Sicherheit 2006 - "Sicherheit - Schutz und Zuverléssigkeit"

Holistic Testing of Interactive Systems Using Statecharts
Fevzi Belli, Christof J. Budnik, Axel Hollmann

Department of Electrical Engineering and Information Technology
University of Paderborn, Warburger Str. 100, D-33098 Paderborn
{belli, budnik, hollmann}@adt.upb.de

Abstract: Apart from the growing complexity of computer-based systems, their
user interfaces, mostly realized graphically, are becoming more complex. Conse-
quently, the analysis and testing of such systems demands a growing amount of ef-
fort. This paper presents an approach to generate and select test cases based on a
"statechart" specification of the system under consideration. Statecharts are trans-
lated into (extended) regular expressions and are augmented with so-called faulty
transitions. Using different test/coverage criteria test cases are generated to test the
system under test. Finally the results of two case studies are compared. The nov-
elty of the approach stems from the holistic view that takes undesirable malfunc-
tions of the system into account as a complementary step to the modeling of the
desirable functions of the system.

1 Introduction and Related Work

Testing is the traditional validation method in the software industry. There is no justifi-
cation, however, for any assessment of the correctness of the system under test (SUT)
based on the success (or failure) of a single test, because there can potentially be an infi-
nite number of test cases. To overcome this shortcoming of testing, formal methods have
been proposed, which introduce models that represent the relevant features of the SUT.
The modeled features are either functional behavior or the structural issues of the SUT,
leading to specification-oriented testing or implementation-oriented testing, respectively.
This paper is on specification-oriented testing; i.e., the underlying model represents the
system behavior interacting with the user’s actions. The system’s behavior and user’s
actions will be viewed here as events, more precisely, as desirable events if they are in
accordance with the user expectations. Moreover, the approach includes modeling of the
faults as undesirable events as, mathematically spoken, a complementary view of the be-
havioral model.

State-based methods have been used for almost four decades for the specification and
testing of system behavior, e.g., for specification of software systems [1], as well as for
conformance and software testing [2, 3, 4]. Also, the modeling and testing of interactive
systems with state-based model has a long tradition [5, 6, 7]. These approaches analyze
the SUT and model the user requirements to achieve sequences of user interaction (UI)
which then are deployed as test cases. [7] introduced a simplified state-based, graphical

345

3. Jahrestagung Fachbereich Sicherheit der Gesellschaft fiir Informatik

model to represent Uls; this model has been extended in [8] to consider not only the
desirable situations, but also the undesirable ones. It is, in most practical cases, not feasi-
ble to test Uls [9]. A similar fault model as in [8] is used in the mutation analysis and
testing approach which systematically and stepwise modifies the SUT using mutation
operations [10]. Although originally applied to implementation-oriented unit testing,
mutation operations have also been extended to be deployed at more abstract, higher lev-
els, e.g., integration testing, state-based testing, etc. [11]. Such operations have also been
independently proposed by other authors, e.g., “state control faults” for fault modeling in
[12], or for “transition-pair coverage criterion” and “complete sequence criterion” in [4].
However, the latter two notions have been precisely introduced in [8] and [7], respec-
tively, earlier than in [4]. A different approach, especially for graphical user interface
(GUI) testing, has been introduced in [13]. Statecharts [14] have become very popular in
software construction, especially for modeling of specific features as to conditional
events, hierarchy, history, concurrency, etc. Several approaches exist to formalize the
semantic of statecharts, e.g., by extended finite state machines [15], flow graphs [16], or
Z [17]. In this paper, a formalization of statecharts by extended regular expressions
based on [18, 19] and [20] is used.

The present paper starts with the existing approaches to generate test cases [16, 21] and
(i) generalizes the statechart-based fault model, and (ii) integrates the complementary
view into this fault model. The given statechart will graphically be augmented to pro-
duce the superset in order to enable a simple mechanism for complementing. This is the
primary novelty of the holistic approach introduced in this paper. This new approach
comprehensively extends our “event sequence graph (ESG)” approach to ,,high-level*
visualization by statecharts. Analog to the usage of regular expressions in [8, 22] for an
algebraic handling of ESGs and the specific modeling and testing features, the present
paper uses extended regular expressions that are equivalent to statecharts in their pro-
duction and recognition capability. To our knowledge, this view is novel and thus has
not been exploited for testing. Section 2 briefly summarizes the background of the
approach and the prior work of the authors before in Section 3 the conversion of
statecharts into extended regular expressions is explained. The fault model and coverage-
based test sequence generation aspects are introduced in Section 4. In Section 5, a
nontrivial application compares the ESG approach with the present statecharts approach
and gives hints for the practice. Section 6 concludes the paper and refers to future work
planned.

2 Modeling and Testing of Interactive Systems

[8, 22] introduced a graphical representation of both the behavioral model and the fault
model of the SUT which enables a scalable generation and selection of test cases. That
work uses event sequence graph (ESG) for representing the user and the system behavior
as well as user-system interaction. Basically, an event is an externally observable phe-
nomenon, such as an environmental or a user stimulus, or a system response, punctuating
different stages of the system activity. It is clear that such a representation disregards the
detailed internal behavior of the system and, hence, is a more abstract representation
compared to, for example a finite-state automation (FSA) [23]. A simple example of an

346

Sicherheit 2006 - "Sicherheit - Schutz und Zuverléssigkeit"

ESG is given in Figure 1. Mathematically, an ESG is a digraph and may be thought of as
an ordered pair

ESG=(V,E), ()]

V being a set of vertices (nodes) uniquely labeled by some input symbols of the alphabet
2 and E a non-empty relation on V, with elements in E representing directed edges
(edges) between the vertices in V. As a convention, a dedicated, start vertex is the entry
of the ESG whereas a final vertex represents the exit, denoted by an incoming and out-
going edge, respectively.

B

Figure 1: An event sequence graph

Inspired by finite state automata (FSA), [8, 22] uses also regular expressions for describ-
ing the patterns of interactivity between the system and its environment. Following the
usual conventions, given an alphabetZ, regular expressions are denoted by sequences of
zero or more symbols a, b, ¢, ... of 2. Such sequences are associated with a set of opera-
tions, namely, concatenation, an operation that relies on no explicit symbol, selection
(union), denoted by +, and iteration (Kleene’s Star Operation, catenation closure), de-
noted by *. As an example, the corresponding regular expression of Figure 1 is

R=(a(b+c)(b+c)*d) @)

which indicates that a is followed by at least one occurrence of either » or ¢ and ends
with d. Examples of the generated sequences are: abd, acd, abcd, acbd. The patterns of
interactivity between any system M and its environment, denoted by an expression R
such as (2), can also be described in terms of a grammar G, based solely on 2, of a FSA
equivalent to M. Therefore, the notation L(M) = L(G)= L(R) might be used without

causing any confusion.

The approach for visual modeling, analysis und testing system behavior described in [8,
22] can be applied to ,,high-level“ visualization by statecharts. A statechart diagram spe-
cifically describes possible sequences of states and transitions through which the system
can proceed during its lifetime as a result of reacting to discrete events. Today UML
statecharts are a de facto standard in industry for modeling system behavior [24].

3 Statecharts and Extended Regular Expressions

Statecharts extend the conventional state-transition diagrams by adding the notions of
communication, hierarchy, concurrency, and history function. Regular expressions ade-
quately represent finite state automata. In order to enable a formal representation of
statecharts, this paper refers to [18, 19, 20] that use regular expressions for this purpose.

Extended Regular Expression. LetX be an alphabet that composes a set of symbols.

347

3. Jahrestagung Fachbereich Sicherheit der Gesellschaft fiir Informatik

We extend the notion of regular expressions across X and the described sets of strings:

— When E and F are regular expressions, then E || F' is a regular expression describ-
ing the concurrency of the languages L(E) andL(F), that is
LE||F)=L(E)|| L(F)={w|Je€ L(E) and 3f € L(F),wee]|| f} with
elle=c¢lle=e,VeeZandabl|cd=a(b|cd)vc(ab|d)Va,ceXZ, b,d e 2* withe
as the empty string denoting the set {}.

— When E is a regular expression and 4 a pseudo symbol representing the regular ex-
pression E, then the pseudo symbol A describes the language L(E), that is

A= L(FE) (A4ishandled in a regular expression as a symbol).
— A symbol s is an 3-tupel s=(e,g,a) with event e, guard g, if existing, must be

satisfied, and event e have been occurred, and action a, performed when event e
occurs and guard g 1is satisfied

For transferring a statechart in an extended regular expression, each transition of this
statechart will be denoted by a symbol s of the alphabetX . This regular expression,
based on the alphabet X , is to be built by following rules.

3.1 Sequential Transitions
- A I ~ - ' - =~ Ii
e 0 e BT e T B T e ET
Figure 2: Sequential transitions
Figure 2 represents a sequence of state transitions in a statecharts. In an extended regular

expression, a sequence of transitions is denoted by the concatenation operator. For the
statechart in Figure 2 the corresponding expression is

R:t] tg...tk (3)

3.2 Choice of Transitions

A transition from a single state to a set of follow-on states forms a choice of transitions.
In Figure 3, a start at the state s, enables transition into one of the states s, ...,s,.

A

Figure 3: Choice of transitions

A choice of transitions is denoted by the union operator “+”. The regular expression for
the statechart in Figure 3 is given by
R :t1+12+...+tk (4)

348

Sicherheit 2006 - "Sicherheit - Schutz und Zuverléssigkeit"

3.3 Transitions To and From States with Hierarchy and Concurrency

The transitions to and from the enclosing state form a sequence. In Figure 4, the transi-
tion ¢ is followed by internal transitions; the sequence concludes with the transition ;.

=)

Figure 4: Transitions to and from composite states

Using the pseudo symbol ?composite=tregion 1] ---||tregion » the statechart in Figure 4 is repre-
sented by the expression

R =l tCnmpasite 7] (5)
where fpegion ; With i=1,..., n denotes a regular expression that represents a sequence of

internal transitions in region i, starting at the initial state and ending at any substate s &

SComposite, Region i+

An enclosing state with one region describes a composite state with a single set of sub-
states composed in a hierarchy. Thus, an enclosing state with more than one region de-
scribes a composite state of concurrent regions, each with a set of disjunctive substates.

3.4 History State

A transition ending in a history state indicator ‘H’ can be represented by a set of guarded
transitions to substates of the enclosing state.

o

[0 | 1|
e I} 3 R

W . F 1'%
o=@l]> @
.]) | [t
J

Figure 5: History state

The guard has to be a variable that saves the last state the system was transferred into
within the composite region. Therefore, all internal transitions of the history have to be
extended by an action setting the variable on the source state of the internal transition
(Figure 5). To resolve likely conflicts among multi-level transitions (z,), the new transi-
tions are indicated (¢, £,,).

4 Test Case Generation from Statecharts
This approach analyzes the statechart model of the system under consideration to

generate test cases, using the test criteria introduced in Section 4.3 below.

349

3. Jahrestagung Fachbereich Sicherheit der Gesellschaft fiir Informatik

4.1 Fault Model

For modeling the illegal, i.e., undesirable user interactions the given statechart is to be
complemented by error states and faulty transitions (Figure 6). The notations error state
and faulty transition are used for explicitly describing the faulty behavior of the modeled
system.

= S T G

[
L '

Figure 6: Fault model - error state and faulty transition

Faulty transitions run from each state of diagram to an error state caused by the events
that trigger no (legal) transition in the context of this state. In Figure 6, only the (legal)
transition #; can be triggered when the system is in state s;. Therefore, the faulty
transition from state s, to the error state is triggered by the faulty transition ¢, ¢, or t,, if
the transition set is given by {¢#, t, t; t,}. The transitions represented by dashed lines are
faulty ones. To generate the faulty guarded transitions the guards have to be negated, if
existing. The test criteria in [8, 22] are based on the coverage of all n-tuples (n>2) of
legal and illegal events of user interactions. For statechart-based test case generation,
other criteria are needed [21].

4.2 Test Criteria and Their Application to Statecharts

Based on the fault model introduced in the last section, legal and faulty transitions pairs
can be defined that are to be covered as a stopping rule of the test process.

Transition Pair. 4 transition pair (TP) is a sequence of a legal incoming transition to a
legal outgoing transition of a state.

Faulty Transition Pair. 4 faulty transition pair (FTP) is a sequence of a legal incoming
transition to a faulty outgoing transition of a state.

Test Criterionl: Transition Pair Coverage (TPC). For any state of a statechart,
generate test sequence(s) that sequentially conduct each TPs of any states.

Test Criterion2: Faulty Transition Pair Coverage (FTPC). For any error state of a
statechart, generate test sequence(s) that sequentially conduct each FTPs of any state.

TPC guarantees that all possible (legal) functions in each state of a system will be tested
and the FTPC guarantees that all potential malfunctions, which can be derived from the
given specification, will be tested. In order to generate tests, following rules realize the
test criteria above [25], producing following application rules.

Application Rule: Hierarchy.
(i) A transition to an enclosing state is equivalent to a transition into its initial substate.

350

Sicherheit 2006 - "Sicherheit - Schutz und Zuverléssigkeit"

(i1) A transition from an enclosing state is equivalent to the transitions from each of its
substates.

(iii) The transition(s) that arose from (i) and (ii) must be taken into account when
constructing legal and faulty transition pairs and test sequences with Test Criterion]
and Test Criterion?2.

Application Rule: Concurrency.

(1) Any transition within a region i of an enclosing state with concurrency has to be
combined with any other transition in the regions j with j=i to form transition pairs.

(i1) The transition(s) that arose from (i) must be taken into account when constructing
legal and faulty transition pairs and test sequences with Test Criterionl and Test
Criterion2.

Application Rule: History.

(i) A transition to a history state is equivalent to a guarded transition to any substate of
the enclosing state. This guard enables the last state to be the enclosing state the
system was within and to resume from.

(i) The transition(s) that arose from (i) (and negative values of guards for faulty
transitions) must be taken into account when constructing legal and faulty transition
pairs and test sequences with Test Criterionl and Test Criterion2.

4.3 Test Case Generation

Following definitions are sufficient to describe the test generation algorithm [8, 22]. A
sequence of n consecutive (legal) states that represents the sequence of n+ I transitions
is called a transition sequence (TS) of the length n+1, e.g., a TP (transition pair) is a TS
of the length 2. A TS is complete if it starts at the initial state of the statechart diagram
and ends at a final state; in this case it is called a complete TS (CTS). A faulty transition
sequence (FTS) of the length n consists of n-/ subsequent transitions that form a (legal)
TS of the length n-2 plus a concluding, subsequent FTP (faulty TP). An FTS is complete
if it starts at the initial state of the statechart diagram; in this case it is called faulty com-
plete TS, abbreviated as FCTS. The test criteria and the rules introduced in the section
before for identifying all potential incoming and outgoing transitions of a state enable
the application of the approach. Generation and selection of test cases can be carried out
using the statechart of SUT or its equivalent extended regular expression.

We assume that an extended regular expression R over the alphabet X is given that de-
scribes a statechart. The symbols of X represent the set of transitions in the statechart
diagram; the language L(R) describes all (complete) correct sequences of transitions,

i.e., complete transition sequences (CTS) in the statechart that are legal complete se-
quences of user interactions (complete event sequences, CES). Based on this set of tran-
sition sequences, all legal transition pairs (TP) can be identified by extracting all possible
pairs of transitions given by the CTS. The remaining pairs of transitions given by the al-
phabet ¥ form the set of faulty transition pairs (FTP). A FCTS is given by the beginning
of'a CTS and a concluding, subsequent FTP.

351

3. Jahrestagung Fachbereich Sicherheit der Gesellschaft fiir Informatik

5 A Case Study

5.1 Objectives and the System under Test

The objective of the case study is

— to demonstrate now the introduced rules can be used to generate test cases,

— to compare the effectiveness of test generation from ESG vs. statecharts.

For the case study, RealJukebox (RJB) has been selected, more precisely the basic, Eng-
lish version of the RJB 2 (Build: 1.0.2.340) of RealNetworks.

-u- S vem Cork Pmms lek Gn R
[= 5 Tv P IS Ol o = W w0
]
-] & A m k= a] - -
[' Manlaa il Ane e meahe | P G e
5 | e o gt B LT e | m
-:r:'__r B odms [i | [
ks aie
O i EH
B Pt m (G
D=
1o i i, b
abi b
E : Il " m
-~ I -
- e oA 2 vk T | by P 0 | sk awriral

Figure 7: GUI of RJB

Figure 7 represents the main menu of the RJB of the RealNetworks that is a personal
music management system. The user can build, manage, and play his or her individual
digital music library on a personal computer. At the top level, the GUI has a pull-down
menu with the options File, Edit, etc., that invoke other components. These sub-options
have further sub-options, etc. There are still more window components which can be
used to traverse through the entries of the menu and sub-menus, creating many combi-
nations and accordingly, many applications.

The interactions between user and system can be modeled by a statechart given in Figure
8 and 9. Applying the rules introduced in Section 3, the statechart diagram given in Fig-
ure 8 can be converted into an equivalent extended regular expression given in (6). In
this formula, sequences of transitions are noted as follows:

Load a CD 2L, include/Play track = P, Remove CD =2 R
include/Select track 2 S, include/Mode > M,.

Figure 8: Statechart diagram RealJukebox

352

Sicherheit 2006 - "Sicherheit - Schutz und Zuverlissigkeit"

Accordingly, the resulting expression is

R=(L((A+S)||(A+M))(A+P)R)*. (6)

Figure 9: Refinement of the sub automata statechart diagram RealJukebox

Figure 9 refines the substates in Figure 8 and the extended regular expressions for the
substates are given in (7). These regular expressions can be inserted directly into the
formula given in (6).

S = ((CheckAll + {CheckOne- -,(if more than one is checked)} + {Check One++,(if not
all are checked)})*(CheckNone + {CheckOne--,(if only one is checked)}) CheckNone*
(CheckAll + CheckOne++))*

M = Mute* || Continuous™ || Shuffle*
P = (FF + Rew+ TrackPosition + ControlJumpBeginning + ((Play((FF + Rew +
TrackPosition+ ControlJumpBeginning + Pause (FF + Rew + TrackPosition + Con-

trolJumpBeginning)* Play)*))(Stop + Pause (FF + Rew + TrackPosition + Control-
JumpBeginning)*Stop)))*

(M

To identify the malfunctions, the statechart diagram is extended using the rules intro-
duced in Section 4.1. The resulting diagram is called the completed statechart diagram
of the system (Figure 10).

(: £
.—..__'.'II

Figure 10: Completed statechart diagram RealJukebox

353

3. Jahrestagung Fachbereich Sicherheit der Gesellschaft fiir Informatik

5.2 Generating Test Cases

Test cases are generated using the rules introduced in Section 4. Table 1 lists the legal
incoming and legal and faulty outgoing transition of each state.

Table 1: Incoming and outgoing transitions statechart diagram RealJukebox

(legal) incoming (legal) outgoing Faulty outgoing
state transitions transitions transitions
Idle - L S, P, M, R

CD _Insert L S, P, M, R L
SelectTrack S P, M, R L S
PlayTrack P S, M, R L P
Mode M S, P, R LM
CD_Ejected R L S P M

The analysis of the system by the completed statechart (Figure 10 and Table 1) necessi-
tates some abstractions. For a total analysis of the system, these abstractions have to be
refined by the analysis of the substates. Based on the statechart diagram given in Figure
10 all legal/faulty TP can be identified for each state of the system. Table 1 lists the pairs
of (legal) incoming and legal/faulty outgoing transition for the states of the substates.

A transition in a statechart diagram can be triggered by more than one event, e.g., the
faulty transition x¢ can be triggered by Play(NoneChecked) and Pause. Based on Table 1
the set of TPs is generated by the cross product of incoming and outgoing transitions for
each state (8) to fulfill the transition pair coverage test criterion.

LS, LP LM, LR, SP, SM, SR, PS, PM, PR, MS, MP, MR, RL 3

Using the hierarchy application rules introduced in Section 4.2, CTS can be constructed.
As the same TPs can be covered by more than one CTS, a certain redundancy can be
caused by the transition pair coverage test criterion (Section 4.2), e.g., LSPR, LSPMR,
etc. are included multiple times. (9) can be chosen as test cases for a test specification.

LSPMR, LMPSR, LPMSR, LSMPR, LRLR (&)

Accordingly, FTPs are generated by constructing all possible pairs if incoming and
faulty outgoing transitions of each state of the statechart (10).

LL, SS, PP, MM, RR, SL, PL, ML, RS, RP, RM (10)

A meaningful coverage criterion is given by the requirement that each of the FTPs given
in (10) is executed by means of appropriate CFTSs (Section 4.2, Faulty Transition Pair
Test Criterion). To execute a FTP, a starter is necessary that is a legal TS that starts at
the initial state and ends at the state from where the faulty transition can be triggered.
(11) lists some CFTSs that cover all FTPs in (10).

LL,LSS, LPP, LMM, LRR, LSL, LPL, LML, LRS, LRP, LRM 11

The given sets of CTS (9) and FCTS (11) enable the coverage of the specified system
functions and the malfunctions that can be derived by this specification.

354

Sicherheit 2006 - "Sicherheit - Schutz und Zuverléssigkeit"

5.3 Results and Discussion

Two case studies were performed to compare the fault detection capability of ESG mod-
eling as introduced in [8, 22] vs. statechart modeling as introduced in this paper. For the
case study #1 the same tester created the ESGs and statecharts assuring that the models
describe the same functionality of the SUT. This case study was carried out in two dif-
ferent ways: In the first version (Case Study “A” in Table 2), the tester started with the
construction of statecharts and then the ESGs were constructed. Accordingly, Case
Study “B” denotes the way around: First were created ESGs and then statecharts. In the
case study #2 different testers carried out the modeling job by separately constructing the
ESGs and statecharts, i.e., each tester created the model independently from each other.
Table 2 summarizes the results of the both strategies.

Table 2: Comparison of the fault detection capability of ESGs vs. statecharts

Tlslg jgggﬁn:t?]é)sféhsea%(zin_ Faults detected Faults detected both by |Faults detected only by
e i ————] only by ESG ESG and statecharts statecharts
A - 32 -
#1
B 2 30 -
#2 12 11 5

As visible in Table 2, case study #1 detected 30+ faults, no matter which model was con-
structed first. Unexpectedly, constructing the statecharts and ESG separately by different
testers (case study #2) lead to a smaller total number of faults detected by both models.
This can be explained easily: ESGs are simpler to be handled, and thus, the tester could
work more efficiently, i.e., produce more and better detailed ESGs than statecharts, and
accordingly, a better analysis and testing job could be performed. Note in the case study
#2 the ESG model and the statechart model describe different functionalities of the SUT
due to the different handling of the models. To sum up, the comparison of the fault de-
tecting capability of ESGs vs. statecharts could not point out any significant tendency
but confirmed the effectiveness of the holistic approach when applied to different mod-
eling methods.

6 Conclusion and Future Work

This paper introduced an integrated, specification-oriented approach to coverage testing
of interactive systems, incorporating modeling of the system behavior with modeling of
faults. The framework is based on statecharts that model user-system interaction. For
modeling the faulty system behavior, statechart diagram is complemented by an error
state. In any non-error, i.e., correct, state any other event than the legal transition trans-
fers to the error state and forms a faulty transition. The test criteria introduced in [8, 22]
i.e., coverage of legal event pairs and faulty event pairs, have been modified and ex-
tended, because a single event pair can represent more than one transition pair (TP) [21].
This leads to the sequentialization of the TPs. Accordingly, faulty transition pairs (FTP)
were introduced. The present work is to design defense actions, which form appropri-
ately enforced sequences of events, in order to prevent faults that could potentially lead
to failures. Further planned work concerns cost reduction through automatic test execu-

355

3. Jahrestagung Fachbereich Sicherheit der Gesellschaft fiir Informatik

tion. Starting point is to integrate different self-developed tools and use them as an add-
on to a commercially available test tool.

References

[1] Chow, T.S.: Testing Software Designed Modeled by Finite-State Machines. /EEE Trans.
Softw. Eng. 4 (1978) 178-187

[2] Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley (2000)

[3] Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An Optimization Technique for Protocol
Conformance Test Generation Based on UIO Sequences and Rural Chinese Postman Tours.
IEEE Trans. Commun. 39 (1991) 1604-1615

[4] Offutt, J., Shaoying, L., Abdurazik, A., Ammann, P.: Generating Test Data From State-Based
Specifications. The Journal of STVR, 13(1). Medgeh (2003) 25-53

[5] Parnas, D.L.: On the Use of Transition Diagrams in the Design of User Interface for an Inter-
active Computer System, Proc. 24th ACM Nat’l. Conf. (1969) 379-385

[6] Shehady, R.K., D. P. S.: 4 Method to Automate User Interface Testing Using Variable Finite
State Maschines. Proceedings of the FTCS'97 (1997) 80-88

[7] White, L., Almezen, H.: Generating Test Cases for GUI Responsibilities Using Complete In-
teraction Sequences. In: Proc ISSRE, IEEE Comp. Press (2000) 110-119

[8] Belli, F.: Finite-State Testing and Analysis of Graphical User Interfaces. Proc. 12th ISSRE
(2001) 34-43

[9] Tai, K., Lei, Y.: A Test Generation Strategy for Pairwise Testing. /EEE Trans. On Softw.
Eng. 28/1 (2002) 109-111

[10] DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on Test Data Selection: Help for te Prac-
ticing Programmer. Computer 11/4 (1978) 34-41

[11] Delamaro, M.E., Maldonado, J.C., Mathur, A.: Interface Mutation: An Approach for Integra-
tion Testing. IEEE Trans. on Sofiw. Eng. 27/3 (2001) 228-247

[12] Bochmann, G.V., Petrenko, A.: Protocol Testing: Review of Methods and Relevance for
Software Testing. Softw. Eng. Notes, ACM SIGSOFT (1994) 109-124

[13] Memon, A.M., Pollack, M.E., Soffa, M.L.: Automated Test Oracles for GUIs. SIGSOFT
2000 (2000) 30-39

[14] Harel, D.: Statecharts: a visual approach to complex systems. Science of Computer Program
ming, 8 (1987) 231-274

[15] Kim, Y.G., Hong, H.S., Cho, S.M., Bae, D.H., Cha, S.D.: Test Cases Generation from UML
State Diagrams. IEEE Proceedings Software 146(4) (1999) 187-192

[16] H. S. Hong, Y. G. K. S. D. C. etal.: A test sequence selection method for statecharts.
Software Testing, Verification and Reliability 2000: 10; John Wiley & Sons (2000) 203-227

[17] Burton, S.: Towards Automated Unit Testing of Statechart Implementations. Technical Report
(YCS 319), Department of Computer Science, University of York, UK (1999)

[18] Garg, V.K.: Modeling of Distributed Systems by Concurrent Regular Expressions. Proceed-
ings of FORTE ‘89 (1989) 313-327

[19] Okazaki, M., Aoki, T. Katayama, T.: Formalizing sequence diagrams and state machines us-
ing Concurrent Regular Expression. Proceedings of SCESM’03 (2003) 74-79

[20] S. Jansamak, A. Surarerks: Formalization of UML Statechart Models Using Concurrent
Regular Expressions. ACSC 2004 (2004) 83-88

[21] Offutt, J., Abdurazik, A.: Generating Tests from UML Specifications. UML'99 - The Unified
Modeling Language; Springer (1999) 416-429

[22] Belli, F., Budnik, Ch. J.: Minimal Spanning Set for Coverage Testing of Interactive Systems.
Proc. of the ICTAC 05, Vol. 3407. Springer Verlag, LNCS (2004) 220-23

[23] Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill (1962)

[24] OMG Unified Modeling Language Specification, UML Version 1.5, March 2003

[25] Christoph, J.: Konzeptionelle Gestaltung, Anforderungsdefinition und Validierung der Benut-
zungsoberfliche eines Anbaugerdtes zu kommunalen Griinflichenpflege. Master Thesis
Technical Report 2004/6, University of Paderborn, Angew. Datentechnik (2004)

356

