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Abstract: We propose a method for comparing protein structures or, more specifi-
cally, protein binding sites using a histogram-based representation that captures im-
portant geometrical and physico-chemical properties. In comparison to hitherto exist-
ing approaches in structural bioinformatics, especially methods from graph theory and
computational geometry, our approach is computationally much more efficient. More-
over, despite its simplicity, it appears to capture and recover functional similarities
surprisingly well.

1 Introduction

With the steady improvement of structure prediction methods, the inference of protein
function based on structure information becomes more and more important. The com-
parison of protein structures, for which quite a number of methods have already been
proposed, is a central task in this regard. One class of methods focuses on geometrical
aspects and, correspondingly, makes use of tools from computational geometry. As exam-
ples of this type of approach, we mention geometric hashing [RW97] and labeled point
cloud superposition [FH09]. Another idea is to use graphs as formal models of molecular
structures. Here, the focus is more on the physical and chemical properties, which are of-
ten modeled as nodes of a graph, while geometrical or topological properties are captured
in a more indirect way via weighted edges. Typical examples of this approach include
measures based on sub-graph isomorphism [NB07], graph edit distance [FMKH09], and
graph kernels [G08].

Geometrical and graph-based approaches are appealing, especially since they produce
more than just a numerical degree of similarity. Usually, they also provide useful ex-
tra information, e.g., correspondences between basic structural units. The price to pay is
a high computational complexity. In fact, many of the aforementioned methods lead to
NP-hard optimization problems and scale poorly with the size of the structures. This com-
plexity prevents them from being used in large-scale studies like cluster analysis requiring
all-against-all comparisons.
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A possible alternative to methods of the above kind is offered by feature-based approaches
in which a protein structure is first represented in terms of a fixed number of features,
that is, a vector of fixed dimensionality. The comparison of objects is thus reduced to
the comparison of feature vectors. Since the original object cannot be recovered from
a finite number of features, this transformation normally comes with a significant loss
of information. Consequently, it is unclear to what extent the similarity of the original
structures is mirrored by the similarity of their respective feature vectors. On the other
hand, this approach has an obvious advantage with regard to complexity, as feature vectors
can be compared quite efficiently.

In this paper, we propose a feature-based approach to the comparison of protein binding
sites. More specifically, our idea is to summarize important information about the geo-
metrical and physico-chemical properties of protein binding sites in terms of histograms.
This idea is largely motivated by the successful use of similar approaches in the field of
image processing, where the distribution of the brightness or the colors of a picture are
represented in terms of histograms [RTG00, VB00]. A similar approach has also been
applied in the field of structural bioinformatics [SSS+07] for the analysis of homologous
proteins.

2 Modeling Protein Binding Sites

Our approach builds upon CavBase [SKK02], a database for the automated detection,
extraction, and storing of protein cavities (hypothetical binding sites) from experimentally
determined protein structures. In CavBase, a set of points is used as a first approximation
to describe a binding pocket.

The geometrical arrangement of the pocket and its physicochemical properties are first rep-
resented by predefined pseudocenters – spatial points that represent the center of a particu-
lar property. The type and the spatial position of the centers depend on the amino acids that
border the binding pocket and expose their functional groups. Currently, CavBase consid-
ers seven types of pseudocenters (hydrogen-bond donor, acceptor, mixed donor/acceptor,
hydrophobic aliphatic, metal ion, pi, aromatic).

Pseudocenters can be regarded as a compressed representation of areas on the cavity sur-
face where certain protein-ligand interactions are experienced. Consequently, a set of
pseudocenters is an approximate representation of a spatial distribution of physicochemi-
cal properties.

3 Transforming Protein Binding Sites into Histograms

A histogram h is a partition of a set of observations O ⊂ X into a finite number of
discrete units. Formally, h can be represented as a B −→ R mapping, where B is a
finite set of bins, and h(b) denotes the number (fraction) of observations falling into bin
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b. We call a histogram h normalized if
∑

b∈B h(b) = 1. Each bin b is associated with
a subset X[b] of the domain X , so that h(b) = |O ∩ X[b]| before normalization and
h(b) = |O|−1|O ∩ X[b]| in the normalized case. The set of bins is assumed to form a
partition of X , i.e., X[a] ∩X[b] = ∅ for a 8= b and

⋃
b∈B X[b] = X .

To obtain histograms from a protein binding site, we will use two important properties,
namely its distribution of pseudocenters and the distribution of distances between pseudo-
centers, thereby capturing both, the physico-chemical properties as well as the geometry
of the binding site.

To combine both pseudocenter and distance information, our representation is based on
sets of pairwise distances: Di,j is the set of all distances between pseudocenters of type i
and j, with 1 ≤ i ≤ j ≤ np (np denoting the number of pseudocenter types). To obtain
a corresponding histogram hi,j , we use B = {1, . . . , dmax} and let X[b] = [b − 1, b[. All
histograms are normalized to ensure equal weights (except empty histograms). Thus, a
structure is represented by a set of n = np(np + 1)/2 histograms.

4 Distance Measures

Consider two structures represented, respectively, by histograms g1, . . . , gn and h1, . . . , hn.
Moreover, let δ be a distance measure suitable for comparing histograms. The overall
distance between the two structures can then be obtained by aggregating the distances
δ(gi, hi), for example in terms of the Euclidean norm of the vector

(δ(g1, h1), . . . , δ(gn, hn)) .

In the literature, two types of distance measures on histograms are distinguished, namely
bin-by-bin and cross-bin measures. The former are rather simple and only compare values
in the same bin. The distance between two histograms is then defined by the sum of
distances for all bins. Cross-bin measures, on the other hand, also compare values in
different bins. In order to aggregate these distances, they also require the existence of a
ground distance on B; in our case, we can simply define |a − b| as distance between bins
a and b.

Since cross-bin measures proved superior to bin-by-bin measures in a previous study
[FH10], we focus on the former type. More precisely, we consider the Quadratic Form
Distance,

dQF (g, h) =
√

(pg − ph)T A(pg − ph) ,

where A is a matrix whose entries ai,j specify the similarity between bins bi and bj with

ai,j = 1− di,j

maxi,j{di,j} ,

the Earth Mover’s Distance,
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dEMD(g, h) =


min

{∑
Bn

fi,k |{fi,k : (i, k) ∈ Bn}
}

subject to:∑
k:(i,k)∈Bn

(fi,k − fk,i) = g(b)− h(b) ∀ b ∈ B
fi,k ≥ 0 ∀ (i, k) ∈ Bn

and Cumulative Distributions. The latter approach replaces the original histogram h by
the corresponding cumulative distribution, defined by H(b) =

∑
a≤b h(a), and then mea-

sures the distance on these distributions. Here, we use the Kolmogorov-Smirnov distance

dKS(g, h) = max
b∈B
{|G(b)−H(b)|}

and the match distance
dM (g, h) =

∑
b∈B
|G(b)−H(b)|.

5 Experimental Results

In our experiments, we first used a dataset from a previous study designed to assess the
performance of global structural alignment methods. This dataset contains 355 protein
binding sites comprising two classes of proteins, ATP binding and NADH binding pro-
teins. Binding sites known to bind the corresponding ligands in similar conformation were
derived from CavBase; in case of multiple binding sites belonging to the same structure,
only one representative was selected at random. See [FMKH09] for a more thorough de-
scription of the dataset.

As a second, more complex dataset (Table 1), we selected a number of different, highly
populated functional enzyme classes according to the ENZYME database [BWF+00].
Protein structures belonging to the selected classes were derived from the Protein Data
Bank and corresponding cavities where extracted from CavBase.

Since CavBase may contain multiple cavities for the same protein, not all of them being
functionally important, we selected only those binding sites that contained at least two
residues belonging to the catalytic center of the protein according to the catalytic activity
atlas annotation (CSA) version 2.2.12 [PBT04]. In case of multiple instances for the same
structure, we took the binding site with the largest number of catalytic residues.

5.1 Classification Performance on a Two-Class Problem

As a first proof-of-concept, we assessed the performance of our distance measure on a
two-class classification problem, namely of ATP- versus NADH-binding proteins. More
precisely, we used a k-nearest neighbor (k-NN) classifier combined with different cross-
bin measures to discriminate the two classes. As performance criteria, we measured the
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EC number Function Number of proteins
2.1.1.45 thymidylate synthase 153
3.4.21.4 trypsin 373

3.4.23.16 HIV-1 retropepsin 291
3.4.24.27 thermolysin 70

1.9.3.1 cytochrome-c oxidase 233
4.2.1.1 carbonate dehydratase 316
3.4.25.1 proteasome endopeptidase 167
2.6.1.1 aspartate transaminase 106

Table 1: Dataset of 8 different EC classes.

accuracy of the methods in terms of their classification rates (determined through leave-
one-out cross validation) as well as their efficiency in terms of runtime.

For comparison, we also applied kernel methods (the shortest path (SP) kernel [BK05],
the random walk (RW) kernel [G08] and the fingerprint (FP) kernel [FMM+09]), graph-
based methods (the iterative graph alignment (IGA) [WHKK07] and the evolutionary
graph alignment (GAVEO) [FMKH09]) and geometric approaches (the labeled point cloud
superposition (LPCS) [FH09]).

Table 2 summarizes the results of these approaches. As can be seen, there are clear differ-
ences in terms of performance: The highest classification accuracy is achieved by LPCS,
followed by the fingerprint kernels. The graph-alignment methods (IGA and GAVEO)
perform less strongly, and the worst classification rates are produced by the graph kernels.

The runtime reported in the table includes the time needed for an all-against-all comparison
of the 355 structures and the time needed to perform a leave-one-out cross validation. As
can be seen, all methods require at least one day.

k RW SP LPCS FP IGA GAVEO
1 0.597 0.606 0.935 0.842 0.766 0.789
3 0.597 0.628 0.916 0.882 0.718 0.766
5 0.597 0.634 0.890 0.873 0.724 0.780
runtime (h) 1149.88 171.14 361.58 35.98 2136.88 > 5000

Table 2: Classification rates and runtime in hours of a k-NN classifier using different values of k and
different distance measures.

Table 3 summarizes the results for our histogram approach using different cross-bin dis-
tance measures and bins of size 1 (as they will be used in the whole work). Interestingly,
the accuracy values are quite high, even outperforming some of the competitor methods,
although LPCS still performs best. However, considering the runtime efficiency of the
histogram approach, the results show that we can retrieve comparably good results within
only a fraction of the time.
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k dQF dM dKS dEMD

1 0.862 0.865 0.859 0.772
3 0.856 0.882 0.854 0.749
5 0.845 0.865 0.837 0.732

runtime (h) 0.785 0.470 0.472 11.53

Table 3: Classification rates of cross-bin measures on the NADH/ATP data set.

Rank pdb code Protein score
1 2ACK Acetylcholinesterase (AChE) 0
2 1AX9 Acetylcholinesterase (AChE) 0.180
3 1GQS Acetylcholinesterase (AChE) 0.203
...

...
...

...
98 2V98 Acetylcholinesterase (AChE) 0.402
99 1ZGC Acetylcholinesterase (AChE) 0.404

100 1G6R Aspartate aminotransferase (mAspAT) 0.405

Table 4: Top ranks retrieved by querying the CavBase with the main pocket of 2ACK. Omitted
entries contained exclusively acetylcholinesterases.

5.2 Database Querying

In a second experiment, we applied our approach on the task of querying the complete
CavBase for similar structures. Given the simplicity of the approach, one may doubt its
suitability for a task of this kind.

We chose the main pocket of acetylcholinesterase from T. californica (pdb code: 2ACK)
as a query structure. This protein has previously been used to query the CASTp database
with a similarity measure that combines structural similarity with evolutionary conserva-
tion [BAL03]. Binkowski et al. retrieved further acetylcholinesterase structures on all top
ranks, a result they attributed to the uniqueness of the protein structure.

Table 4 shows some results of our query using the match distance. Surprisingly, and de-
spite the simplicity of our approach, the top 99 ranks are exclusively occupied by other
acetylcholinesterase structures before the first false positive shows up on position 100.
This is consistent with the results of Binkowski et al. and suggests that important informa-
tion is indeed captured by our histogram representation.

5.3 Discriminating Enzyme Classes

The third experiment investigates whether our approach can be used to discern binding
pockets of different enzyme classes. To this end, we selected several highly populated
enzyme classes from the Protein Data Bank and calculated the corresponding distance
matrix using our histogram approach with the match distance.
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k dQF dM dKS

1 0.941 0.944 0.945
3 0.920 0.919 0.926
5 0.905 0.912 0.916

Table 5: Classification accuracy on the multi-class enzyme dataset.

Since the class information is known, we visualize the distance matrix by means of a heat
map, which is shown in Figure 1. Again, it can be seen that important information is
captured by the histogram approach, as several classes show a high similarity within the
class.

Figure 1: Heat map depicting the distance matrix based on match distance for the EC dataset. Dif-
ferent EC classes are seperated by black lines.

Based on the above distance matrix, we additionally performed a hierarchical clustering
using repeated bisection and subsequent k-way refinement. Comparing the resulting clus-
tering with the original EC class yields a Rand index of R = 0.8633, indicating that the
clustering is in good agreement with the real class structure.

Finally, the distance matrix was again used for a nearest neighbor classification, this time
on a multi-class problem. Table 5 shows the classification accuracies for a leave-one-out
cross validation, using different distance metrics.

6 Conclusions

In this paper, we have introduced a very simple though extremely efficient method for
comparing protein structures in terms of a histogram-based representation. The main in-
terest of the paper is probably less the method itself, but more its strong performance in
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our experimental studies on classification and retrieval. In light of the simplicity of the
representation and the distinctive loss of information it implies, this performance was un-
expected. On the other hand, it is true that similar representations have been used quite
successfully in other fields, too, where the loss of information is arguably not smaller.

Due to its runtime efficiency and scalability, our approach is amenable to applications that
cannot be tackled by other methods. It can be used as a kind of filter, for example, to
preselect structures from very large datasets, thereby reducing the amount of data to be
processed afterward by more complex structure comparison algorithms. Using the method
for clustering, as we have already done in our experiments, is another example. Indeed,
the need for an all-against-all comparison does usually prevent the use of computationally
complex methods here.

Acknowledgements: The authors like to thank the reviewers for useful suggestions that
helped to improve the paper and, moreover, for bringing the approach of Sander et al. to
their attention.
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