Software Industrialization and Architecture Certification

Christoph Rathfelder, Henning Groenda, Ralf Reussner

Christopf Rathfelder, Henning Groenda

Software Engineering
FZI Forschungszentrum Informatik
Haid-und-Neu-Strafle 10-14
76131 Karlsruhe
{rathfelder, groenda}@fzi.de

Ralf Reusser

Chair for Software Design and Quality
Institut fiir Programmstrukturen und Datenorganisation
Universitdt Karlsruhe (TH)
reussner@ipd.uka.de

Abstract: The industrialization of software development induces several changes
to the development process as software development becomes distributed over
company borders. They cooperatively develop individual components that are later
assembled to software systems. This division of responsibilities requires a stricter
quality assurance and in fact, creates a setting where the certification of software
products becomes increasingly interesting. Until now, there are a few software
product certification approaches, as in non-component-based software develop-
ment processes, the considerable effort of software certification was only rarely
justified. Therefore, existing certification approaches do not consider and support
the requirements posed by industrialization, namely the separation of component
development (by various providers) and system development. This paper presents
a software certification approach which takes these requirements into account and
allows certifying individual components as well as system architectures.

1 Introduction

The industrialization of software engineering is in an early stage. Other more mature and
well-established engineering disciplines, like car manufacturing or civil engineering are
more advanced regarding industrialization of products’ production. Here, industrializa-
tion is a management approach to lower the costs per unit. However, the main difference
between software development and the industrial production is that software is an imma-
terial good, which can be copied cheaply after its development.

169

Therefore, the approaches used in the production processes of more mature engineering
disciplines cannot directly be mapped to software engineering. However, approaches
lowering the costs in software development, deployment and management can be sum-
marized in the process of the “industrialization of software”, as discussed below.

One important part of software industrialization is the outsourcing of development tasks
to specialized organizations, which means that the software development is distributed
over several companies. This division of responsibilities requires a stricter quality assur-
ance. In order to prevent conflicts of interest between the involved companies, a stan-
dardized quality assessment is often necessary. Ideally, the results of such quality as-
sessments need to be comprehensible for the commissioning party. In reality, this
understanding might require too many resources and is often not feasible, as component
developers are often not willing to open a component black box to preserve specific
knowhow. Due to this, it is interesting to let an independent third party perform the qual-
ity assessments. This independent institution assesses and certifies statements about the
software system and its quality. Certification gains interest, if (a) the quality of an arte-
fact is important but (b) hard to assess for an outsider. The latter can be the case due to
the lack of resources, knowledge or information.

In the context of software engineering, certification is nowadays mainly used to certify
the knowledge of individuals or the execution of mandatory processes and process steps.
The certification of software products or artefacts of the development process has still
not found a wide distribution. It is only used in a rather limited range in special domains,
e.g. safety critical systems like control systems of nuclear power stations.

The contribution of this paper is the presentation of a software certification process. The
certification consists of an architecture and component certification and allows the inte-
gration of several evaluation techniques. Furthermore, the paper includes an overview of
software certification and software industrialization.

The paper is structured as follows. Section 2 presents the foundations of software certifi-
cation and software industrialization. Section 3 shows the requirements on certification
in the context of software industrialisation and presents an approach to realize this certi-
fication. Section 4 concludes the paper and provides an outlook.

2 Foundations

2.1 Software and Certification

In the domain of software engineering, three different types of certification are distin-
guished: certification of products, processes, and personnel. These three disjoined types
form the Software Quality Certification Triangle [V099], whereas each type affects the
development and therefore the quality of software systems.

170

Process Personnel

Figure 1: Software Quality Certification Triangle [V099]

The certification of personnel focuses on the knowledge and competence of individual
engineers. Such a certificate can certify the presence of competences necessary to per-
form certain activities during the software development process. The Certified Tester
and the Certified Professional for Requirements Engineering offered by the International
Software Quality Institute (iSQI)' are two examples for these certifications. In addition
to these more general certifications, there are a lot of technology and product dependent
certificates available. The respective vendors are responsible for the definition of the
curriculum. The certificate attests certified persons the required knowledge in a technol-
ogy (e.g. Java) or a certain product (e.g. Microsoft Windows). Sun for example offers
several different Java certificates within their Java Certification Program®. The knowl-
edge helps a lot in handling the technologies or products. Nevertheless, a point of criti-
cism of this certification type is that it is not certified that the certified knowledge is used
during the development of a software system.

In contrast to the certification of personnel, the process certification is not linked to
specific persons. It is rather valid for a department or a whole enterprise. To become
certified, the enterprise has to prove that its processes are performed in a documented or
specified way. The probably most well-known process certificate is the certification
based on ISO9001 [In00] and its predecessor ISO9000, which defines the necessary
activities of a general quality management process. Regarding software development, the
Capability Maturity Model Integrated (CMMI) [Kn06], which is used to evaluate the
software development process, is the most widely used process certification. However,
there is no hard evidence that a better process automatically leads to a higher product
quality. Even with a certified development process (e.g. CMMI Level 5) it is still possi-
ble that the resulting product has bad quality attributes [MWO08].

The product certification focuses on a product and its related artefacts which were
created during its development (e.g., test protocols, interface specifications, models). In
the case of car manufacturing, the type approval is an example for a product evaluation
and certification. Unfortunately, product certification has nearly no distribution in soft-
ware engineering. It is used only in some special domains, for example safety critical
systems within nuclear power station or airplanes.

! http://www.isgi.org
? http://www.sun.com/training/certification/java/index.xml

171

Although disjoined, all these types of certification affect the quality of software. Voas
already mentioned in [V099] that a balanced combination of them may provide the best
results and expressiveness. However, there is still no scientific knowledge on which is
the right ratio. An example that combines product and process certifications is the Com-
mon Criteria (CC) [Cc07]. The CC is an internationally accepted standard that is used to
certify the security of software systems. On the one hand, it defines mandatory activities
that have to be performed during development and on the other hand it also includes an
assessment of the final system.

Without certification, the software developer makes statements about its software prod-
uct which the customer has to trust. Software certification aims at increasing the trust-
worthiness of statements about software. This is achieved by software assessments con-
ducted by an independent third party. The resulting certification scenario and the
participating roles are sketched in Figure 2 and described in the following. The certifica-
tion authority assesses the product of the developer with a standardized and reproducible
evaluation method in order to assure comparable evaluation results. A certificate is is-
sued if the assessment leads to the conclusion that the statements are correct. Customers
interested in the software can trust the certification authority instead of the developer
himself as this is an independent authority which has a business model based on being
trustworthy which makes them issuing wrong certificates unlikely.

Cort fizatinn
AN Aushority
[-
E 3
;_3 %‘.‘ N
£ N
(5] \/
: ‘;'-'3"]\\
- Statement L zf\?p)
Software (CM / Custa
Developor =7 ustomer

Figure 2: Software Certification Scenario

The acceptance and therewith the success of a certification initiative depends on several
factors. One of most important factors is the independence and the trustworthiness of the
certification authority. The trustworthiness, in turn, is affected by the performed certifi-
cation. It has to be reproducible, which means, that a second certification of the same
product yields the same results. This is of course the most important part of the trustwor-
thiness.

172

2.2 Software Industrialization

Regarding the shift from manufacturing to industrial development and production, the
software engineering discipline should learn from more mature engineering disciplines
which already have undergone industrialization. Following alteration of these mature
disciplines during their industrialization can be translated into software development:

Component-based development and standardization:

Car manufacturing is one example that has obviously a very high degree of
standardization and reuse of the same components within several car models.
For example, car engines are components which are reused within various car
models of a brand, as this reduces the development cost for each individual car
model. However, in order to allow flexible adoptions of the product, a stan-
dardization of the components respectively their interfaces is necessary. For ex-
ample, electrical plugs must have the same measures and compatible cable con-
nectors to allow the reuse and assembly of electronic car components.

Outsourcing and Offshoring:

Outsourcing and offshoring of development and production process steps are
driven by specialization of work and are the second major ingredient of indus-
trialization. Specialized companies are given specifications and entrusted with
performing these processes steps or with delivering components. However,
there is a slight difference between outsourcing and offshoring [Ta05]. In the
case of outsourcing the main reason is focusing on the core competences of an
enterprise, whereas offshoring is additionally driven by cost differences in a
globalized market.

Model-based Quality Assessments:

In more mature engineering disciplines especially if they have undergone indus-
trialization, an early quality assurance is an essential part of the development
process. The quality of a product is thereby assessed on base of blueprints be-
fore the production of the product is started. Regarding bridge construction as
an example, a structural engineer uses an architect’s plan or model to calculate
extra-functional properties e.g. the bearing capacity of a bridge before it is built.
Car manufacturers likely use simulation techniques to conduct crash tests virtu-
ally on computers to check the quality of an engineered car, reduce costs, and
speed up the development process by reducing the number of necessary proto-

types.

173

With respect to software the approaches of component-based software development
(CBSD) [SGMO02] and also service oriented architectures (SOA) [KBS06] can be seen as
first steps towards the industrialization of software development. Both of these ap-
proaches split complex software system into independent smaller parts with thorough
requirement specifications - the components respectively services. The software sys-
tem’s architecture model describes the structure of the system and the interconnections
between its elements [BCK99]. Due to the seclusiveness of the components and services
it is possible to mandate other companies with their development. Quality assurance and
in particular its proactive integration into software development processes is still a chal-
lenge in software engineering — in theory as well as practice. Especially the quality pre-
diction and evaluation on base of models, respectively the software’s architecture model,
is a field in which software engineering is still immature compared to other engineering
disciplines.

3 Certification and Software Industrialization

In this section we present how software certification should be accounted for in the soft-
ware development process in order to support striving for software industrialization.
Especially the distribution of the development process over several companies, caused
by outsourcing and offshoring, requires a strict quality management. Certification of
quality by an independent third party is an important part of this quality management.

As already mentioned above, component-based development and early model-based
quality evaluations play an important role within software industrialization. The certifi-
cation process should therefore allow an early quality assessment and certification on
base of a system’s architecture. This implies evaluations based only on the architecture
model and the specification models of the assembled components. In so doing, flaws in
the architecture can be detected faster and corrected without having to waste money for
an inappropriate implementation first. The components themselves can be either bought
from marketplaces or developed by contractors.

The evaluation of a software system’s architecture without having a complete implemen-
tation needs model-based prediction and evaluation techniques as the system cannot be
tested in this case. Each used component has to have a model of its behaviour, which can
then be used for the architecture’s assessment. The quality of the evaluation results is
directly affected by the quality of the component models. Our approach therefore in-
cludes, in addition to the architecture certification, a component certification which certi-
fies the correspondence of a component’s model and its implementation. Each quality
attribute is allowed to have a separate model, as long as the model of different compo-
nents can be composed to allow inferences on the architectural level. If the component is
not implemented yet the models can additionally be used to state the requirements for
certain components in order to fulfil the requirements on the system level.

174

The distinction between architecture and component certification is an often neglected
fact, although they differ in the certified statements. The first certifies that a modelled
system will fulfil certain quality requirements; the later certifies that the quality model of
a component is equivalent to a running component instance. We therefore propose to
consider these as different parts of the certification process of software products. In the
following, we describe these two parts in more detail.

3.1 Architecture Certification Process

Requirements posed on software systems differ dependent on the application scenarios
of the software system. For example, a business information system typically requires
only a certain percentage of all response times below a defined threshold. In contrast, a
robot control system commonly requires hard deadlines, which means that all responses
are below such a threshold. It must be mentioned, that even though most examples are
based on performance of a systems, the certification process should allow the certifica-
tion of other quality attributes (e.g., reliability, maintainability) as well. A certificate
simply stating good or bad quality without taking the requirements into account is hence
not desirable. For these reasons, the certification approach should be adaptable to allow
the evaluation and certification with respect to different quality requirements. Neverthe-
less, the certification process should also support the usage of a standardized require-
ments catalogue which is defined for certain usage domains (e.g. business information
systems) and thereby eases the comparison of different software systems within the same
domain (e.g. a standardized response times for web applications).

The proposed approach to certify software architectures is illustrated in Figure 3. It con-
sists of four activities which are described in the following in more detail.

P L L L T T .
i b
Centification Authority Architecture f

1 Model
i e i {
Architect N {
1) Definition of \ Quality Z) Selection of Required i
Quality Statementsa / Statement || Evaluation Technique i
} w i
> 0
@ 1
0 i
2 '
7 /l - 3 {
é . y = 1
4) Certification Assessment | Fealualo I

Report

X i
T

Figure 3: Architecture Certification Process

175

The certification of an architecture starts with the Definition of Quality Statements that
should be certified. This is the only activity which can and should be influenced by the
software architect. This step ends up with the document, which includes all quality
statements (QS). One example of a QS is: “For less than 6 concurrent users, the response
time of the service A is below 3 seconds.” As already mentioned above, it is also possi-
ble to include predefined QS in order to compare different systems of the same applica-
tion domain. The use of a standardized language for the definition of these QS is neces-
sary as this reduces semantic ambiguities. Only strict semantics of the certified QS
avoids misinterpretations. Furthermore the standardization of the QS language eases the
automatic processing, which is necessary to guarantee reproducible assessment results.

In the Selection of Required Evaluation Technique step, the QS are analyzed and the
mandatory evaluation techniques are derived. This step is necessary because there is no
evaluation technique available, that can be used for all quality attributes of a system
based on its architecture. Even if only one quality attribute is regarded, there are differ-
ent techniques which differ in the expressiveness of their results, their complexity, and
the effort to perform the assessment. There are some quality attributes (e.g. performance)
for which evaluation techniques are available that can be performed automatically. Two
examples for tool-supported techniques to evaluate the performance of a system are
SPE-ED [SW97] and the PCM-Bench [BKRO08]. A high ratio of automation throughout
the evaluation is expected to produce reproducible evaluation results. However, there are
some quality criteria (e.g. maintainability) that still cannot be evaluated automatically. In
these cases an evaluation expert is needed which analyzes the architecture based on his
knowledge and experience. In order to achieve reproducible and correct results, the
evaluation expert should be supported with additional utilities, for example checklists or
guidelines. The selection of the adequate utilities for the evaluation expert is also part of
this step. The effort for assessing QS can be prohibitive if the statements should be abso-
lutely certainty. Falsification approaches systematically identifying possible counter-
examples to invalidate the QS which can then be checked until a certainty threshold is
reached. They are used to reduce the complexity although this negatively affects the
certainty. The decision, if verification or extensive testing is required is also made in this
step.

In the following Assessment step, the different evaluation methods are conducted and
the results are logged. This step requires a description of the architecture model which is
either transformed into an input model required by the tool-based and automated evalua-
tion techniques or used by the evaluation expert as base of his analysis. This step addi-
tionally requires the already mentioned component models. As these models are gener-
ally provided by the component developer they have to be certified to guarantee that the
model corresponds to the component’s implementation. The therefore required compo-
nent certification is explained in more detail in the next section. The result of this proc-
ess step is an Assessment Report which includes the results of each evaluation.

176

In the last process step, namely Certification, the assessment report is checked. It is
checked if the evaluation methods indentified in the second step have been performed.
The respective assessment results are compared with the quality claims of the software
architect, he has formulated as QS in the first step. If the assessment results substantiate
these statements the QS are certified. A certificate thereby certifies only the compliance
of the software with the quality statements. In order to have a comparable evidence of a
system’s quality, it is necessary to use QS which were standardized and predefined by
the certification authority. The certificate is only valid for the assessed version of the
architecture model and the component models and looses its validity if the architecture
or components within are changed. Hence, a certificate must contain references to the
assessed information.

3.2 Component Certification Process

The focus of the component certification process lies on certifying the correlation of a
component’s model and the component’s implementation. These models are required
during the evaluation of the architecture for assessing the QS and reason about the qual-
ity of the assembled system. Please note, that there should be at most one model for each
quality attribute and in total there can be more than one model. The accuracy informa-
tion can be seen as a kind of certification level — higher means better investigated but
also with a higher assessment effort. This is the reason why the highest level is not al-
ways the best, as the reached accuracy has to be weigh against the resulting costs. The
complexity of the assessment of the validity of a model for non-trivial components heav-
ily depends on the quality attribute and can be hard or even impossible in practice. For
this reason, a falsification approach is used. However, this means that the necessary
effort to make a statement with a predefined certainty scales with the assessed degrees of
freedom. The whole process for component certification and the participating roles are
shown in Figure 4 and explained in the following.

177

S o Em E Em E N W Em Em oE E o,

Vv . ~
¢ Cettitication Authorlty "
ﬂ Validity | 1
‘ " Statements 1
[whper — e— _ 1
1) Definition of Component 1-:]'“*;" appli;:a- : |

" Model(s ility of models i]
Quality Statements (s) dn Broeslt 1
— =] 1
Component g e 1
Implementation T |
e S [
43 [
& 1
e 1
N w
222 !
32|~ 1
B = I
z
Validity = I
Statements < 1
& 5 Assessment
~Component RiComiien Results I :
£i,nf" del(s)

= ‘\ F

Implementation - ————— . e e —————— -7

Figure 4: Component Certification Process

In step 1, the component developer defines validity statements for the component’s be-
haviour model(s). As mentioned above, these validity statements specify the range con-
straints and accuracy which influence the model’s validity. For example, a mean re-
sponse time below 2 seconds can only be provided for less than 10 concurrent users and
in a defined environment. The decision which quality attributes should be certified and
with which accuracy is the developer’s choice, but he can base his decision on common
domain-specific standards. The developer has to provide the necessary component
model(s), its validity statement, and the implementation of the component to the certifi-
cation authority.

The assessment in step 2 can be split into three consecutive process steps. In the begin-
ning in step 2.1 the applicability of the models for the validity statements and the re-
garded quality attributes is checked. This is especially important with respect to architec-
ture certification as models from different components must be composable to allow
analyses on the architectural level. In step 2.2, models and implementation are checked
in a static context. For example the provided and required interfaces of a component can
be checked against their specification stated within the model. However, quality attrib-
utes like performance need to be checked in a dynamic context which is assessed in step
2.3. The assessment of dynamic behaviour requires a lot more effort for checking, as this
is in most cases influenced by the usage profile, component configuration, required
components, the used middleware, the operating system, and the hardware environment
[BRO6].

178

The costs and effort for provisioning the hardware and software environment for the
component scale with the generality of the certificate. This makes test-beds desirable
which allow varying these parameters. These test-beds can be realized for example with
virtualization or simulation techniques. Software testing approaches [My04; EW01] can
be applied for many quality attributes, e.g. performance, to gain confidence in the valid-
ity of the model. Most approaches are based on statistical testing, as exhaustive testing
requires too much effort for non-trivial components. After step 2 all assessment results
from the different process steps are available.

In certification step 3 the decision is made if a certificate can be issued. Therefore the
evaluation results are used to assess if the component model(s) are valid abstraction for
the implementation with respect to the validity statements. An issued certificate has to be
closely connected to the component model(s), validity statements, and of course to the
implementation. A packaging of model(s) and validity statements which only has a ref-
erence to the implementation is reasonable, as these are the interesting artefacts for ar-
chitectural analyses. If models are proven to be invalid the software developer will not
receive a certificate, but should receive feedback about the points of failure.

4 Conclusion and Outlook

This paper provided a short overview about software certification and software industri-
alization. It additionally pointed out the necessity of software certification for software
industrialization. The certification approach sketched in this paper enables to certify the
correctness of quality statements concerning quality attributes of a software systems.
Based on this foundation, the need for a partition of software certification processes
according to the certification on architecture and component level was presented.

The presented certification process allows the usage of user-defined just as well as stan-
dardised quality statements. This allows on the one hand using the certification as indi-
vidual quality check. On the other hand the certification process provides a tool to com-
pare different software systems. The approach certifies a software system based on its
architecture and models of the included components. Thus, the certification can help in
an early development stage to assess the quality of an assembled system although some
components are still not implemented yet (but described in models).

In addition, the approach forms a framework which allows the integration of different
software evaluation methods into one common quality certification process. The ap-
proach is thereby not limited to certain quality attributes and can be used to certify single
quality attribute as well as a combination of different ones.

As future work we plan to develop a tool supported performance certificate. As a first
step a language is developed which allows the definition of performance relevant quality
statements. In parallel, we develop a test-framework for performance-models of compo-
nents.

179

References

[BCK99]
[BKROS]
[BROG6]
[Cc07]
[EW01]

[In00]
[KBS06]

[Kn06]
[MWO08]

[My04]
[SGM02]

[SW97]

[Ta05]
[V099]

180

Bass, L.; Clements, P.; Kazman, R.:. Software architecture in practice. Addison-
Wesley ; Bonn, 1999.

Becker, S.; Koziolek, H.; Reussner; R.: The Palladio Component Model for Model-
Driven Performance Prediction. Journal of Systems and Software, To appear, 2008.
Becker, S.; Reussner, R.: The Impact of Software Component Adaptation on Quality
of Service Properties. Lobjet, 12(1):105-125, 2006.

CCRA Members. The Common Criteria v3.1, 2007.
http://www.commoncriteriaportal.org.

El-Far, L.K.; Whittaker, J.A.: Model-Based Software Testing. In J. J. Marciniak, editor,
Encyclopedia of Software Engineering. Wiley, 2001.

International Organization for Standardization. ISO 9001:2000, 2000.

Krafzig, D.; Banke, K.; Slama, D.: Enterprise SOA. Prentice Hall PTR, reprint. edi-
tion, 2006.

Kneuper, R.: CMMI. dpunkt, 2nd edition, 2006.

Maibaum, T.; Wassyng, A.: A Product-Focused Approach to Software Certification.
Computer, 41(2):91-93, Feb 2008.

Myers, G.J.: The Art of Software Testing. Wiley, Hoboken, NJ, 2nd edition, 2004.
Szyperski, C.; Gruntz, D.; Murer, S.: Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, NY, 2002.

Smith, C.; Williams, L.: Performance engineering evaluation of object-oriented sys-
tems with SPE-ED. In Computer Performance Evaluation Modelling Techniques and
Tools, pages 135-154, 1997.

Taubner, D.: Software-Industrialisierung. Informatik Spektrum, 28(4):292-296, 2005.
Voas, J.: Certification: reducing the hidden costs of poor quality. Software, /EEE,
16(4):22-25, 1999.

