
Feature-Based Graph Similarity with Co-Occurrence

Histograms and the Earth Mover’s Distance

Marc Wichterich, Anca Maria Ivanescu, Thomas Seidl

Data Management and Exploration, RWTH Aachen University

{wichterich, ivanescu, seidl}@cs.rwth-aachen.de

Abstract: Graph structures are utilized to represent a wide range of objects including
naturally graph-like objects such as molecules and derived graph structures such as
connectivity graphs for region-based image retrieval. This paper proposes to extend
the applicability of the Earth Mover’s Distance [RTG98] (EMD) to graph objects by
deriving a similarity model with a representation of structural graph features that is
compatible with the feature signatures of the EMD. The aim is to support the search
for a graph in a database from which the query graph may have originated through
limited structural modification. Such query graphs with missing or additional vertices
or edges may be the result of natural processes of decay or mutation or may stem from
measuring methods that are inherently error-prone, to name a few examples.

1 Introduction and Related Work

Graphs are widely used data structures for modeling complex objects. For example, in

computer vision and pattern recognition graphs are extracted from complex objects, stored

in databases, and are used for graph-based shape recognition [SKK04] or for object recog-

nition in general [HHEW04]. In the biomedical field, Takahashi investigates the structural

similarity of chemicals with similar biological activity by using graphs to represent the

structure of the chemicals [Tak04]. These applications exemplify the need for graph simi-

larity measures that allow for the clustering of graphs in a database, or for finding graphs

in a graph database that are similar to a query graph.

In the absence of a canonical representation of graphs, deciding if two graphs are isomorph

(i.e., identical but for a renaming of the vertices) is a computationally expensive task. Its

generalization, the subgraph isomorphism problem, is known to be NP-complete. When

attempting to find all graphs in a database that contain a subgraph that is isomorph to some

query graph, it is possible to use lower-bounding filtering techniques to quickly rule out

some candidates and refine the rest with the computationally expensive exact matching.

For example, the GraphGrep approach indexes labels along paths within a graph to perform

the filtering [SWG02].

For similarity search, deciding whether (sub)graphs are isomorph does not suffice. In the

case of the two graphs not being identical, similarity search requires an assessment of the

degree to which the graphs in question differ from another such that graphs in a database

can be sorted by similarity to a query graph.
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The comparison of two graphs can be performed by directly considering the structure of

the graphs. This approach is, for example, taken by the graph edit distance [BA83] that

calculates how many transformations have to be performed to turn one graph into the other,

and also by measures that consider common subgraphs or the size of the largest common

subgraph [BS98]. While these measures are suitable for small graphs and for graphs with

limitations regarding their structure and/or the operations that may be performed (e.g., the

degree-2 edit distance for connected, undirected, acyclic trees [ZWS96]), even medium-

sized general graphs quickly lead to a query processing time that is bound to overburden

the patience of the user.

Akin to content-based image retrieval, feature-based graph similarity models instead de-

rive (approximate) structural information from the graphs and assess the similarity of

the graphs based on these features. For example, so-called spectral approaches [Ume88,

LWH03] compare graphs based on an eigen-decomposition of the adjacency matrix. The

model presented in [PM99] compares two graphs by computing the difference in the num-

ber of nodes that have a given connectivity degree. The latter is the basis for the general-

ized approach described in this short paper. We collected connectivity information along

paths in graphs and represent the information in a way that allows graphs to be flexibly

compared using the EMD. In a recent related approach, graphs derived from images have

been compared using the EMD [GXTL08]. However, the approach uses the EMD to com-

pare the direction of edges/lines that occur in the graph and thus requires the vertices to

have a spatial position. The approach described here is devised in a more general way as

it does not make such an assumption.

2 Preliminaries

The basic graph-related definitions for concepts used in the rest of the paper are given in

this section.

A general graph with at most one edge from one vertex to another is defined via its set of

vertices and its edge relation.

Definition 1 (Graph)

A graph G of size m is a tuple G = (V,E) with vertices V = {v1, . . . , vm} and edges

E ⊆ V × V .

If a graph does not have single-vertex loops (i.e., the edge relation is irreflexive) and is

undirected (i.e., the edge relation is symmetric), it is called simple.

Definition 2 (Simple Graph)

Given a graph G = (V,E), G is simple iff for all v, w ∈ V

(v, w) ∈ E ⇔ (w, v) ∈ E and (v, w) ∈ E ⇒ v 6= w.

All graphs examined in the remainder of this paper are assumed to be simple.
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(a) Graph G1

v1 v2 v3 v4 v5

v1 0 1 0 0 1

v2 1 0 1 0 1

v3 0 1 0 1 0

v4 0 0 1 0 1

v5 1 1 0 1 0

(b) Adjacency matrix of G1
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(c) Graph G2

Figure 1: Example graphs

If all vertices of a graph are connected to all other vertices of the graph by a series of

edges, it is called connected.

Definition 3 (Connected Graph)

Given a graph G = (V,E), G is connected iff for all v, w ∈ V :

(v 6= w) ⇒ (v, w) ∈ E

∨
(

∃vi1 , . . . , vim′
∈ V : (v, vi1) ∈ E ∧ (vim′

, w) ∈ E

∧∀1 ≤ j ≤ m′ − 1 : (vij , vij+1
) ∈ E

)

.

The graphs in the database are assumed to be connected in this paper. A query graph with

missing vertices or edges may however break down into several non-connected compo-

nents.

The degree of a vertex in a graph is the number of other vertices it is directly connected to.

Definition 4 (Vertex Degree Function)

Given a graph G = (V,E), the outgoing vertex degree function δG : V → N0 for G is

defined by

δG(v) = |{w ∈ V |(v, w) ∈ E}|.

The ingoing vertex degree function can be defined analogously. For the simple graphs of

this paper, the two functions are identical and thus do not have to be differentiated here.

The example graph G1 in Figure 1(a) is a simple, connected graph with 5 vertices and

6 edges. Figure 1(b) gives the adjacency matrix of G1 where an entry of 1 indicates

the existence of an edge while an entry of 0 indicates the absence of an edge between

two vertices. As a result of Definition 2, the diagonal entries are all zero and the matrix is

symmetric. The degree of a vertex equals the row sum in the adjacency matrix. Vertices v1,

v3, and v4 have degree 2 while vertices v2 and v5 have degree 3. The graph G2 is neither

simple (due to the loop at v5) nor connected (due to having two separate components).
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3 Graph Similarity Model

In order to find graphs in a database that might be related to a query graph through a

process of decay, mutation or generally structural change, a representation of statistical

graph features is proposed in Section 3.1 and distance measures suitable for the feature

representation are given in Section 3.2. The similarity of two graphs can be assessed by

combining these two parts.

3.1 Graph Feature: Degree Co-Occurrence Multisets

A representation of graph features that encodes structural information is required for de-

tecting small structural changes between graphs in a feature-based approach. In this sec-

tion, statistical features of the vertices that occur in the graphs and their connectivity rela-

tionship are discussed. In the simplest form, a graph can be represented by the distribution

of the degrees of its vertices as in [PM99]. However, by looking at each vertex separately,

one of the core concepts of graphs is ignored. Graphs are useful as they model relationship

information between the vertices. Thus, this section proposes to utilize statistical informa-

tion on the co-occurrence of vertices. In this way, the feature representation encodes which

kinds of vertices are connected within a graph – and how frequent this coupling occurs.

The co-occurrence concept can be generalized by looking at occurrences along paths in

the graph and noting which kinds of vertices occur close to each other / in sequence. In

the following definitions, the generalized co-occurrence concept is formally introduced on

the basis of vertex degrees as this information is common to all graphs. If other categor-

ical information (e.g., vertex class labels) is available, the approach could be adapted to

incorporate that information.

Definition 5 (Simple Vertex Path)

With G = (V,E) as a graph, the (m + 1)-tuple (vi0 , . . . , vim) ∈ V m+1 is a simple

(non-looping) vertex path of length m in G iff

∀0 ≤ j < j′ ≤ m : vij 6= vij′

and

∀0 ≤ j < m : (vij , vij+1
) ∈ E.

The set of all simple paths of length m in G is denoted as PG
m .

For the cases of path lengths m = 0 and m = 1, sets PG
0 and PG

1 equal the set of vertices V

and the set of edges E. Using the set of simple paths of length m, a co-occurrence multiset

of degree m captures the frequencies of vertex class (here, vertex degree) sequences.

Definition 6 (Vertex Degree Co-occurrence Multisets)

With G = (V,E) as a graph, the Vertex Degree Co-Occurrence Multiset DG
m of degree m

for graph G is defined as a tuple

DG
m =

(

DSG
m, fG

m

)
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Figure 2: Visualization for the multiset feature representation of a graph G

where

DSG
m = {(δG(vi0), . . . , δ

G(vim)) | (vi0 , . . . , vim) ∈ PG
m}

is the set of all vertex degree sequences occurring on paths of length m in G and

fG
m(dg0, . . . , dgm) =

∣

∣{(vi0 , . . . , vim) ∈ PG
m | ∀0 ≤ j ≤ m : dgj = δG(vij )}

∣

∣

the frequency function of such sequences in G.

The set DSG
m abstracts from individual vertices by only considering their type (i.e., vertex

degree in this example). The degree m of the multiset is not related to the degree of the

vertices in the graphs but only to the length of the examined paths.

As an example, the graph G1 in Figure 1(a) has five paths of length m = 0 (i.e., PG1

0 =
V = {v1, . . . , v5}). The occurring vertex degrees are DSG1

0 = {(2), (3)} with frequen-

cies fG1

0 (2) = 3 and fG1

0 (3) = 2. For m = 1, there are twelve paths (i.e., two per edge).

The combinations of vertex degrees occurring along those paths are DSG1

1 = {(2, 2), (2,

3), (3, 2), (3, 3)}. The frequencies of those paths are fG1

1 (2, 2) = 2, fG1

1 (2, 3) = 4,

fG1

1 (3, 2) = 4, and fG1

1 (3, 3) = 2. The set of vertex degree sequences DSG1

2 is of cardi-

nality 6 and DSG1

3 of cardinality 8. The experiments in Section 4 show good results for

m as low as 2. For greater lengths, techniques such as random path sampling could be

applied to speed up the feature extraction process.

Figure 2 shows a visualization of the co-occurrence multisets DG
1 (on the far left) and DG

2

(on the far right) in the form of bubble charts. The x, y, and z axes denote the degree of

the first, second, and third vertex on a path in G. The size of the bubbles is proportional

to the frequency of the according vertex degree sequences that is also denoted inside the

bubble. For m = 1, the short arrows next to the graph in the middle of the figure show all

paths (i.e., edges) that contribute to the multiset DG
1 . The long arrow in the upper section

of the graph shows a path that contributes to the bubble at coordinate 3-2-3 in the far right

of the figure representing DG
2 .
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3.2 Similarity Measure

With the above definitions, a co-occurrence multiset can be associated with each graph in

the database and with the query graph. Graph similarity can then be assessed in terms of

co-occurrence multisets that capture statistical information on the structure of the graphs.

Next, we describe how this feature representation can be compared via distance measures.

3.2.1 Element-Wise Multiset Comparison

A first approach is to treat the multisets as sparse representations of high-dimensional vec-

tors. Since the multisets are finite, norm-based distance measures such as the Lp distances

can be adapted to compare two graphs represented by such multisets.

Definition 7 (Lp Distance on Vertex Degree Co-Occurrence Multisets)

Given two graphs G1 and G2 with associated vertex degree co-occurrence multisets DG1
m =

(DSG1
m , fG1

m ) and DG2
m = (DSG2

m , fG2
m ) according to Definition 6, the Lp distance be-

tween the two multisets is defined as

dLp
(DG1

m , DG2

m ) =





∑

ds∈(DS
G1
m ∩DS

G2
m )

|fG1

m (ds)− fG2

m (ds)|p

+
∑

ds∈(DS
G1
m −DS

G2
m )

|fG1

m (ds)|p

+
∑

ds∈(DS
G2
m −DS

G1
m )

|fG2

m (ds)|p





1/p

.

In the case of m = 0 and p = 1, the similarity model reflects the one of [PM99] where

graphs are compared using simple vertex degree histograms and the Manhattan distance.

3.2.2 Transformation-Based Multiset Comparison

Another possibility is to employ similarity measures that can inherently cope with weighted

feature sets instead of just feature vectors such as the EMD [RTG98]. For this purpose,

we first introduce the feature signatures used as an input for the EMD, followed by the

definition of the EMD.

Definition 8 (Feature Signatures)

Given an object o represented by features f1, ..., fk in a feature space FS, and an n-

clustering C1, ..., Cn of these features, the feature signature so of the object o is defined

as a finite set of tuples from FS × R:

so = {(ro1, w
o
1), ..., (r

o
n, w

o
n)}
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where roi ∈ FS represents the feature cluster Ci and wo
i = |Ci|

k is the relative cardinality

or weight/mass of the according cluster.

The EMD itself is defined as a linear optimization problem. The similarity between two

signatures so and sq is defined as the minimal cost for transforming the signature so into

the signature sq where a ground distance gd determines the cost of transforming/moving

a unit of mass from a cluster of the first signature to a cluster of the second signature.

Linear constraints on the movement of mass describe the set of feasible combinations of

transformations.

Definition 9 (Earth Mover’s Distance (EMD)

Given two signatures so, sq , and a ground distance gd, the EMD between so and sq is

defined as the minimum over feasible transformations F ∈ R
|so|×|sq|:

EMDgd(s
o, sq) = min

F

{

1

w̃

∑

i

∑

j

F [i, j] · gd(rqi , r
o
i )

}

under linear constraints

∀i, j : F [i, j] ≥ 0

∀i :
∑

j

F [i, j] ≤ w
q
i

∀j :
∑

i

F [i, j] ≤ wo
j

∑

i

∑

j

F [i, j] = w̃

with w̃ = min{
∑n

i=1 w
o
i ,
∑m

i=1 w
q
i }.

Intuitively, the first group of constraints ensures that earth is only moved from clusters of

so to clusters of sq , the second and third group of constraints ensures that no more mass

is removed from or moved to the clusters than their respective weight permits and the last

constraint ensures that in total as much mass as possible is moved.

The similarity of two graphs can be assessed using the EMD by defining a transformation

from the multisets to the signatures of the EMD. The co-occurrence multisets are a close

match to the signatures that the EMD takes as its input.

Definition 10 (Feature Signatures of Graphs)

Given a graph G with an associated vertex degree co-occurrence multiset DG
m = (DSG

m, fG
m),

the feature signature sGm of G for comparison with the Earth Mover’s Distance is defined

as

sGm =

{

(r, w) | r ∈ DSG
m ∧ w =

fG
m(r)

|DSG
m|

}

.
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Figure 3: Adding/deleting edges at random; |DB| = 1000

The cost for transforming one degree sequence into another one can be defined via a

ground distance function. In the simplest case, the sequences can be treated as vectors

from N0
m and compared using Minkowsi distance measures dLp

. In this way, a degree

sequence that deviates from another for example by starting with a degree of 3 instead of

4 will induce a lower transformation cost than one that starts with 1 instead of 4. Distance

measures such as the Edit Distance, which take the sequential character of the represen-

tatives r into account, could also be employed. For undirected graphs, the fact that each

sequence of vertex degrees appears twice in both directions should be accounted for by

adjusting either the signature definition or the ground distance.

4 Preliminary Experimental Results

For the preliminary experiments shown here, a number of synthetic graph databases of dif-

fering cardinalities were created using the method detailed in [VL05] based on sequences

of vertex degrees following a power-law distribution with modifications to ensure that the

graphs are connected and simple. All graphs randomly generated in this fashion had 100

vertices and 150 edges. The average vertex degree was set to 3, resulting in power-law

graphs with a relatively large number of low degree vertices and a relatively low number

of high degree vertices.

In the first set of experiments, 100 graphs were randomly chosen from the database as

the basis for 15 query graphs each that represent different levels of structural deviation

regarding the edge relation. For each of the 15 levels, a random edge was either inserted

or deleted with equal probability. Not accounting for edges that may have been deleted
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Figure 4: Adding/deleting edges at random; 10 edges added/deleted

and consecutively been added again, up to 10% of the the edge relation may have been

changed in this process.

The vertical axis of Figure 4 shows how often the graph on which the query graph was

based was identified as the most similar one out of all 1000 graphs in the database. A

greater path length (denoted as PL in the figure) for the vertex degree co-occurrence mul-

tisets results in a similarity model that is more robust with regard to the structural change

for this experiment. The greater the structural difference, the more can the multisets based

on longer paths distinguish themselves from those of lower degree. The Manhattan dis-

tance on simple vertex degree histograms (cf. [PM99]) is always outperformed by the

multisets of higher degree (i.e., based on longer paths) in this experiment. The EMD with

a Manhattan ground distance slightly outperforms the Manhattan distance for equal path

lengths. The EMD for path length zero is not plotted here, as the results equal those of the

Manhattan distance in the case of a one-dimensional feature space and Manhattan ground

distance.

Figure 4 shows that the higher degree multisets are also less influenced by the cardinality

of the database. Even though the database size on the right is four times the size of the

database on the left, the number of times that the original graph from the database is not

identified as the most similar one to the query graph only slightly increases from 9 out of

100 to 14 out of 100 for the EMD with path length two. The degree histogram approach

jumps from 10 out of 100 to 28 out of 100 for the same increase in database size.

The two figures 4 and 4 show the results of according experiments when considering struc-

tural change that is not limited to the edge relation. Instead, random vertices were removed

together with their adjacent edges. As is to be expected due to the greater level of struc-

tural change, all approaches show a faster decrease of the precision with which they can
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identify the original graph in the database. Greater path lengths still produced better re-

sults in these experiments while the EMD with a Manhattan ground distance was only able

to outperform the normal Manhattan distance for more severe levels of structural change

in this case.

5 Conclusion and Outlook

In this short paper, we showed how complex data objects in the form of graphs can be com-

pared using the EMD by defining a suitable representation of graph features that capture

statistical information regarding the structure of the graphs. In this way, it is possible to

identify graphs that resulted from some other graph through a process of structural change

without having to resort to typically very expensive similarity measures that directly take

the graph structure into account.

The general viability of the approach was shown using a Manhattan ground distance for the

EMD together with vertex degrees as the sole information regarding the vertices. For this

ground distance a projection-based lower bound for the EMD [CG97] can be applied in a

filter step in order to gain efficiency, especially for higher degrees of the multiset. Also

the EMD-L1 algorithm from [LO07] can be employed to speed up retrieval. While the

preliminary results using this simple ground distance were generally good, the Manhattan

ground distance potentially limits the benefits of longer co-occurrence sequences that are

used as signature component representatives for the EMD. Other ground distances that

take the sequence character of the feature representatives (i.e., sequences of vertex degrees

in this case) into account may present an opportunity to further improve the technique.
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