for systematic and efficient
test front-loading.

We thus call for ending this strict separation by integrating test levels. With test level inte-
gration we do not aim at merging test levels but at bringing them closer together. The idea
is to establish relations between test levels that support a systematic test front-loading. For
this purpose, we need a new test methodology that takes the whole V model into account
rather than single test levels. An additional objective is to reduce the effort necessary for
test specification, design, implementation and maintenance.

213



Effort reduction for these test activities has become a major issue after the notable ad-
vances in test automation of the last decade. Much of the optimization potential of test
automation has now been tapped. In contrast, new methods focusing on optimizing the
mentioned testing activities promise significant efficiency gains. We focus on these activi-
ties and pay particular attention to test level integration. For testing embedded systems, we
expect to additionally benefit from new approaches in this field due to the fact that more
test levels exist for testing embedded systems than for testing standard software.

We have proposed multi-level test cases as an instrument for supporting functional test
case reuse across test levels as well as test level integration (cf. [MPK09a]). Such test
cases consist of two parts. Firstly, a test level-independent test case core that is reused
across test levels. Secondly, test level-specific test adapters. The structure of multi-level
test cases supports the separation of commonality and variability across test levels.

In this paper, we introduce multi-level test models as an extension of this concept. With
this approach we take advantage of the numerous synergies within a test suite in order to
create abstract test models from which concrete multi-level test cases can be derived. With
this novel approach we aim at benefiting from model-based techniques as well as further
reducing the test effort, particularly with regard to the aforementioned test activities.

The headlights example presented in the next section will serve as an example throughout
this paper. Section 3 details the reasons for applying reuse techniques across test levels.
A brief overview of multi-level test cases follows before multi-level test models are intro-
duced in Section 5. We conclude the paper with a related work overview and a summary.

2 Example

Our running example concerns the headlights function of a modern vehicle. As shown in
Fig. 1, four different electronic control units are involved: the driver panel (DP), the igni-
tion switch control (ISC), the light sensor control (LSC) and the automated light control
(ALC). The ALC is the master component. It decides whether to turn on the headlights
depending on the light switch position, the ignition switch position and the outside illumi-
nation. This information is received via a CAN bus.

DP ALC

LSC

ISC

Figure 1: Electronic Control Units Involved in the Headlights Function

214



3 Test Reuse Across Test Levels

In the introduction we mentioned that the test process for embedded systems features addi-
tional test levels. We will consider four different test levels in this paper: software compo-
nent testing, software integration testing, software/hardware integration testing, and sys-
tem integration testing (cf. Fig. 2). In terms of functionality, software component testing
is the most detailed test level, while system integration testing represents the most abstract
one. These test levels reflect a large integration process starting with software components
and ending with the complete system consisting of a set of electronic control units. We
have described these test levels in-depth in [MPK09a].

SW/HW
Integration
Testing

System
Integration
Testing

SW
Integration
Testing

SW
Component
Testing

Figure 2: Right Branch of the V Model for Embedded Systems

The V model [SL07] treats each test level independently. The model recommends consid-
ering the development documents originated at the corresponding development level on the
V model’s left branch for creating test cases. This is a good practice since the functional
abstraction levels of both development and test levels are the same. The V model does not
consider test front-loading and further similarities between the test levels, however. We
need test front-loading for an early assurance of the development artifacts’ quality.

Our running example provides evidence of the significance of front-loading. A basic test
case for the vehicle’s headlights might consist of two steps: turning the headlights on and
off using the light switch. During development, this test case can be executed once the first
vehicle prototype has been built using the light switch and visually observing whether the
headlights react. The prototype will be built relatively late in development, so that finding
a fault in the prototype that could have been found earlier would be a costly exercise.

The idea of front-loading is to start executing this test case as soon as possible. We could
take the electronic control unit driving the actual lamps and check if the headlights can
be turned on and off. We might not have a switch available at this test level if the switch
is wired to another control unit. Hence, we might have to stimulate a CAN bus at soft-
ware/hardware integration test level. We can port the test case further down towards the
software. We will find a software component including the basic logic that decides whether

215



to turn on the headlights depending on the switch position. In fact, if the software is devel-
oped model-based, we can even test these functional models, as well. With this practice,
which intrinsically considers test case reuse across test levels, we will be assuring at every
test level that the headlights will later work based on the components integrated so far.

Systematically applied front-loading leads to revealing only those faults at every test level
that are directly related to the integration step performed by that test level. If the headlights
do not turn on at software/hardware integration test level, but did at software integration
test level, there might be a problem with the hardware or its interface to the software.

A test case might specify that the switch has to be turned on, but at most test levels no
switch will be available. The test interface, i.e. the concrete information channels that
are used for both stimulating and observing the test object, will typically be different for
each test level, because at each test level there are different test objects. Consequently,
only test cases that abstract from the test interface will really be reusable. This is the
case, for instance, for informal textual test specifications. In other words, we can reuse the
headlights test case presented above as long as we do not concretely specify which signals
with which coding are used for test stimulation or observation.

Handling different interfaces is inevitable for test implementations, however. Hence, a
dedicated approach for reusing test cases is necessary for practicing front-loading system-
atically and with low effort. Such an approach has to take the different test objects and
test interfaces into consideration. Another fundamental difference between test levels is
the functional abstraction level of the test objects. Software components are very concrete
because they include many implementation details. On the other hand, system integration
testing represents the most abstract test level.

Acquiring the capability of dealing with these reuse obstacles will report several advan-
tages in terms of test effort reduction. Test reuse across test levels is essential for an
efficient front-loading, but it also has the potential to reduce the test suites’ size at the
different test levels. Similar or even identical test cases across test levels could be reused
and thus only implemented and maintained once.

In summary, we can state that it is desirable to apply front-loading in order to find faults
earlier. This implies reusing test cases across test levels which is directly possible if the test
interface is omitted (e.g. for textual test specifications). For test design and implementation
there is a set of barriers mainly regarding the test interface that needs to be sorted out before
these artifacts can be reused. We propose using multi-level test cases for this purpose.

4 Multi-Level Test Cases

We introduced multi-level test cases in [MPK09a] as an instrument for test level integra-
tion. Reusing a test case implementation across up to four different test levels instead of
implementing separate test cases for each test level promises great effort reductions.

Front-loading requires additional test effort in order to find faults earlier. It is necessary to
reduce this additional effort as much as possible in order to benefit from this practice.

216



Completely reusing test cases is impossible due to the differences in functional abstraction
and test interfaces across test levels. Hence, the goal is to achieve the highest possible
reuse percentage. For this purpose, we distinguish two different modules within test cases:
a reusable test case core (TCC) containing the actual test behavior and a variable test
adapter (TA) specifically designed for a concrete test level or even test object. Fig. 3
shows the structure of multi-level test cases.

PTAPTAPTA

OTAOTAOTA
OTAOTA

TCC

Test Parameters

Test Behavior

Test
Stimulation

Test
EvaluationITA

PTA

OTAOTA

Figure 3: Structure of Multi-Level Test Cases

The test behavior in the TCC is invariant across test levels, i.e. test level-independent. It
is abstract and can be reused across test levels. It possesses a stimulation interface and
an observation interface for interacting with the system under test. The only form of
variability accepted within the TCC are test parameters, which are necessary for bridging
differences between test levels such as the level of accuracy (cf. software vs. hardware) or
the kind of execution (e.g. real-time vs. simulation). These differences only imply minor
variations within the test behavior that do not affect its intention.

In contrast, the TA varies across test levels and is thus test level-specific. It is responsible
for bridging the (major) differences between the TCC and the test object at a certain test
level. The test adapter consists of three parts: the input test adapter (ITA), the output test
adapter (OTA) and the parameter test adapter (PTA).

Both ITA and OTA adapt the TCC interface to the test object interface. They thus map the
abstract test behavior to the test object at its abstraction level. In the headlights example,
reusing a system integration test case stimulating the light switch at software/hardware
integration test level will require mapping the switch stimulation to an equivalent stimu-
lation of the CAN bus. The OTA thus has to emulate the test case-related functionality of
any components located between the switch and the CAN bus in the real system.

Both ITA and OTA basically have to model the behavior of components that are not avail-
able at a certain test level but whose presence is expected by the TCC. The behavior of
such missing components does not necessarily have to be modeled completely – a par-
tial behavior model covering the needed interface signals is sufficient (test case-related
behavior). The PTA has to map any test parameters that apply to the test object.

217



Multi-level test cases can also be applied for reusing test cases from lower test levels at
more abstract test levels. In this case, both ITA and OTA will have to model the inverse
behavior of all components that are added along the integration process. In this context,
more advanced mechanisms will have to be applied to maintain causality in case these ad-
ditional components introduce delays. Delay balancing and delay compensation constitute
a solution for this problem [MPK09b].

We can summarize that the key idea of multi-level test cases is to separate the test behavior
into an abstract part within the TCC and an abstraction (ITA) or refinement (OTA) of
this abstract behavior to a concrete test level featuring different test objects with different
interfaces. This separation makes the reuse of major parts of the test cases possible, which
is an essential requirement for efficient front-loading.

5 Multi-Level Test Models

Our model-based approach for designing multi-level test cases aims at creating a single
multi-level test model for a concrete system function from which all multi-level test cases
regarding that function can be derived. For example, instead of creating several multi-
level test cases for testing the headlights, we create a multi-level test model and derive all
multi-level test cases from it.

PTAPTAPTA

OTAOTAOTA
OTAOTA

TMC

Test Parameters

Test Behavior

Test
Stimulation

Test
EvaluationITAM

PTAM

OTAOTAM

Figure 4: Structure of Multi-Level Test Models

The desired derivation of multi-level test cases from multi-level test models suggests main-
taining the structure of the test cases for the test models. We thus propose separating the
test model core (TMC) from the test adapter models (TAM) – as shown in Fig. 4. The
TCCs will be derived from the TMC and the test adapters from the TAM.

This separation provides the same advantages as for multi-level test cases. For a concrete
system function, only one test level-independent TMC has to be created. This TMC de-
scribes the test behavior and can be reused across all test levels. On the other hand, test
level-specific TAMs have to be developed, i.e. single TAMs for each test level.

218



5.1 Test Model Core

While the TCC of multi-level test cases describes partial test behavior, the TMC will
feature a more general behavioral description consisting of at least the composition of the
test behavior of all test cases included in the textual functional test specification. Ideally,
the TMC should describe the complete test behavior for a certain system function.

Note that test cases for a concrete system function will exist at different test levels. These
test cases will belong to different functional abstraction levels. For instance, at the soft-
ware/hardware integration test level there might be a test case stimulating a timeout of
the CAN bus message containing information about the switch position. Furthermore, we
assume that after 1 s of not receiving this cyclic message, the CAN bus driver reports a
timeout, and for safety reasons the headlights have to be turned on as long as the time-
out persists. This test case is out of the system integration test level’s scope because the
handling of missing messages is too concrete for that test level. However, this test case
can be reused at lower test levels (front-loading) in order to assure that the software reacts
correctly to such a timeout before the first hardware prototype is available.

In consequence, the TMC will have to integrate test behavior at different functional ab-
straction levels. The alternative to this integration is to create a separate multi-level test
model for each abstraction level. We opt for the integration approach in order to take ad-
vantage of the synergies between test cases across test levels. These synergies basically
regard the test interface.

The TCCs of multi-level test cases created at different test levels often share part of the test
interface. Some signals within the test interface are test level-specific. The switch message
timeout represents an example of a test level-specific signal. Other signals are shared with
higher abstraction levels, however. For example, the timeout test case mentioned above
also observes the headlights, analogously to the basic headlights test case discussed in the
previous sections consisting in turning the headlights on and off.

TS4TE4
TS3TE3
TS2TE2
TS1TE1

Test Behavior

TMC

Test Parameters

Figure 5: Division of the Test Behavior into Regions

We propose dividing the TMC into different regions – one for each abstraction level
(cf. Fig. 5). Each region will be responsible for part of the TMC interface. Signals shared
by different test levels will be assigned to the region corresponding to the most abstract
test level. With this practice, the test behavior concerning a concrete signal is bundled in a
single model region and does not have to be redundantly modeled in different regions.

219



For the derivation of a TCC at a certain abstraction level from a TMC, the region corre-
sponding to the TCC abstraction level will be the most relevant. Furthermore, any more
abstract regions might also be considered for inheriting additional signals. In contrast,
less abstract regions will definitely be out of the derivation’s scope. For instance, the basic
on/off headlights test case introduced in Section 3 will be derived from the first model
region only, since it belongs to the top test level. The timeout test case, however, will be
derived from the first and second model regions. While the most relevant region will be
the second, the headlights evaluation will occur in the first region, for example.

In some cases signals from different regions might need to be synchronized within test
models. Appropriate mechanisms for performing this synchronization across regions have
to be provided. By appropriate we mean effortless to a large extent, since this synchroniza-
tion could otherwise constitute a disadvantage that counters the advantages of integrating
the different abstraction levels of test behavior within a single test model.

5.2 Test Adapter Models

A test adapter model is a generalization of every possible test adapter for a concrete test
object at a certain test level. Test adapter models are thus test behavior-independent. They
only rely on the signals of the TMC interface and the TMC test parameters.

Test adapter models consist of three parts (cf. Fig. 4): an input test adapter model (ITAM),
an output test adapter model (OTAM), and a parameter test adapter model (PTAM).

Our aim is to automatically generate the appropriate test adapter that maps a given TCC
interface to a given test object interface from the corresponding test adapter model. This
generation will be based on the interface of the system under test and the test object pa-
rameters. The generated test adapter will provide both the test object and the TMC with
the necessary input signals and the test object with the appropriate parameter values.

The simplest ITAM will consist of a set of functions describing the input signals of the
TMC as a function of the test object outputs. Analogously, a simple OTAM model will
describe how to stimulate the test object inputs using the TMC outputs. These functions
model any components lying between the interfaces being mapped.

An OTAM for the headlights example for the software/hardware integration test level will
include a function mapping the switch position to a CAN bus message. This function
partially models the behavior of the control unit attached to the switch. Additionally, it
might contain other mappings such as that of the key position to the corresponding CAN
bus message. For the timeout test case described above, we might need to map the switch
position (for the beginning of the test case, before the timeout) but we might not need the
key position, which might be needed for other test cases derived from the TMC. This will
be taken into consideration for the test adapter generation. The generated test adapter will
thus include the switch position mapping but exclude the key position mapping.

Fig. 6 shows an implementation example of an OTAM that can map any TCC at system
integration test level to the interface of the ALC electronic control unit (which is at soft-

220



ware/hardware integration test level). It is a MATLAB/Simulink [MLS] model consisting
of two lookup tables that map the switch signals to the CAN bus coding and a moving aver-
age filter that models the behavior of the LSC with respect to the outside illumination. The
LSC provides an illumination signal without short peaks by filtering the original sensor
data. The OTAM thus has to model this filtering in order to provide the CAN bus signal.
Note that single test adapters do not necessarily have to include a filter. If a concrete TCC
stimulates the light sensor with a constant value, the multi-level test case does not require
the OTA to apply a filter since the filter output will equal its input. In analogy, the com-
plete lookup tables will typically be unnecessary for a single test case. These examples
demonstrate that test adapter models are more robust against changes than test adapters.

3
ISpos

2
Illumination_filtered

1
LSpos

Weighted Moving AverageLSlookup ISlookup

3
IgnSw

2
Illumination

1
LightSw

Figure 6: Output Test Adapter Model for SW/HW Integration Testing

Different test adapters can be generated from this OTAM. They will only differ in the
signals used. For each test object input, the same test adapter will be used for any TCC
because the OTAM is test behavior-independent, as we mentioned above. TAMs are hence
similar to a mapping library containing different mappings ready for use.

Any test adapter generated from a test adapter model will correspond to a concrete test
object at a certain test level. Mappings across multiple test levels can be achieved using
more complex test adapter models but also concatenating multiple test adapter models
mapping the interfaces of test objects at consecutive test levels. For example, once the
switch position is mapped to the corresponding CAN bus message, we can reuse this
mapping at software integration test level by mapping only the CAN bus message to the
software variable representing the switch position. Test adapter model concatenation is
particularly efficient for non-trivial mappings that require notable implementation effort
as well as for frequently changing requirements and mappings (evolution). In those cases
the concatenation provides a significant effort reduction (cf. test adapter concatenation in
[MPK09a]).

5.3 Discussion

In this section, we have defined multi-level test models in a generic manner analogous
to the multi-level test case definition. While multi-level test cases describe partial test
behavior, multi-level test models cover the complete test behavior. The use of test level-
specific TAMs leads to automatically adapting the TMC to the different test objects and
abstraction levels along the test process. With this practice, the TMC can be reused across
test levels without alteration – only test parameters might be subject to change.

Almost any test model can represent the TMC of a multi-level test model. We have found
only four limitations to be mandatory in order to acquire the multi-level capability.

221



Firstly, multi-level test cases have to be derivable from multi-level test models. Secondly,
updates within multi-level test models have to be automatically applied to the derived
multi-level test cases. Thirdly, the TMC possesses a test interface consisting of a set of
observation signals for test evaluation as well as a set of stimulation signals. Fourthly, the
TMC has to cover different functional abstraction levels. The test interface is divided into
different signal groups which are assigned to different regions within the test model. Each
region corresponds to a certain test level.

This approach is deliberately kept generic, so that almost any test modeling approach can
thus be employed for designing multi-level test cases. Dedicated tool support is only
needed for the automatic generation of concrete test adapters from TAMs. A further crite-
rion for the selection of a testing technology might be the support of test case portability
across different test platforms at different test levels.

The presented approach takes advantage of all the benefits of model-based approaches
such as better readability, reduced maintainability effort and a potentially increased func-
tional coverage. Readability is crucial for front-loading and test reuse, since the resulting
multi-level test cases will be shared by different parties at multiple test levels. Minimal
maintainability effort is also of particular significance for large embedded systems due to
the long development cycles which imply numerous changes. The functional coverage of
multi-level test cases can increase by systematically modeling the overall test behavior.

On the one hand, a higher initial effort is typically required for creating multi-level test
models in comparison to multi-level test cases – even in case there are large portions of
commonality and synergies across test levels. On the other hand, once the models are
created we can automatically generate concrete test adapters for any TCCs. Depending on
the technology used, TCCs will also be automatically generated from the TMC.

The effort inversion in multi-level test models best pays off for large development cycles
in which test cases and test objects are subject to continuous changes. The integration of
different abstraction levels within the TMC is especially beneficial in terms of maintain-
ability. For example, if the behavior of the headlights TMC input changes, it is sufficient
to change one region of a single model in order to keep all multi-level test cases derived
from that multi-level test model up-to-date.

6 Related Work

Front-loading has been proposed by Wiese et al. for early testing of system behavior in
a model-based development context in the automotive domain [WHR08]. They suggest
taking advantage of the early available functional models for testing system functionality.
They also presented an approach for specifying test platform-independent test cases based
on signal abstraction and a mapping layer. The use of abstraction for test case reuse is also
proposed by Burmester and Lamberg [BL08]. Both approaches only consider reuse within
a concrete abstraction level. However, they contribute notable ideas to our approach.

Beyond the front-loading context, Mäki-Asiala has denominated vertical reuse as the reuse
of test cases across test levels [MA05]. He takes a pure reuse approach using TTCN-3

222



[TTC], i.e. he does not consider abstraction or refinement. He states that the similarities
between test levels are fundamental for vertical reuse. We find that it is more important to
assure that the differences are not substantial than completely focusing on the similarities.

In analogy to Schätz and Pfaller, Mäki-Asiala takes a bottom-up reuse approach and thus
describes interface visibility as a central problem. Schätz and Pfaller solve this problem
by automatically extending component test cases in order to gain system test cases that
test the component at system test level [SP]. This test case extension is comparable to
our test adapters. Schätz and Pfaller demonstrate that such test adapters can be automati-
cally generated from formal component specifications. We cannot count on such accurate
component specifications, especially for hardware components. Our approach therefore
consists in approximating their behavior within test adapter models that focus on the com-
plete test behavior instead of modeling the complete component behavior.

Our notion of test adapters is mainly based on the adapter concept introduced by Yellin and
Strom in the context of component-based design [YS97]. The platform adapter and system
adapter concepts within TTCN-3 are similar concepts in the testing domain. Lehmann
(Bringmann) denominates test engines similar constructs within Time Partition Testing
[LB03]. The main difference in comparison to our approach is that our test adapters are
conceived for bridging abstraction differences across test levels.

The model-based approach for multi-level testing represents the major novelty within this
paper. Model-based testing (MBT) nowadays constitutes a well-established research field
and is gradually entering industry [Sch08], as well. Zander-Nowicka (Zander) provides
an overview of MBT approaches paying particular attention to the automotive domain
[ZNZ08]. Our approach is similar to the test models described in [PP05] or in [LB03]. In
both approaches, test cases constitute partial behavior and are derived from abstract test
models in the form of traces or variant combinations.

While reuse qualities are often attributed to model-based approaches [EFW02], to the
best of the authors’ knowledge no approaches have described a methodology for applying
model-based testing for testing across test levels. The closest approach to ours in this
context is TPT [LB03]. TPT features portability across test platforms [BK08].

7 Conclusion

This paper presents a novel model-based approach for systematically and efficiently test-
ing large embedded systems at different test levels. Multi-level test models represent
the model-based counterpart of multi-level test cases. We summarized the advantages
of multi-level test models in Section 5.3. Our aim in this paper was to define a set of
requirements that test models have to meet in order to become multi-level test models –
independent of the modeling approach used.

We are currently applying multi-level test models to selected projects at Daimler AG using
TPT. We plan on continuing this evaluation and reporting the results. In our future research
we will focus on the automatic generation of test adapter models. We will also study
efficient front-loading strategies that consider partitioning.

223



References

[BK08] Eckard Bringmann and Andreas Krämer. Model-Based Testing of Automotive Sys-
tems. In 1st International Conference on Software Testing, Verification, and Validation
(ICST 2008), Lillehammer, Norway, 2008.

[BL08] Sven Burmester and Klaus Lamberg. Aktuelle Trends beim automatisierten Steuerge-
rätetest. In Simulation und Test in der Funktions- und Softwareentwicklung für die
Automobilelektronik II, pages 102–111, Berlin, Germany, 2008. expert.

[EFW02] Ibrahim K. El-Far and James A. Whittaker. Model-Based Software Testing. In John J.
Marciniak, editor, Encyclopedia of software engineering. Wiley, New York, NY, USA,
2002.

[LB03] Eckard Lehmann (Bringmann). Time Partition Testing. PhD thesis, Technische Univer-
sität Berlin, 2003.

[MA05] Pekka Mäki-Asiala. Reuse of TTCN-3 Code, volume 557 of VTT Publications. VTT,
Espoo, Finland, 2005.

[MLS] The MathWorks, Inc. - MATLAB/Simulink/Stateflow. http://www.mathworks.com/.

[MPK09a] Abel Marrero Pérez and Stefan Kaiser. Integrating Test Levels for Embedded Sys-
tems. In Testing: Academic & Industrial Conference - Practice and Research Techniques
(TAIC PART 2009), pages 184–193, Windsor, UK, 2009.

[MPK09b] Abel Marrero Pérez and Stefan Kaiser. Reusing Component Test Cases for Integration
Testing of Retarding Embedded System Components. In First International Confer-
ence on Advances in System Testing and Validation Lifecycle (VALID 2009), pages 1–6,
Porto, Portugal, 2009.

[PP05] Alexander Pretschner and Jan Philipps. Methodological Issues in Model-Based Testing.
In Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner, editors, Model-Based Testing of Reactive Systems, volume 3472 of LNCS,
pages 281–291. Springer, Berlin, Heidelberg, Germany, 2005.

[Sch08] Hermann Schmid. Hardware-in-the-Loop Technologie: Quo Vadis? In Simulation und
Test in der Funktions- und Softwareentwicklung für die Automobilelektronik II, pages
195–202, Berlin, Germany, 2008. expert.

[SL07] Andreas Spillner and Tilo Linz. Basiswissen Softwaretest. dpunkt, Heidelberg, Ger-
many, 3rd edition, 2007.

[SP] Bernhard Schätz and Christian Pfaller. Integrating Component Tests to System Tests.
Electronic Notes in Theoretical Computer Science (to appear).

[TTC] ETSI European Standard (ES) 201 873-1 V3.2.1 (2007-02): The Testing and Test Con-
trol Notation version 3; Part 1: TTCN-3 Core Language. European Telecommunications
Standards Institute, Sophia-Antipolis, 2007.

[WHR08] Matthias Wiese, Günter Hetzel, and Hans-Christian Reuss. Optimierung von E/E-
Funktionstests durch Homogenisierung und Frontloading. In AutoTest 2008, Stuttgart,
Germany, 2008.

[YS97] Daniel M. Yellin and Robert E. Strom. Protocol Specifications and Component Adap-
tors. ACM Trans. on Programming Languages and Systems, 19(2):292–333, 1997.

[ZNZ08] Justyna Zander-Nowicka (Zander). Model-based Testing of Real-Time Embedded Sys-
tems in the Automotive Domain. PhD thesis, Technische Universität Berlin, 2008.

224


