Modelling and Solving QoS Composition Problem Using
DisCSP

Xuan Thang Nguyen and Ryszard Kowalczyk
Faculty of Information and Communication Technologies
Swinburne University of Technology
Melbourne VIC 3122, Australia
{xnguyen,rkowalczyk} @ict.swin.edu.au

Khoi Anh Phan
Faculty of Applied Science
RMIT University
thikhoi @cs.rmit.edu.au

Abstract:

Web services have emerged as a popular technology for integrating distributed
applications. A Web service composition is a description of how different Web ser-
vices can interoperate in order to perform more complex tasks. QoS for composite
Web services has attracted interests from both research and industrial communities.
In this paper, we propose an agent-based solution for the QoS composition problem
using Distributed Constraint Satisfaction Problem (DisCSP) techniques. We show that
by using the composition structures, local constraints can be constructed and used
with DisCSP. We also present an enhancement of the Asynchronous Aggregate Search
(AAS) algorithm to solve the problem and discuss our initial experiment in building a
multi-agent system to prove the feasibility of our approach.

1 Introduction

Web service technology is prevailing for business-to-business integration due to its well
defined infrastructure aiming at enabling interoperability among heterogeneous applica-
tions. Many of the recent research projects have been carried out in areas including of
Web service discovery, composition, and management. One of the challenges introduced
by Web service composition is represented by QoS. In this paper, we argue that since
a composite service is built from different component services and a component service
may engage in different compositions, there are relationships between the QoS planning
of these compositions. Consequently, understanding the relationships between QoS com-
positions of multiple related composite services is important. This has not been addressed
in most of the current work (e.g. [LNZ04, ADK'05, JRGM04, GNCW]) on QoS compo-
sitions as those work separately plan the end to end QoS for an individual composition.

In parallel to the advancement of Web services, the MAS and Al community has shown an
increasing interest in the Distributed Constraint Satisfaction Problem (DisCSP) in the last

179

few years. DisCSP has been widely viewed as a powerful paradigm for solving combina-
torial problems arising in distributed, multi-agent environments. A DisCSP is a problem
with finite number of variables, each of which has a finite and discrete set of possible
values and a set of constraints over the variables. These variables and constraints are dis-
tributed among a set of autonomous and communicating agents. A solution in DisCSP
is an instantiation of all variables such that all the constraints are satisfied. In this pa-
per we propose a DisCSP-based technique to solve the QoS composition problem. In
our proposed technique, we focus on addressing composite services with nested compo-
sition structures, where component services can be compositions themselves. The rest of
the paper is organized as follows. A literature review on Web service compositions and
DisCSP are presented in the next section. In Section 3, we model the QoS composition
problem as a DisCSP. Section 4 proposes an algorithm to construct constraints from a Web
service composition structure. An enhancement of the Asynchronous Aggregate Search
(AAS) algorithm, which can handle multiple variables in each agent with a new heuristic
developed to exploit QoS parameters’ characteristics, is presented in Section 4. Section 5
discusses our initial experiment in building a multi-agent system as a proof of concept for
our proposal. Finally, conclusions and future work are discussed in Section 6.

2 Related Work

Several studies have been carried out on QoS planning of Web service compositions, e.g.
[LNZ04, ADK105, JRGM04, GNCW]. In [Men0O4], numeric calculations of execution
time and cost of a composite service are presented. In [JRGMO04], the authors discuss a
method for QoS aggregation based on Web service composition patterns [vdAtHKBO3].
In [LNZ04] an approach is proposed for selecting optimal sub-providers from a list of
service providers. All of these research focus on a composition problem at each provider
independently without considering the globally nested composition structures of a service.
Consequently, these works do not make use of possible collaborations between service
providers at different nested levels in a composition structure. To overcome this limita-
tion, we propose to use an agent-based approach with DisCSP techniques in which service
providers from different nested levels can collaborate to solve the QoS composition prob-
lem together. To our best knowledge, there has been no application of DisCSP in this
area so far. DisCSP is a major technique for coordination and conflict resolutions in a
distributed and collaborative environment. A DisCSP is a constraint satisfaction problem
in which the variables and constraints on these variables are distributed among indepen-
dent but communicating agents. One important motivation behind the DisCSP paradigm
is that it allows agents to keep their constraints privately while permits the solution to be
solved globally. Most current DisCSP algorithms [YDIK92, BKGSO01, Yok95] focus on
propositional satisfiability. Formally, distributed constraint satisfaction can be defined as
following:

A distributed constraint satisfaction P=(V,D,C,A) is a problem defined on a set of vari-
ables V={x1,...,X,, }, a set of discrete finite domains for each of the variables D={D;,...,D,, },
and a set of constraints C={Cy,...,C,, } on possible values of variables. These variables

180

and constraints are distributed among a set of agents A={A,...,Ax }. If an agent A; holds
a constraint C, it also must hold all variables contained in C,. A solution is an assignment
of values in the domains to all variables such that every constraint is satisfied.

Many studies have been done in proposing algorithms for solving DisCSPs, such as Asyn-
chronous Backtracking (ABT) [YDIK92], Asynchronous Weak-Commitment (AWC) search
[Yok95], and Asynchronous Forward Checking (AFC) [MZ] to name a few. ABT is nor-
mally considered as the base algorithm for others. Two popular problems in the DisCSP
application domain are Meeting Scheduling and SensorCSP [BKGSO1]. In the Meeting
Scheduling problem, multiple agents negotiate to find a meeting time that can satisfy all
agents’ personal constraints. In the SensorCSP there are a number of sensors modeled as
agents and targets where a target is tracked if k sensors are tracking it at the same time.
The sensors have to cooperate to track all the targets with their own constraints that a sen-
sor can only track one target at a time. In this paper, we introduce another problem that
can be modeled and solved with DisCSP - the problem of QoS composition. This problem
is of a great interest to the agent community.

3 Modeling QoS Composition Problem as DisCSP

In the QoS composition problem, multiple service providers participate in the service com-
position process. Each provider has its own constraints on QoS levels of many parameters
such as resource limitations, business rules, organizational policies and service composi-
tion structures. The QoS levels may be continuous but in most cases the service providers
and consumers are normally interested in the discrete values of the QoS levels; for ex-
ample, discrete values of cost, disk space and response time. In the current Web service
model the local constraints of each service provider are normally revealed through dif-
ferent offered classes of service. However, we believe that in many situations, service
providers will most likely keep their local constraints private until some negotiations are
made between the two parties. Thus, in our model, the local constraints of each provider
are private within that particular provider only.

When a QoS service composition problem is transformed to a DisCSP, it is reasonable
that each service provider is mapped into an agent in a constraint network. Similarly, each
QoS parameter is mapped into a variable in V as defined in the DisCSP definition above;
and the set of providers’ constraints is mapped into the constraint set C. Figure 3 shows
an example of five agents A1, Aq, Az, Ay, A5 together forming an Attraction Service
composite service. Each agent has its own constraints on QoS.

In Figure 2, ¢(S) and ¢(S) define the total cost and response time of a composite service
S while ¢;.own and t;..,, define the cost and response time introduced by the agent A;
itself. The ¢ variable can take a price between $1 and $100 (USD) and the ¢ variable can
take an integer value between 1 and 100 (ms) for all services. We allow shared variables in
our model, QoS variables of a sub-service provider are shared with the composite service
provider. For example, c(FindAttraction) and ¢(FindAttraction) are shared between A;
and A,. It is important to note that the above scenario is a very simple description of how

181

A, Attraction Service

5
As: BookAttraction

As: Online Payment As: Ticket Reservation

A;: FindAttraction

Figure 1: A scenario of a composite Attraction Service which has a nested composition structure
with the Book Attraction service offered by As.

a QoS composition problem may look like. In a more complex example, to negotiate on
the values of cost and response time, Az and A4 may need to negotiate on other variables
as well. In other words, the set of variables at each agent may not represent the same set
of QoS parameters. Also, the example in Figure 1 gives an impression of a tree struc-
ture. However, this is not always true as many consumers can use the same Web services,
especially stateful Web services like Grid services.

To illustrate the differences when applying DisCSP techniques, we first consider the two
most commonly used approaches for QoS composition problems [LNZ04, ADK+05, IRGM04,
GNCW]I:

e In the first approach, QoS composition is solved incrementally. Firstly, A; nego-
tiates with Ao and Aj for attraction finding and booking. A, agrees to provide a
FindAttraction service with, for example, {1ms, $10} for {response time, cost}. As
agrees to provide its BookAttraction service with, for example, {4 ms, $10} because
it is confident to find sub-providers to support these values. After that, A3 contacts
and negotiates with A4 and A5. If A4 agrees on {1ms, $5} and A5 agrees on {3ms,
$5} for their services respectively, a solution is found. Otherwise, A3 have to find a
substitute of A4 and As.

e In the second approach, synchronous backtracking is used to solve the QoS com-
position problem. Al proposes some cost and response time values to A; and As.
For example, it proposes {1ms, $15} to Ay and {4ms, $5} to A3. Ay accepts the
proposal while A3 subsequently negotiates with A, and A before responding to
A;. In the negotiation, if A4 and A5 cannot satisfy with any proposals from As; Ag
backtracks to A; with a refusal on {4ms, 5 USD} values. Al then has to negotiate
for another value with A and As. The above steps are repeated until A4 and A5 can
agree on some proposals from As.

It can be seen that both approaches are synchronous, i.e. each agent has to wait for re-
sponses from other agents before it can proceed. Also, each agent is only aware of its
local composition problem which is formed whenever a request from a client arrives. For
example, Ag is only aware of a composition problem when it receives a proposal from A;.

182

Aq: Attraction Service

c(AttractionService) =

c(FindAttraction) + c(BookAttraction)+ ¢1.own
t(AttractionService) =

t(FindAttraction) + t(BookAttraction)+t1.own
c(AttractionService) < $20
t(AttractionService) < Sms

As: Find Attraction

C2:0un > $5

to.own > 1Ms

C2:0wn = $3 + (4ms -t9.0n) X $1/ms

Agz: Book Attraction

c(BookAttraction)=

c(OnlinePayment) +c(TicketReservation) +c3.own
t(BookAttraction)=

t(OnlinePayment) +t(TicketReservation) +t3.,un
Ay4: Online Payment

C4:ouwn > $2

t4.0wn > 1ms

Ajs: Ticket Reservation

C5:0wn > $3

t5.0wn > 1 ms

Figure 2: Illustration of different constraints held by each agent

To address this limitation, our approach allows every agent to be aware of the global QoS
requirement, and encourages them to take part in the solving process asynchronously as
soon as possible. In order to do this, we propose that functionality composition is carried
out before QoS composition. In this way, a functional composite Web service is formed
conceptually before any negotiations on QoS levels are made and hence a set of service
providers involved in the composition is determined. This model is especially suitable for
composing services with different classes of QoS. In the functionality composition phase,
when an agent receives a problem id from its consumers, it generates a new problem id
if necessary, and then forwards this to its providers to inform them that there is a global
QoS problem which needs to be solved. In particular, a problem id received in combina-
tion with the sender address creates a unique context to identify a particular global QoS
problem.

183

4 Composite Service Structure as Constraints

As stated in the previous part, constraints can be formed from different items such as busi-
ness rules, organizational policies, or composition structures. Translations from business
rules and organizational policies into QoS constraints may vary from organizations to an-
other since these rules and policies can be represented and interpreted differently. In this

No. | Workflow Pattern (BPEL pattern) | 20> Compo-
sition Pattern
Basic Control Flow Patterns

1 Sequence (Sequence) Sequence

2 Parallel Split (Flow/Link) AND Split

3 Synchronization (Flow/Link) AND Join

4 Exclusive Choice (Switch/Link) XOR Split

5 Simple Merge (Switch/Link) XOR Join

Advanced Branching and Synchronization Patterns
| Multi-choice (Link) | OR Split
Structural Patterns

7 \ Implicit Termination (By Default) \
Patterns Involving Multiple Instances

@)}

M.L Without Synchroniza- AND - Split
8 . and AND
tion(Flow) .
Join
State Based Patterns
9 Deferred Choice(Pick) XOR Split
Interleaved Parallel (Serializable
10 Sequence
Scope)
11 Cancel Activity (Terminate)

Table 1: Workflow patterns to QoS composition patterns

Sequence AND . OR. .
Split/Join | Split/Join
Cost Sum Sum Max
Response Time | Sum Max Min

Table 2: Formulas of constraints for simple composition patterns of Sequence, AND and OR

section, we show how constraints can be formulated from the composite structures of ser-
vices offered at each agent. For examples, how the first two constraints in A; and Aj in
Figure 2 were constructed. These constraints represent the relationships among QoS pa-
rameters of a composite service and of its component services. In this paper, we use the

184

CONSTRUCT-CONSTRAINT(gos-name, activity)
as XPath

1 activity-type «<—get type of the activity

2 if activity-type €

ELINT3 LI T3

{“assign”, “throw”, “wait”,
“empty”, “scope”, “compensate”,
3 return null

4 if activity type €{ “invoke”, “receive”

5 service-name «— get name of the service

invoked by activity

6 return Xpath(service-name)

7 sub-activities«<—get component activities from activity
8 gos-pattern-name«—get the QoS

composition pattern equivalent to activity

9 Xpath-array < { CONSTRUCT-CONSTRAINTY(
sub-activities[i])}

10 return F(qos-name, qos-pattern-name, Xpath-array)

terminate” }

Figure 3: Constraint formation algorithm

term “QoS constraint formulation” to describe the process of finding these constraints/re-
lationships from a composition input. The composition is presented in

BPELA4WS (the Business Process Execution Language for Web services) format. BPEL4WS
is selected because it is a popular Web service composition language supported by differ-
ent Web service vendors. Our approach bases on important work in [vdAtHKBO03, vdA03,
JRGMO04]. In [vdAtHKBO3] and [vdAO03], the authors conduct a survey and collect a set of
workflow patterns which have been used in workflow languages today, including Web ser-
vice composition languages. In [JRGMO04] the authors map these workflow patterns into
QoS composition patterns. We combine these results to form a mapping from BPEL4WS
into QoS composition patterns as shown in Table 1. It is worth noting that Table 1 only
presents composition patterns supported by BPELAWS. Our QoS constraint formulation
process consists of the following three main steps:

1. Construct constraint formulas for QoS composition patterns: Sequence, AND (Split/Join),
XOR (Split/Join) and OR (Split/Join).

2. ITteratively decompose the composite structure through BPEL workflow patterns into
smaller sub-compositions until this cannot be done any further.

3. Tteratively re-construct the constraints in a composition from constraints of its sub-
compositions. The reconstruction uses formulas available in step 1 above.

In reference to other efforts on QoS aggregation [JRGMO04, LNZ04, GNCW, Men(04], our
constraints can be considered as means to compute the QoS aggregations. The difference
is that we construct the formulas to aggregate QoS instead of compute a value. Formulas

185

<flow name= "Shipping” >
<sequence>

<invoke name= "ShipmentAir”/>
</sequence>

<sequence>

<invoke name= "ShipmentWater”/>
</sequence>

<sequence>

<invoke name= "ShipmentLand”/>
</sequence>

</flow>

Figure 4: An example of BPEL activity

for simple composition patterns in step 1 with different QoS attributes can be found in
[JRGMO04]. Table 2 presents a partial list of these.

We propose a dynamic programming algorithm to construct constraints in XPATH format
from a BPEL4WS input file. In our algorithm, the BPEL4WS composition is represented
as a ProcessDef object which has a base Activity object. The Activity class represents all
possible activities available in BPEL4WS processes such as “receive”, “reply”, “invoke”,
“sequence” and “switch”. Hence, an Activity object is composed of other Activity objects.
XPath class represents an XPATH expression. The pseudo-code for our constraint for-
mulation process is listed in Figure 3. The main idea behinds the Construct-Constraint
algorithm in Figure 3 is to iteratively decompose a Bpel activity and apply equivalent
QoS composition formulas (Table 2) at each iteration. New variables are added when-
ever “invoke” and “receive” activities are encountered. In the line 10, F' is a constraint
function (constructed from Table 2) for QoS composition patterns. For an example, a
composite service with a structure listed in Figure 4 after passing through the Construct-
Constraint function will produce ¢(Shipping)= max(¢(ShipmentAir), ¢(ShipmentWater),
t(ShipmentLand)) for the input of gos-name as response time.

5 AAS4QoS Algorithm

There have recently been many publications on DisCSP algorithms. Traditionally these
algorithms are developed and demonstrated in the context of the Meeting Scheduling and
Sensor Network problems as discussed at the beginning of this paper. Often the techniques
used in these algorithms combine tree-search with backtracking, look-ahead, and back-
jumping. However, there are some characteristics that make the QoS composition problem
different from the Meeting Scheduling and Sensor Network problems:

e Each agent holds more than one variable.

186

Each agent holds a set of interested QoS parameters and the variables that represent
these parameters.

Local constraints in QoS problem can be very complex.

Provider agents are not willing to reveal their consumer agents’ addresses to others.

Agents may want to hide private information from others as much as possible.

In searching for a suitable DisCSP algorithm, those above characteristics are the most
important criteria for us. Whilst most algorithms such as ADOPT and IDIBT can be ex-
tended so that one agent can hold more than one variable, substantial effort is required for
this and for handling complex private constraints. In addition, the back-jumping technique
in some algorithms [MZ] require undesirable revelations of agent consumers’ addresses to
others. Asynchronous Aggregate Search (AAS) [SF05, SSHF00] is a good candidate since
it allows one agent to maintain a set of variables and these variables can be shared. AAS
differs from most of existing methods in that it exchanges aggregated consistent values (in
contrast to a single value in ABT) of partial solutions. This reduces the number of back-
tracks. However, private information is revealed more in AAS than in ABT because of the
aggregation,. Using trusted servers where critical information of organizations is hosted to
prevent privacy loss is not very practical for Web services. In this work, we rate privacy as
the most important issue. Also, our goal is to develope a simple but effective algorithm in
which agents can exploit special characteristics of the QoS composition problem. As such,
we propose an extension of AAS with three following enhancements and modifications:

e Incorporating local CSP solvers into agents to solve complex private constraints.

e Making use of common characteristics of QoS parameters to speed up the solving
process.

e Reducing the aggregation in AAS into one value per variable to reduce privacy loss.

187

10
11

12
13
14
15

16
17

Algorithm 1: AAS4QoS message processing

when received ok(<x;,s;,h;>) do
if history(x;) invalidates h; then
| return;
add <x;,s;,h;> to agent-view;
update nogood list store;
check-agent-view;

when received nogood(A;,—N) do
update agent-view for any new assignments in —N;
send setup channel request to A; not connected agents in A~ which hold unknown
variables in —N;
if =N is invalid then
L return;

insert —N into the nogood list;

update nogood list store;

check-agent-view;

send ok? to the nogood sender if the new assignment for this agent is unchanged;

when received channel(<Aj;, x;,pa;>) do
| setup relay-channel for A;;

Similar to AAS, in our algorithm, agents are assigned with priorities so that they can be
arranged in order. Every agent proceeds with a similar process. Information about the
outside world learnt by each agent is stored in an agent view and a nogood list. An agent
view is a set of values that the agent believes to be assigned to the variables belonging
to the higher priority agents. Agents exchange assignments and nogoods. An assign-
ment has the form {\’>!(x;=a;),h;,pa;, } which indicates that the variable x; is assigned
a value a;. h; is the message history [SFO5], pay, is the pseudo-agent address and will be
explained later. The assignment is an AAS aggregation of single value. A nogood list
holds the assignments of values to the variables during the solving process which cause
inconsistency. ‘ok?’, or 'nogood’ messages are used as in AAS. The ‘0k?’ message is
used to inform the lower priority agents of new value assignments. A nogood is used
to backtrack the assignment that causes inconsistency between constraints. In Algorithm
1, we use AT to denote the set of agents that are linked to A and have priorities higher
than the priority of A. Similarly, A~ is denoted as the set of agents that are linked to A
and have priorities are lower than the priority of A. VT is the set of variables the agent
share with AT, and V™ is with A~. As illustrated in Algorithm 1, when an agent re-
ceives an ‘ok?’ message, it validates the message and adds the assignment in the message
into its local view. It then checks the local view consistency. To handle the complexity
of local constraints, we use a local CSP solver inside each agent. In the check-local-
view procedure, first the agent updates any new assignment. It detects if there is any
unknown variable in the assignment. If there is such a variable then the agent requests
to add link to the agents who hold this variable so it can communicate directly with this
agent. In the check-local-view, if the agent view is inconsistent then the agent searchs for

188

NIRRT I R S

—
W N = S

new value assignments for its variables. If a solution is found, the agent sends new "ok?’
messages with the assignments to the lower priority agents; otherwise, it sends a nogood
message back to the 'ok?’ message sender. It also creates the explanation for this no-
good and sends along with the nogood message. The detailed description of the extended
AAS algorithm and performance analysis is a subject of another paper (under review).

Algorithm 2: AAS4QoS check-agent-view

if agent-view and current-aggregate are inconsistent then
V =local CSP.solve(agent-view,nogood-list, local-constraints);
if V=0 then
‘ backtrack
else
reset current-aggregate;
forall ac V do
if a is new for AT}, then
append new history and send ok message to AT ;
current-aggregate = current-aggregatea,
else
if a is needed then
L Lcurrent—aggregate:current—aggregateﬂa;

In the context of Web service composition, QoS parameters have particular characteristics
that normal constraint variables have not. Agents (service providers) often have had their
constraint preference as a monotonic function over a QoS value. In other words, there is
a preference operator < defined between any two values a(!) and a(® in the domain of
variable x. If a(¥) < a(®) then we say that the agent prefers a®) to a(!) for x. In addition,
this operator can also be defined over two set of assignments as following: A~'(x;=al;)
= ANi=l(x;=a?;) if Vi=1..m a';<a?;. The preference for A2 in Figure 2, for example, can
be that

t(FindAttraction)=2 A\ c¢(FindAttraction)=5=<

t(FindAttraction)=1 A\ c¢(FindAttraction)=4

While the AAS4QoS algorithm follows the principles of AAS, the local CSP solver uses
a new heuristic for selecting new values. When a new assignment is generated a heuristic
criterion could be to choose the value with not less preference (compared to the previous
rejected assignments) to the lower priority agent.

6 Implementation

In this part, we describe our initial agent-based implementation of a framework for DisCSP
with our toolkit JAWSM (Jade for Web Services Management) to support our proposal.
JAWSM is a re-factor of our previous toolkit called WS2JADE that integrates Jade agents
with Web services [Ngu05], towards WS management. J4WSM, which consists of a Jade

189

AAS40Q0S vsABT cycle reduction
& 100 -
= 80
;|
E 60 4
L]
(&) 20 -
DT T =T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Nmberof agents
Figure 5: AAS4QoS versus ABT
AAS4Q0S vs ABT
Cycles
1000000
500000
600000 |
——ABT
400000::4 —=—AASAQCS
200000 |
R e R
1234567 8 9101112131415
Number of agents

Figure 6: AAS4QoS versus ABT

DisCSP
Algorithms

Constraint Formation

!

A
Protocols

WS2JADE

BPEL Document

Adapter WS-Agreement

Document

Local CSP Solver
[NSolver]

Figure 7: Different JAWSM system components

190

agent platform and other utilities including WS4JADE, runs as a service inside a J2EE
container. In this initial version, J4AWSM runs under JBoss. J4AWSM is similar to Blue-
Jade [CBO02] but targets Web Services Management particularly. J4WSM is designed to
use services instead of making API calls.

The main components in JAWSM consists of three main modules: constraint formations,
local CSP solver and DisCSP protocols. The constraint formation module is to construct
and keep the constraints available at each provider. Constraints in J4WSM are presented
in XPath expressions. At this version, constraints are created from composite service
structures (in BPEL format) by using the algorithm specified in Section 3. In J4AWSM,
we do not specify any particular CSP solver engines. Different CSP solver engines can
be used as long as there is an adapter which can translate XPath expressions into the CSP
solver languages. For our experiment, we use NSolver [NSo05] for the local CSP solver.
Whenever a provider needs to solve the local constraints, it invokes NSolver to find a
solution. We have developed an adapter to translate XPath expression into NSolver on the
fly. This adapter can be downloaded from [XPa05]. In this version, JAWSM only supports
one DisCSP protocol which corresponds to the AAS4QoS specified in the previous part.
This protocol is developed as an interaction protocol in Jade. Each provider in the DisCSP
is represented by a Jade agent. These agents must understand a protocol and agree to use
it before the solving process can start. Different components in JAWSM are presented
in figure 6. Figure 5 shows performance of synchronous backtracking versus AAS4QoS
for samples of QoS composition problems. The graph shows the average of 10 trials for
each value in the horizonal axis. The structure of the composition in this experiment is
built incrementally by adding one agent each time from the first agent A1 until a balanced
binary tree with depth =4 (i.e there are 15 agents in total) is formed. The experiment is
carried out for two parameters: cost and response time. Each agent Ay, has a business rule:
c(Ag) > WTOT;;(A’“)’O}CT in addition to the constraints deduced from the structure of
its own composite service: t(Ag)=town(Ar)+ > v Ag€ A+ H(AC(AR)=Cown(AL)

+> vA,eA+,C(Ag) in which t(Ag)and c(Ag)are response time and cost of the composite
service at Ay, town(Ag) and

Cown(Ag)are response time and cost introduced by Ay’s own service respectively. In the
experiment, the domain of the cost variable for an agent with depth=3 is [1..2°7%] and the
domain of this agent’s time response variable is also [1..2°7%]. To=4ms and C7=1$. The
purpose of this experiment setup is to mimic a real scenario of Web service composition
and demonstrate the applicability of DisCSP technique into the QoS composition problem.
It can be observed from Figure 5 and 8 that AAS4QoS outperforms ABT algorithm which
in turn has a better performance than the synchronous backtracking algorithm [YDIK92].
Figure 5 and 6 show AAS4QoS improvements in term of processing cycles. For each
agent, one cycle consists of reading all incoming messages, invoking its CSP solver to
find a solution and sending messages [Yok95]. It can be seen that the reduction of cycle
increases with the number of agents and reaches around 90% for 15 agents.

191

7 Conclusions

This paper proposes a new approach of DisCSP application into the QoS composition
problem. We describe how the problem can be modeled in DisCSP by suggesting that
functionality compositions can be carried out before QoS compositions. An algorithm to
construct constraints from the composition topology is proposed. We also develop an en-
hanced version of AAS for multiple variables and a new heuristic for distributed agents
to exploit QoS parameters’ characteristics. Our future work will concentrate on a frame-
work which allows agents to exchange not only assignments but also possible constraints
during the solving process, as a part of JAWSM toolkit. We believe that this is beneficial
for the QoS composition problem and useful in developing new DisCSP algorithms for the
solving process.

References

[ADK'05] Vikas Agarwal, Koustuv Dasgupta, Neeran Karnik, Arun Kumar, Ashish Kundu,
Sumit Mittal, and Biplav Srivastava. A service creation environment based on end
to end composition of Web services. In WWW ’05: Proceedings of the 14th interna-
tional conference on World Wide Web, pages 128-137, New York, NY, USA, 2005.
ACM Press.

[BKGSO1] Ramon Bejar, Bhaskar Krishnamachari, Carla Gomes, and Bart Selman. Distributed
Constraint Satisfaction in a Wireless Sensor Tracking System. In Workshop on Dis-
tributed Constraints, IJCAI, 2001.

[CB02] Griss M. Cowan, D. and Burg B. BlueJade-A service for managing software agents.
Hp technical report, HP, Murray Hill, New Jersey, 2002.

[GNCWO03] X. Gu, K. Nahrstedt, R. Chang, and C. Ward. QoS-Assured Service Composition in
Managed Service Overlay Networks. In Proceedings of the IEEE 23rd International
Conference on Distributed Computing Systems, 2003.

[JRGMO04] Michael C. Jaeger, Gregor Rojec-Goldmann, and Miihl. QoS Aggregation for Ser-
vice Composition using Workflow Patterns. In Proceedings of the 8th International
Enterprise Distributed Object Computing Conference (EDOC 2004), pages 149—
159, Monterey, California, USA, 2004. IEEE CS Press.

[LNZ04] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. QoS computation and policing in
dynamic web service selection. In WWW Alt. *04: Proceedings of the 13th inter-
national World Wide Web conference on Alternate track papers & posters, pages
66-73, New York, NY, USA, 2004. ACM Press.

[Men04] Daniel A. Menasce. Composing Web Services: A QoS View. IEEE Internet Com-
puting, 8(6):88-90, 2004.

[MZ03] A. Meisels and R. Zivan. Asynchronous forward-checking on DisCSPs. In Proceed-
ings of the Distributed Constraint Reasoning Workshop, 1JCAI, Acapulco, Mexico,
2003.

[Ngu05] Xuan Thang Nguyen. Demonstration of WS2JADE. In AAMAS ’05: Proceedings

of the fourth international joint conference on Autonomous agents and multiagent
systems, pages 135-136, New York, NY, USA, 2005. ACM Press.

192

[NSo005]

[SFO5]

[SSHF00]

[vdAO3]

[vdAtHKBO3]

[XPa05]

[YDIK92]

[Yok95]

NSolver home page. www.cs.cityu.edu.hk/ hwchun/nsolver/, 2005.

Marius C. Silaghi and Boi Faltings. Asynchronous aggregation and consistency in
distributed constraint satisfaction. In Artificial Intelligence Journal Vol.161, pages
25-53, New York, NY, USA, 2005. ACM Press.

Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. Asynchronous Search
with Aggregations. In AAAI/IAAI pages 917-922, 2000.

W. M. P. van der Aalst. Don’t go with the flow: web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72-76, 2003.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distrib. Parallel Databases, 14(1):5-51, 2003.

XPath Adapter for NSolver. www.it.swin.edu.au/centres/ciamas/tiki-
index.php?page=xpath2nsolver, 2005.

Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Dis-
tributed Constraint Satisfaction for Formalizing Distributed Problem Solving. In
International Conference on Distributed Computing Systems, pages 614-621, 1992.

Makoto Yokoo. Asynchronous Weak-commitment Search for solving Distributed
Constraint Satisfaction Problems. In Proc. Ist Intrnat. Conf. on Const. Progr., pages
88-102, Cassis, France, 1995.

193

