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Abstract: Static analysis techniques for consistency checking of workflows allow to
avoid runtime errors. This is in particular crucial for long running workflows where
errors, detected late, can cause high costs. In many classes of workflows, the data
perspective is rather simple, and the control flow perspective is the focus of consistency
checking. In our setting, however, workflows are used to collect and integrate complex
data based on a given domain ontology. In such scenarios, the data perspective becomes
central and data consistency checking crucial.

In this paper, we focus on detecting unsatisfiable conditions, a data inconsistency
which can lead to non-reachable tasks in workflows. We describe an algorithm to
detect such inconsistencies in workflows with an ontology-based data perspective. The
algorithm utilizes semantic web reasoning. We discuss soundness and completeness of
the technique.

1 Introduction

Workflows describe the processing of data according to a well-defined control flow. Work-
flows often interact with humans and integrate them into the processing. We consider
workflows in which the processed data has semantic metadata in terms of a given domain
ontology, like e.g. for medical trials. Such semantic metadata is not only crucial to allow
data integration, but can also help to improve data quality. In our work we show that it can
be utilized to detect data inconsistencies in the workflow definition at design time of the
workflow. Such static checking prevents executing faulty workflows where errors might
occur only months after the workflow was started, causing potentially huge costs. We divide
data inconsistencies into two categories:

1. Data-dependent Control Flow Inconsistencies causing e.g. undesired abortion of
workflow executions or unreachable tasks due to unsatisfiable conditions.

2. Semantic Data Inconsistencies causing data collected during workflow execution to
be inconsistent with the knowledge of the underlying domain that we assume to be
given by a domain ontology1.

1Similarly, one could check consistency with complex XML-schema information.



It is important to eliminate the first kind of inconsistencies to guarantee reliable workflow
executions. Avoiding the second kind guarantees consistency of the collected data, a
prerequisite to get reliable results from data analysis and to enable data integration.

The class of workflows we consider consists of human processable tasks, comprising forms
that users have to fill in at execution time. In [WPHK09] we have presented a language
called SWOD for this class of workflows, putting special emphasize on a formally defined
data perspective based on an existing domain ontology. Furthermore, we have sketched a
static analysis technique utilizing description logic and its reasoning services to check both
categories of data inconsistencies, but have in particular focused on checking Semantic Data
Inconsistencies. We have not described in detail the semantics of conditions in SWOD and
how conditions are handled in the consistency checking algorithm. We will close this gap in
this paper. The contribution of this paper is to augment the work described in [WPHK09]
by describing in detail the semantics of SWOD focusing on semantics of conditions and a
static analysis technique to detect unsatisfiable conditions in SWOD workflow descriptions.

SWOD shall not be seen as a substitute to existing powerful workflow languages, but as an
example, how these languages can be augmented with ontology-based data perspectives
and profit from techniques described in this work. The reader is refered to the Technical
Report accompanying this paper [Wei09], where detailed formal descriptions can be found.

The paper is structured as follows: In Sec. 2, we describe our motivating application the
ontology-based trial management system ObTiMA. In Sec. 3, we describe the workflow
language SWOD, its semantics focusing on the semantics of conditions and data inconsis-
tencies. In Sec. 4, a technique to detect these inconsistencies, in particular unsatisfiable
conditions, is described. We conclude with discussion and related work.

2 ObTiMA - An Ontology-based Trial Management System

The motivating application for this work is ObTiMA, an ontology-based trial management
system. ObTiMA has been developed for the European project ACGT (Advancing Clinico
Genomic Trials on Cancer) [TB+08], which aims to provide a biomedical grid, for semantic
integration of heterogeneous biomedical databases using a shared ontology for cancer trials,
the ACGT Master Ontology (ACGT-MO) [BWC+08].

ObTiMA allows trial chairmen to set up patient data management systems with compre-
hensive metadata in terms of the ACGT-MO to facilitate integration with data collected
in other trial management systems or biomedical data sources. Forms to collect patient
data during the trial can be designed and questions on the forms can be created from the
ontology in a user friendly way. Furthermore, treatment plans can be designed in ObTiMA,
which are workflows to guide doctors through the treatment of a patient, and a form with
ontology annotation can be assigned to each task of these treatment plans to document the
patient’s treatment. The algorithms described in this work will enable ObTiMA to detect
data inconsistencies in the treatment plans.



3 Specifying Workflows

In this section we describe a simple workflow language with an ontology-based data
perspective (SWOD). A workflow description in SWOD consists of a workflow template
describing the control flow and the forms, and a workflow annotation containing the
semantic description for the data.

3.1 Workflow Template

A workflow template describes tasks and their transitions. Tasks describe a piece of work,
which has to be executed by a human user. Each task contains one form that has to be filled
in to document the work. A form contains questions also called items. SWOD supports
acyclic workflows with the basic control flow patterns sequence, XOR-/AND-split and
XOR-/AND-join. Each outgoing transition of an XOR-split has an associated condition. For
reasons of simplicity we describe in the following SWOD and the algorithm for workflows
without concurrency, an extension for concurrent workflows can be found in [Wei09]. To
illustrate our language and our algorithm, we use a simple example treatment plan. The
outline is shown in Fig. 1.
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Figure 1: Example workflow: “example treatment plan”.

3.2 Workflow Annotation

A workflow annotation describes the semantic annotation of the data in terms of an existing
domain ontology. It assigns a description from the ontology to each item (described in item
annotations) and to each condition (in condition annotations). With this information the
data, stored in form based data sources, can be queried in terms of the ontology.

Each workflow has a so-called focal point, which denotes the subject of a workflow
execution (e.g. for a treatment plan it is a patient). Each annotation for an item or a
condition refers to that focal point.



WFAnnotation ExampleTreatmentPlan
focal PPatient;
FormAnnotation FormRE
ItemAnnotation(IDia OntoPath(d:HumanBeing(PPatient) hasTumor(PPatient,

5 PTumor) d:Tumor(PTumor) hasDiameter(PTumor, PDia) float(PDia)) Value(Max(20.0))
FormAnnotation FormSU
ItemAnnotation(ITum OntoPath(d:HumanBeing(PPatient) hasTumor(PPatient,

PTumor) d:Tumor(PTumor)) Specify(Case(breasttumor d:Breasttumor)
Case(nephroblastoma d:Nephroblastoma)

10 Case(other NOT(d:Breasttumor OR d:Nephroblastoma))))
ItemAnnotation(IMet OntoPath(d:HumanBeing(PPatient)
hasMetastasis(PPatient, PMet) d:Metastasis(PMet) Exist()))

ConditionAnnotation(ConditionA d:Tumor(?tum) ∧ hasTumor(PPatient, ?tum)
∧ hasDiameter(?tum, ?dia) ∧ float(?dia) ∧ ≤(?dia, 4))

15 ConditionAnnotation(ConditionB d:Tumor(?tum) ∧ hasTumor(PPatient, ?tum)
∧ hasDiameter(?tum, ?dia) ∧ float(?dia) ∧ >(?dia, 4))

Listing 1: Extract from workflow annotation for example treatment plan.

The workflow annotation for the example treatment plan is shown in Lst. 1. It describes the
item annotations for items “Diameter of tumor” “Type of tumor” and “Does patient have
metastasis?” and the condition annotations for Condition A and B. The underlying domain
ontology is a simple example ontology, which is partly shown in the next paragraph. All
classes of the domain ontology are prefixed with ’d:’.

Domain Ontology. We have chosen description logics (DL) as language for the
domain ontology, since this family of knowledge representation formalisms provides the
base of most modern ontology languages. A basic understanding of DL is required in the
following, and we refer to [BCM+03] for a detailed description.

In DL, an ontologyO introduces the terminology of an application domain. In the following
an extract from the domain ontology for our example treatment plan is shown:
HumanBeing v ((≤ 1 hasMother.HumanBeing) u (∀ hasAge.nonNegativeInteger[< 150]))
Breasttumor v (Tumor u (∀ locatedIn.Breast))
An ontology introduces the terminology as a set of axioms of the form C v D (i.e. D
subsumes C) and C ≡ D (i.e C v D and D v C), where C and D are general concepts.
DL languages can be distinguished by the constructors they provide for defining general
concepts. We currently consider the DL language ALCQ(D) for the domain ontologies.
This language provides amongst others the constructors number restriction (e.g. ≤ 1
hasMother.HumanBeing), value restriction (e.g. ∀ locatedIn.Brain) and data type
restriction (e.g. ∀ hasAge.nonNegativeInteger[< 150]).

In DL an ABox A describes assertions about individuals in terms of an ontology. An ABox
contains concept assertions C(a) (i.e. individual a is an instance of concept C) and role
assertions R(a,b) (i.e. individual b is a filler of the role R for a). Ind(A) is the set of
individuals that occur inA. DL-reasoners exist, which can e.g. check if a concept subsumes
another, if an ontology is consistent, if an ABox is consistent wrt. an ontology, i.e. they are



not contradictory or if an ABox A implies an assertion β (written A |= β).

In most modern ontology languages, concepts are called classes and roles are called
properties. We use this notation in the following sections.

Item Annotation. An item annotation is the ontology description for an item. It consists
of an ontology path and an item constructor. The grammar of an item annotation is depicted
in Lst. 2.
itemAnnotation ::= ItemAnnotation(itemID ontoPath itemConstructor);
ontoPath ::= OntoPath(focPointDesc ontoPathPart);
ontoPathPart ::= (relAssert varAssert)∗;
itemConstructor ::= existItem|specifyItem|valueItem;
valueItem ::= Value(Min(minv)? Max(maxv)?);
specifyItem ::= Specify(cases);
cases ::= case | cases case;
case ::= Case(acode ontdescr);
existItem ::= Exist();
focPointDesc ::= varAssert;
relAssert ::= rel(srcvar, tarvar);
varAssert ::= type(var);

Listing 2: Grammar of an item annotation.

Ontology Path. An ontology path is the basic ontology description of an item. In a
simplified notation it can e.g. be “Patient hasTumor Tumor” or “Patient hasTumor Tumor
hasWeight Weight”. Formally an ontology path consists of variable assertions and relation
assertions. A variable assertion is defined as type(vname), where type can be a class or
a primitive data type from the domain ontology and vname is the name representing the
variable. Variables of the former kind are called object variables, variables of the later kind
data type variables. E.g. in Lst. 1, line 5 the object variable PTumor of type d:Tumor and
the data type variable PDia of type float are described. Relations between variables can
be expressed with relation assertions (e.g. in Lst. 1, line 5 PTumor and PDia are related
with hasDiameter). A relation between an object variable and a data type (resp. an object)
variable has to be a data type (resp. an object) property from the domain ontology. For each
workflow description one focal variable is declared, e.g. PPatient (Lst. 1, line 2). Each
ontology path for an item starts with this variable.

Item Constructor. Different kinds of item descriptions can be assembled from an ontology
path depending on how the value of the item is considered in the semantics (s. Sec. 3.3).
Therefore, we defined different item constructors. The last variable in the ontology path is
the associated variable of the item constructor.

1. Value-Items query values of data type properties from the ontology, e.g. “diameter
of tumor” (Lst. 1, line 4-5) or “weight of patient”. Numerical value-items can have
associated range restrictions, denoted with Min and Max. The associated variable has
to be a data type variable. E.g. the associated variable for item “diameter of tumor”
is PDia and the maximum value is 20 cm.

2. Exist-Items query if an individual for the associated variable exists, e.g. “Does patient



have metastasis?” (Lst. 1, line 11-12). The associated variable has to be an object
variable.

3. Specify-Items are multiple choice items, which restrict an existent variable of a
class by one of its subclasses, e.g. “Type of tumor?” with answer possibilities:
“breasttumor”, “nephroblastoma”, “other” (Lst. 1, line 7-10). The associated variable
has to be an object variable. The answer possibilities need to have associated class
descriptions from the ontology which have to be subsumed by the ontology classes
which are defined as type of the associated variable.

Condition Annotation. A condition annotation is the ontology description of a condi-
tion. It is formalized similar to bodies of SWRL-rules (Semantic Web Rule Language
[HPSB+04]), but in a simplified form. Conditions refer to the focal variable of the workflow
also called focal variable of the condition. Furthermore, the conditions refer to condition
variables, which are prefixed with “?” (e.g. ?v). Conditions consist of a conjunction of
atoms of the form class(x), dataType(x), objProp(x,y), dataProp(x,y) or cmpOp(x,y),
where class is a class description, dataType a data type, objProp is an object property,
dataProp an data type property from the domain ontology, cmpOp is a comparison oper-
ator like ≤ and x and y are either the focal variable of the condition, condition variables
or data values. Each condition variable has to be related by property atoms to the focal
variable. E.g. the meaning of Condition B (Lst. 1, line 15-16) is ”Patient has a tumor with
weight greater than 4”. The grammar for a condition annotation is as follows:
conditionAnnot ::= ConditionAnnotation(conID condition);
condition ::= atom ∧ condition | atom;
atom ::= class(x) | dataType(x) | objProp(x, y) | dataProp(x, y)| cmpOp(x, y);

3.3 Semantics of Workflow Description

We describe the semantics of a workflow description by defining workflow executions for it.
A workflow execution starts with the begin task of the workflow description. Then tasks are
executed in the order they are related with transitions. For an XOR-split the task succeeding
the condition which is satisfied for the current execution is executed next. This must be
exactly one in a consistent workflow description.

During execution of a task a user has to fill in a value into each item of the associated form of
the task. Since we do not consider concurrency, at each point of execution the executed part
of the workflow can be described by a sequence of already filled items (described by their
item annotation and the filled in value). We call such a sequence executed workflow data
path (EWDP). From such an EWDP an ABox can be calculated (s. Sec 3.3.1), representing
the state, i.e. the data which has been collected until this point in the workflow execution.
This ABox is the base to query the collected data in terms of the ontology.

Whether a condition is satisfied for an execution can be determined with the help of the
ABox calculated from the EWDP ending with the last item before the condition. A condition
is satisfied for the execution if it has a valid binding to this ABox (s. Sec. 3.3.2).



3.3.1 Creation of ABoxes for workflow executions

To derive the ABox Ap for an EWDP starting with an empty ABox we defined a calculus,
called “ABoxRules”. In the following, we describe calculi informally and simplified, but
sufficient to understand the basic ideas of the described technique. Formal descriptions can
be found in [Wei09]. In Table 1 an ABox derived from an example workflow execution
with calculus ABoxRules is shown. The calculus extendsAp for each filled item as follows:

• Ontology Path. For each of the object variables in the ontology path an individual
is created in Ap by adding its variable assertion as a concept assertion. Each of the
object relation assertions is added as a role assertion into Ap. The individual created
for the focal variable of the workflow is called the focal individual (e.g. PPatient in
Table 1).

• Item constructor. For a value-item the according individual in Ap is related with
the appropriate data type relation to the value of the item. For a specify-item the
according individual is restricted with the class description associated to the answer
filled into the form. For an exist-item an individual for the associated variable is only
created if value is “yes”.

Introducing Item ABox Ap

Diameter of tumor: 2.1 cm {d:HumanBeing(PPatient),
hasTumor(PPatient, PTumor),
d:Tumor(PTumor), hasDiameter(PTumor, 2.1)}∪

Type of tumor: breasttumor {d:Breasttumor(PTumor)}∪
Has metastasis: Yes {hasMetastasis(PPatient, PMet), d:Metastasis(PMet)}

Table 1: ABox Ap created for execution of example treatment plan. On the left the values filled
into the items during execution are shown, whereas on the right the assembled ABox Ap is shown.
Assertions are ordered according to the items on the left.

3.3.2 Checking if condition is satisfied

A condition is satisfied for a workflow execution if a valid binding exists between the
condition and the ABox created from the EWDP ending with the last item before the
condition. A valid binding between a condition and an ABox exists if each of the variables
from the condition can be bound to an individual or a constant of the ABox (represented as
tuple in a set called binding B), where the focal variable of the condition is bound to the
focal individual, and for each atom in the condition the constraint described in Table 2 holds
on the ABox and the binding. If the condition does not have a valid binding to the ABox, it
is either not satisfied or, due to missing data, it can not be determined if it is satisfied or not.

E.g. Condition A (s. Lst. 1) has a valid binding to the ABox Ap described in Table 1 and is
therefore satisfied for the example workflow execution. A valid binding is BA = {(PPatient,
PPatient); (PTumor, ?tum); ( 2.1, ?dia)}, since for each of the atoms in Condition A the
constraint described in Table 2 holds. For Condition B no valid binding exists. Binding BA



Atom Constraint
C(var) ∃ x ∈ Ind(A).((x,var) ∈ B) ∧ (A |= C(x))
P(srcvar, tarvar) ∃ x, y ∈ Ind(A).({(x, srcvar), (y, tarvar)} ⊆ B) ∧ (A |= P(x,y))
cmpOp(var, const) ∃ x ∈ Ind(A). ((x, var) ∈ B) ∧ (x cmpOp const)

Table 2: Constraints for a binding B between a condition C and an ABox A, which have to hold for
each atom in C, in order that B is valid. C is a class description or data type, P is a data type property
or an object property, cmpOp is a comparison operator.

is not a valid binding between Condition B and Ap because the constraint for atom >(?dia,
4) does not hold. Therefore, in the example workflow execution, after the task Surgery the
task Chemotherapy A is executed.

3.4 Inconsistencies

A workflow description is consistent if none of the following inconsistencies occurs.

Unsatisfiable condition. If a condition is not satisfied for any workflow execution (has
no valid binding to the ABox of its EWDP), we call the condition unsatisfiable for the
workflow description. That means that for each workflow execution it is either not satisfied
or, due to missing data, it can not be determined if it is satisfied or not. In such a case it can
occur that the tasks after the condition are unreachable.

When in the example treatment plan Condition A is replaced with “Patient does not have a
tumor”, formalized as (=0 hasTumor.d:Tumor)(PPatient), this condition is unsatisfiable.
It is not satisfied for any execution, because each patient for which the forms are filled in
has a tumor. The condition “Patient has brain tumor” is also unsatisfiable at this point, since
it can not be decided if the patient has a brain tumor from the information filled into the
forms. In both cases task Chemotherapy A is unreachable, what is clearly a design error.

XOR-stall. If in a workflow execution none or more than one of the conditions at an
XOR-split are satisfied, the task to be executed next can not be determined unambiguously.
We call such a situation XOR-stall. In such a case workflow execution aborts.

Semantic Data Inconsistency. If at any point of a workflow execution the calculated ABox
is inconsistent wrt. the domain ontology, a Semantic Data Inconsistency occurs. In such a
situation the workflow description contradicts the domain ontology causing collected data
to be erroneous. In such a case workflow execution aborts.

4 Consistency Checking Algorithm

In the following, we describe an algorithm, which is able to detect unsatisfiable conditions
in SWOD workflow descriptions. The algorithm is also able to detect XOR-stalls and
Semantic Data Inconsistencies, but to describe detection of these two inconsistencies is not



in the scope of this paper. The most obvious algorithm for this problem is a simulation of
all possible workflow executions. We have described such an algorithm, called CCABoxes-
algorithm, in [Wei09]. This algorithm calculates for each possible workflow path the set
of possible ABoxes, called Xp. This algorithm is by definition sound and complete, but it
does not always terminate. This is due to the fact that primitive data types (e.g. integer)
have infinite data ranges, that means e.g. into a value-item with data type integer an infinite
number of different values can be filled in. Since in the CCABoxes-algorithm an ABox
is created for all possible executions, this results in the creation of an infinite number of
ABoxes. Therefore, we need to replace the calculated set of ABoxes with a finite abstraction,
which preserves the information needed to detect the described inconsistencies, to gain a
terminating algorithm.

We use an ontology as abstraction, which describes all ABoxes sufficiently to detect the
inconsistencies. The resulting “CCOnto-algorithm” calculates a so-called path ontology
Op for each workflow path. The idea of our abstraction is to represent individuals by newly
created classes inOp. Each individual created during any workflow execution is represented
by at least one class, called its corresponding class. The information about the relations of
the individual and the classes it belongs to are preserved in Op by appropriate restrictions
on its corresponding class. A class in Op can have an infinite number of corresponding
individuals from different ABoxes in Xp. This is possible since data values of primitive
data types in the ABoxes are described as data ranges in the classes of Op.

Furthermore, a so-called condition ontology is created in the CCOnto-algorithm as ab-
straction of a condition. A condition ontology contains a so-called focal condition class to
represent the condition. This class is restricted according to the axioms in the condition.
The focal condition class is constructed such that, after a preprocessing step, a class inOp is
a subclass of the focal condition class if and only if it has a corresponding focal individual
in an ABox which has a valid binding to the condition. In the preprocessing step the data
ranges relevant for the condition are merged into the data ranges appearing in Op.

Algorithm 1: CCOnto-algorithm
input: SWOD WF description swodWf, domain ontology OD

SetW ← determineWFDPs(swodWf);
foreach WFDP ∈ W do
Opi←OD;
Op← ontoRules(Opi, WFDP);
if Op ≡ ERROR(kind, id) then

if kind ≡ “XOR-Stall” OR “Semantic Data Inconsistency” then
ABORT with ERROR(kind, id)

if kind ≡ “Condition unsatisfiable for WFDP” then
delete WFDP fromW

foreach condition con in swodWf do
if con not in any of WFDP ∈ W then

ABORT with ERROR(“Condition unsatisfiable”, id);



4.1 Outline of Algorithm

We describe in the following the CCOnto-algorithm (see Alg. 1), especially how it detects
unsatisfiable conditions. The input for the algorithm is the SWOD workflow description
swodWf and the domain ontology OD. If the algorithm does not abort with an error,
swodWf is consistent.

Determine WFDPs. A workflow path for a workflow description is any sequence of tasks,
which are connected through transitions and start with the begin task. The path ontology
Op for a workflow path is an abstraction of the set of all ABoxes Xp, which can be created
for any possible workflow execution of this path. That means Xp contains an ABox for
each possible combination of values filled into the items of the workflow path.

To calculate Op for a workflow path we have to consider the items in the flow as well as
each condition, because the ABoxes for which the condition is not satisfied are not any
more possible after its application. We describe this information by a workflow data path
(WFDP), which is a sequence of item and condition annotations, according to the following
grammar:

wfdp::= wfdp itemAnnotation| wfdp conditionAnnot | itemAnnotation | conditionAnnot;

The first step of the CCOnto-algorithm is to determine all possible workflow paths from
swodWF, which end with the end task and store the corresponding WFDPs in a setW .
E.g. one of the two WFDPs for the example treatment plan consists of the item annotations
IDia, ITum, IMet and Condition A.

Create Op for each WFDP in W . The path ontology Op is created by the function
ontoRules(OPi, WFDP), where OPi is the initial path ontology comprising the axioms
from the domain ontology (s. Sec. 4.2). The result of the function is either the consistent
path ontology or an error term describing an inconsistency which occurred during creation
of Op. If the result is an error term ERROR(kind id) with kind “Condition unsatisfiable for
WFDP” the processed WFDP is deleted fromW , since the corresponding workflow path
can never be taken during workflow execution.

After Op is created for each WFDP, it is checked if a condition is unsatisfiable for the
workflow by checking if any of the conditions does not appear in any of the WFDPs left in
W , which represent the possible flows through the workflow. In that case the algorithm
aborts with an appropriate error.

4.2 Construction of Path Ontology

Op is derived from the initial path ontology with the calculus OntoRules. The item and
condition annotations in WFDP are processed as follows in the order they appear:

• Item annotation. For each item annotation the following steps are processed. As
an example Fig. 2 depicts Op as created from the item annotations in the example
treatment plan.

– Object variable assertion. For each object variable in the ontology path a class



is created, which is represented with the same name as the variable, called
corresponding class of the variable. The class is declared to be a subclass of
the type of the variable and to be disjoint to other classes created from object
variables. The class created for the focal variable is called top focal path class
and its subclasses are called focal path classes.

– Object relation assertion. For each object relation objProp(X, Y) in the ontology
path the axiom (X v (≥1 objProp.Y)) is added to Op.

– Item constructor. For a value-item with minimum value mi, maximum value
ma, last part dataProp(X, Y) dataType(Y) in its ontology path, the axiom (X
v ∃ dataProp.dataType[≥ mi, ≤ ma]) is added to Op. This shows that using
an ontology allows the CCOnto-algorithm to work with data ranges instead of
single data values, which enables the algorithm to terminate always.
For an exist-item with last part objProp(X, Y) class(Y) in its ontology path,
classes for answer possibilities “yes” and “no” are created as subclasses for each
sub class of X, which is a leaf class. A class created for answer possibility “no”
has as superclass (=0 objProp.class). A class created for answer possibility
“yes” has as superclass (≥ 1 objProp.Y). For the item “Does patient have
metastasis?” classes PPatMet and PPatNMet are created (s. Fig. 2).
For a specify-item, classes for each answer possibility are created, which have
as superclasses the according ontology description of the answer possibility
and the corresponding class of the associated variable. E.g. for item “type of
tumor” classes PTumB, PTumN and PTumO are created (s. Fig. 2).
For exist- and specify-items Op is expanded. We call class X related to Y (resp.
Y backwards related to X) ifOp |= (X v (≥ 1 objProp.Y)) holds for any object
property objProp. Op is expanded if any class X is related to any superclass S
of a set of newly created classes setNew. Then for each class R ∈ setNew a
new class N is created as a subclass of X, and N is related to R. For the newly
created classes the process is repeated. E.g all subclasses of PPatMet and
PPatNMet are created in the expansion step for item “type of tumor”.

• Condition Annotation. When a condition is applied to Op, all classes, which are
corresponding to individuals belonging to ABoxes Ap, for which the condition is
not satisfied, have to be deleted. Therefore, the condition ontology is created, Op

is preprocessed for the condition, and it is reduced to its focal path classes that are
subsumed by the focal condition class, to superclasses of the subsumed classes and
to classes which are backwards related to these classes (for details s. below).

– Condition unsatisfiable. If Op has no more path classes after applying a con-
dition, the condition is unsatisfiable for this WFDP. Then Op is set to ER-
ROR(“Condition unsatisfiable for WFDP”, conditionId).

Construction of Condition Ontology. We have defined a calculus to derive the condition
ontology from a condition. For each object variable in the condition, a class is created
called condition variable class (CC). CC is set equal to class >. We call the conjunction of
classes, which are set equal to CC, condition variable equal class (CEC). For each atom in
the condition the condition ontology is extended as follows:



• class(x): The CEC of variable x is set to (R u class), where R is the CEC of x
before the application of the atom.
• objProp(x, y): The CEC of variable x is set to (R u (≥ 1 objProp.Z)), where R is

the CEC of x and Z is the CC of y before the application of the atom.
• dataProp(x, y): The CEC of variable x is set to (R u (∃ dataProp)), where R is the

CEC of x before the application of the atom.
• dataType(y) The CEC of each variable x, which is related with a data property dat-

aProp to y is set to (P u (∃ dataProp.datatype)) resp. (P u (∃ dataProp.odatatype
∩ datatype)), when it was before the atom was applied (P u (∃ dataProp) resp. (P
u (∃ dataProp.odatatype).
• cmpOp(y, const): The CEC of each variable x, which is related with a data property

dataProp to y is set to (P u (∃ dataProp.[cmpOp const])) resp. (P u (∃ dat-
aProp.odatatype ∩ [cmpOp const])), when it was before (P u (∃ dataProp) resp.
(P u (∃ dataProp.odatatype).

As a first example we consider that Condition A in the example treatment plan is replaced
with “Patient has metastasis” (d:Metastasis(?met) ∧ hasMetastasis(PPatient, ?met)).
We apply the condition to Op (s. Fig. 2) to determine if it is satisfiable for the WFDP. The
condition ontology is as follows, where CPatient is the focal condition class:
CPatient ≡ ≥1 hasMetastasis.CMet
CMet ≡ d:Metastasis

In this example it is not necessary to preprocess Op. The condition is satisfiable for the
workflow path, since the focal path class PPatMet can be inferred as a subclass of CPatient.
Therefore, after applying the condition, Op comprises the classes PPatMet, its subclasses,
its superclass PPatient and the classes, which are backwards related to these classes, which
are PTumor, its subclasses and PMet. Class PPatNMet and its subclasses are deleted from
Op.

Preprocessing path ontology in order to apply condition. To preprocess Op for a
condition, Op is for each data type variable dVar in the condition extended as follows. Let
dRC be the data range of dVar and dataProp be the data property, which relates an object
variable to dvar. Let L be a leaf class inOp, for which holdsOp |= L v (∃ dataProp.dRP)
and dRP overlaps with dRC, for any data range dRP. Then for each such class L, two
subclasses are created, one as a subclass of (∃ dataProp.dRP ∩ dRC) and the other as a
subclass of (∃ dataProp.dRP\dRC). Op is expanded as described above.

As an example we consider Condition A as described in Lst. 1. The derived condition
ontology is:
CPatient ≡ ≥1 hasTumor.CTumor
CTumor ≡ d:Tumor u ∃ hasDiameter.float[≤ 4]
Op is preprocessed for the condition as follows. For the only data type variable ?dia the
data range is float[≤ 4]. Object variable ?tum is related with property hasDiameter to
?dia. The classes PTumO, PTumB and PTumN are subclasses of data type restriction (∃
hasDiameter.float[≤ 20]). For each of them two subclasses are created, which we call
small tumor and big tumor class, for PTumB e.g. big tumor class PTumBG and small
tumor class PTumBL are created and thus following axioms are added to Op:



PPatient

d:HumanBeingu
≥ 1 hasTumor.PTumor

PPatMet

≥ 1 hasMetastasis.PMet

PPatNMet
= 0 hasMetastasis.d:Metastasis

PPatMetBre
≥ 1 hasTumor.PTumB

PPatMetNep
≥ 1 hasTumor.PTumN

PPatMetOth
≥ 1 hasTumor.PTumO

PPatNMetBre
≥ 1 hasTumor.PTumB

PPatNMetNep
≥ 1 hasTumor.PTumN

PPatNMetOth
≥ 1 hasTumor.PTumO

PMet
d:Metastasis

PTumor

d:Tumoru
∃ hasDiameter.float[≤20]

PTumB
d:Breasttumor

PTumN
d:Nephroblastoma

PTumO

(NOT(d:Breasttumor OR
d:Nephroblastoma))

A
R (Av R)∈Op

A
R (Av B)∈Op

B
R

Figure 2: Main content of Op for example treatment plan after processing all item annotations.

PTumBL v PTumB u (∃ hasDiameter.float[≤ 4])
PTumBG v PTumB u (∃ hasDiameter.float[> 4, ≤ 20])

In the expansion step for each focal path class, which is a leaf class, two subclasses
are created, one related to the appropriate small tumor class and the other related to the
appropriate big tumor class.

When the condition is applied to the preprocessed Op, it can be detected that the condition
is satisfiable for WFDP, since all focal path classes, which are related to small tumor classes,
are subclasses of the focal condition class. After applying the condition, all focal path
classes related to big tumor classes are deleted from Op as well as all big tumor classes
itself, since they are no longer backwards related to any focal path class.

Using “Patient does not have a tumor”, formalized as (=0 hasTumor.d:Tumor)(PPatient),
as a replacement of Condition A is an example for an unsatisfiable condition. The condition
ontology is: CPatient ≡ (=0 hasTumor.d:Tumor). None of the focal path classes in Op is
a subclass of CPatient, since all are subclasses of (≥ 1 hasTumor.PTumor). That means
the condition is unsatisfiable for the WFDP and since Condition A appears in only one
WFDP, it is unsatisfiable for the workflow description.

4.3 Soundness and Completeness

In this section we sketch a proof showing that detection of unsatisfiable conditions with
the CCOnto-algorithm is complete, i.e. all inconsistencies are detected, and sound, i.e.
detected inconsistencies are inconsistencies. From the definition of the inconsistency
follows soundness and completeness for the CCABoxes-algorithm. Completeness and
soundness of the CCOnto-algorithm is proved by showing that it detects the inconsistency



in the same cases as the CCABoxes-algorithm, as outlined in the following. The steps
of the two algorithms are the same, with the difference, that CCOnto utilizes Op instead
of a set of ABoxes, Xp, to detect inconsistencies. We call Op derived from WFDP with
calculus OntoRules an abstraction of Xp derived from the same WFDP with calculus
SOABoxesRules (utilized in the CCABoxes-algorithm). We can prove by induction over
the rules of the two calculi, that following abstraction criteria hold between Xp and its
abstraction Op: Each individual in any ABox of Xp has a corresponding class in Op and
each leaf class in Op has a corresponding individual in any ABox of Xp.

To prove that both algorithms detect the inconsistency in the same cases, we have to prove
that Op for a workflow data path ending at the condition is set to an error term “Condition
unsatisfiable for EWDP” if and only if Xp is set to an error term. Op is set to an error term
if Op has no path classes after applying the condition and Xp is set to an error term if Xp is
empty after applying the condition. From the abstraction criteria, it follows that Op has
no path classes if and only if Xp is empty. (for full proof and definition of corresponding
individuals and classes s. [Wei09]).

5 Discussion

We have described a static analysis technique to detect unsatisfiable conditions in workflows
with an ontology-based data perspective. This technique has the capability to increase
reliability of workflow executions.

Implementation. A prototypical implementation of the CCOnto-algorithm is currently
developed in Java using the OWL API [HBN07] and the DL-reasoner Pellet [SPG+07]. It
is intended to be integrated into ObTiMA, to support users in defining consistent treatment
plans.

Related Work. Consistency checking algorithms exist to check structural consistency
(e.g. [VvdAtH07], [QXW+07]), but few integrate data (e.g. [SZ+06] or [Esh02]). These
techniques have only limited ability to detect unsatisfiable conditions in workflows. Sun
et al. [SZ+06] developed a framework for detecting data flow anomalies, which is e.g.
capable of detecting missing data in conditions, but is not able to check the satisfiability
of conditions in a workflow. Eshuis [Esh02] describes a framework for verification of
workflows based on model checking. His framework is able to check satisfiability of
conditions, but these checks consider only Boolean expressions and their dependencies.

We are not aware of an algorithm, which is able to detect unsatisfiable conditions in
workflows with complex data perspectives based on semantic annotations.

Future Work. We plan to extend the data perspective of SWOD e.g. by allowing
to create more complex items from the ontology and to define constants or constraints
between items. We aim for a more expressive control flow perspective comprising e.g.
cyclic workflows with respect to research on workflow-patterns [RtHvdAM06]. We plan to
consider time in the data and control flow perspectives.

Conclusion. Ontology-based data perspectives in data intensive workflows are well



suited to provide the basis to detect unsatisfiable conditions. Integrated with existing algo-
rithms for checking structural consistency (e.g. [VvdAtH07], [QXW+07]) the technique
described here can have the capability to guarantee soundness of complex workflows.
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