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Abstract: We report on a case study of implementing parallel variants of the Davis-
Putnam-Logemann-Loveland algorithm for solving the SAT problem of propositional
formulas in the functional programming language Haskell. We explore several state of
the art programming techniques for parallel and concurrent programming in Haskell
and provide the corresponding implementations. Based on our experimental results,
we compare several approaches and implementations.

1 Introduction

Due to the ongoing developments in hardware, multiprocessor and multicore program-
ming is becoming more and more popular. To benefit from this development, on the one
hand it is necessary to parallelize known algorithms by modifying the existing sequential
algorithms, and on the other hand (in the best case easy to use) programming primitives
for parallel and/or concurrent programming have to be developed and evaluated.

For the functional programming language Haskell [Mar10] several approaches for parallel
and concurrent programming exist (for overviews see [PS09, Mar12]). Our motivation
of this paper is to evaluate the possibilities for parallel and concurrent programming by
implementing a typical use case for parallelization in several variants. As a result we
compare the different implementations experimentally by measuring their performance.

As an easy to parallelize but interesting problem we chose SAT solving, i.e. the problem
of answering the question whether or not a propositional formula is satisfiable. More
concretely, as the existing sequential algorithm we used the Davis-Putnam-Loveland-
Logemann (DPLL) procedure [DP60, DLL62] which decides satisfiability of propositional
formula in clause normal form, by using unit propagation and case distinction.

There are several investigations of parallelizing this algorithm (see e. g. [BS96, ZBH96,
HIJS09]) which is an ongoing research topic. However, our goal is not to provide a very
fast implementation of DPLL, but to compare, explain, and investigate several possibilities
for parallelization in the functional programming language Haskell and how they can be
adapted to this particular use case.

A similar approach has been undertaken in [RF09] where different strategies for paral-
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lelizing a nondeterministic search in Haskell were implemented and analyzed. The DPLL
procedure was used as an example application. Compared to their approach we also pro-
vide implementations using (implicit) futures, a “parallel and” (which behaves like an amb
operator), and we use the Eval monad, which supersedes Haskells’s older par combinator
and appeared after the work of [RF09]. As a further difference, our performance tests
include satisfiable as well as unsatisfiable formulas.

Outline of the paper In Section 2 we briefly describe the satisfiability problem and the
(sequential) DPLL algorithm which solves this problem. We also will provide a simple
implementation in Haskell. In Section 3 we present our implementations of parallel vari-
ants of DPLL, using several programming libraries available for parallel and concurrent
programming in Haskell. We will also briefly explain the corresponding libraries. In Sec-
tion 4 we present and interpret our experimental results. Finally, in Section 5 we conclude
and list some open questions left for further research.

More details of the undertaken case study (including more test results and further motiva-
tion) can be found in [Ber12].

2 The DPLL Algorithm

The DPLL algorithm [DP60, DLL62] takes a propositional formula in conjunctive normal
form (i. e. a set of clauses) as input and decides whether or not the formula is satisfiable.
It uses unit propagation (i.e. the combination of unit resolution and subsumption) and
case distinction as techniques. DPLL is the core of many modern SAT solvers like Chaff
[zCh12, MMZ"01] and zChaff [zCh12], GRASP [SS96] or MiniSat [Min12, ES03].

We introduce some notation. A propositional atom is a propositional variable (e.g. x).
A literal is an atom x (called a positive literal) or a negated atom —x (called a negative
literal). We will use [, I; for literals. With [ we denote —z if [ is a positive literal = and
if [ is a negative literal —x. A propositional formula is in conjunctive normal form iff it is
of the form (I1 1 V... Vi ) Ao e A(l1 Voo Vil m, ). We use clause sets instead of
conjunctive normal forms, i.e. we write {{l11,...,l1,my }+--- {ln,15- s ln,m, } }» Where
the set {/; 1,...,lim,} is called a clause. Clauses of the form {l} are called unit-clauses.
For a clause set C, a literal [ is pure in C iff [ does not occur in C.

In its core the DPLL procedure can be described by Algorithm 2.1 shown in Figure 1.
The shown DPLL algorithm only decides satisfiability, but it is easy to adapt it to also
generate models for satisfiable formulas by setting the literal [ of unit clauses {/} used for
unit propagation in line 3 to true and setting the pure literals [ chosen in line 7 to true.

In practice, further improvements are used to speed up search by using so-called conflict-
driven backjumping instead of backtracking and learning clauses (see e. g. [NOT06] for an
overview). However, for our case study we wanted to keep the core algorithm simple, so
we did not use these improvements. Hence, our implementation of the DPLL algorithm in
Haskell (which additionally computes a model for satisfiable clause sets) is very close to
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Algorithm 2.1.
Input: A propositional clause set C
Output: true (C is unsatisfiable) or £alse (C is satisfiable)
DPLL(C) :
(1) if @ € C then return true;
if C = emptyset then return false;
if 3 unit-clause {I} € C then
Cy := remove all clauses in C that contain literal [;
Cs := remove all literals | occuring in Cy;
return DPLL(Cs);
if 3 pure literal | in C then
C1 := remove all clauses in C that contain literal l;
return DPLL(Cy);
Choose a variable x that occurs in C;
return DPLL(CU {{z}}) A DPLL(CU {{—x}});
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Figure 1: The DPLL procedure

the pseudo code of Algorithm 2.1. Leaving out some helper functions, the implementation
in Haskell is shown in Fig. 2. The functions not shown here are findUnit which searches
for unit clauses, resolve which performs unit propagation, and findLiteral to find
a next decision literal used in the case distinction. Literals are represented by integers
where negative numbers represent negative literals. Compared to the pseudo algorithm our
implementation does not perform deletion of isolated literals since searching and deletion
is very expensive, and the run time gets slower if deletion is included.

3 Parallelizing the DPLL Algorithm in Haskell

Due to its tree-like recursion (the case distinction in line 11 of Algorithm 2.1), the DPLL
algorithm is obviously parallelizable by evaluating both recursive calls in parallel. This
can be seen if we look at the execution graph of the sequential algorithm. Figure 3 shows
one such graph for our Haskell implementation executed on the example clause set

o, ry A st Ap, ~r,—sh {—p.q, 7}, {-p, ¢, 5},
{=p,q,—r, s}, {—~q,r},{—q, s}, {—~q,—r,~s}} .

A node shows the selected literal in each step where the root node is the first step. If a node
has only one child node, then it is an execution of unit propagation. Whereas if it has two
child nodes, then it is an execution of the last rule. In this case, the left edge represents
the positive path (i.e. the literal was assigned true), and the right edge represents the
negative path (i. e. the literal was assigned false). Leaf nodes have either of the values
true or false. For the example all leaves are true, and thus the formula is unsatisfiable.
If the tree contains a path ending in a leaf marked with false, then a (partial) model of
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type Literal = Int

type Clause = [Literal]
type Model = [Literal]
type ClauseSet = [Clause]

dpll : ClauseSet — Model — Model
dpll [] model = model
dpll clauses model
| [1 € clauses = []
| otherwise =
case findUnit clauses of
Just u — dpll (resolve u clauses) (u:model)

Nothing —
let dlit = findlLiteral clauses
positivePath = dpll (resolve dlit clauses) (dlit:model)
negativePath = dpll (resolve (- dlit) clauses) ((— dlit):model)

in case positivePath of
[] — negativePath
XS — XS

Figure 2: The DPLL algorithm in Haskell
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Figure 3: Example decision tree

the formula (i. e. a truth assignment) can be read off the corresponding path.

While sequential DPLL algorithms usually traverse the decision tree by a depth-first
search, the idea for parallelization is to traverse all paths in parallel. Of course, this is
a form of speculative parallelism, since perhaps unnecessary computations may be per-
formed. On the other hand, even if we execute the parallel algorithm on a single processor
(i. e. a concurrent evaluation which traverses the different paths in an interleaved manner),
this may speed up the search by finding a model earlier.

Parallelization of the search with multiple processors is beneficial if all (or many) paths
need to be searched (e. g. if the input clause set is unsatisfiable), or if a satisfying assign-
ment is on a path that would be found late by the sequential search.

The parallel variant of the DPLL algorithm requires to synchronize the results of the com-
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putations along different paths. For speeding up search, the algorithm should stop as early
as possible. However, in the pure functional setting this requires to use a “parallel and”
for synchronizing the results (i.e. an “and” operator which is non-strict in both of its ar-
guments). Unfortunately, some libraries for parallel programming available for Haskell do
not provide such a mechanism, and thus for several of our implementations we will use a
“sequential and”. However, in the impure world (using Haskell’s I0 monad), we will also
provide an implementation that behaves like a “parallel and”. As opposed to a “parallel
and”, a “sequential and” cannot achieve a speedup if the two paths traversed in parallel are
both satisfiable, and one of them can be computed significantly faster than the other one.

Now, if we fork off computations at every decision point, the overhead for managing the
parallel computations might get bigger than the speedup through parallelization if our
clause sets get very small. Additionally, the number of processors (or cores) is limited by
the hardware. So it makes no sense to parallelize every decision point. Instead, we restrict
the number of created parallel computations.

Detecting the point for stopping parallel execution and going back to the sequential algo-
rithm is not trivial as the formula size e. g. does not shrink predictably, and the detection
should not be too expensive. Otherwise we may just as well have found a solution already
with the computational power used by the detection.

For our implementations we have chosen a considerably simple approach: a global search
depth that is used as an additional parameter for DPLL. This is almost without cost but
makes us need to adjust for a particular formula size or group to be of general use.

3.1 Implementation in Haskell

The general model of our parallel implementation of DPLL in Haskell is shown in Figure 4.
There are only few modifications w. . t. the sequential implementation: An additional pa-
rameter for restricting the parallelization depth is inserted, and for the case distinction
either the parallel execution is performed, or if the bound is exceeded, sequential compu-
tation is used. Of course, the code for the parallel execution is still missing and will be
filled with several variants which we will explain in the subsequent sections. Since we
also use Concurrent Haskell which is inside Haskell’s I0 monad we use a second variant,
which is analogous to the program frame shown, but uses monadic do notation.

There are several methods for parallelizing code in Haskell. We have implemented some
variants of the DPLL algorithm using the methods available within the Glasgow Haskell
Compiler (GHC) and also using some others available by libraries. In particular, we used
the Eval monad (on top of which evaluation strategies are built) [THLP98, MML™'10],
Concurrent Haskell [PGF96, PeyO1, PS09], and its extension with futures [SSS11]. We
also considered the Par monad [MNP11], which is available as a separate package (monad-
par). We will discuss at the end of this section why we did not include an implementation
using it in our tests.

In the following we are going for a mixed approach at explaining Haskell’s parallelization
capabilities and our respective implementations: We are discussing them at the same time
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type Threshold = Int

dpllPar : Threshold — ClauseSet — Model — Model

dpllPar _ [] model = model
dpllPar i clauses model

| [1 € clauses = []

| otherwise =

case findUnit clauses of
Just u — dpllPar i (resolve u clauses) (u:model)

Nothing —
let
dlit = findLiteral clauses
positivePath = dpllPar (i-1) (resolve dlit clauses) (dlit:model)
negativePath = dpllPar (i-1) (resolve (- dlit) clauses) ( (- dlit) :model)
in if i > 0 then

. — parallelization
else case positivePath of
[1] — negativePath

XS — XS

Figure 4: Program frame for all pure parallel implementations

and only explain the methods that are actually used. For a more thorough introduction into
parallelism and concurrency within Haskell we refer to the tutorial [Mar12].

3.1.1 Implementation using the Eval Monad

The Eval monad [MML™10] is the successor of the older parallelization API with par and
pseq [THLP9S]. It delivers a more implicit approach to parallelization: The programmer
annotates possible subexpressions for parallelization (by using rpar) and the runtime sys-
tem may execute the evaluation in parallel. Concretely, the runtime system manages a pool
of so-called sparks, and evaluation of rpar adds a new spark to the pool. If resources are
available (i. e. a processor core is unused), the runtime system takes the next spark of the
pool and executes it. More precisely, every HEC (Haskell Execution Context), which ex-
ists roughly for every processor core [MPS09], has its own spark pool where expressions
given to rpar are stored. Whenever a processor core has no further work to do, it first
looks at its own spark pool before stealing from another. The oldest sparks are taken out
first, so overall, they are roughly executed in order of their creation.

rpar is used within the monad and execution is initiated with runEval. To wait for the
evaluation of an expression, rseq is used. One important fact to note is that by default
rpar and rseq only evaluate to weak head normal form (WHNF). Evaluation to normal
form can be forced with rdeepseq, which can be combined with rparWith to evaluate a
parallel computation completely. These functions are all basic evaluation strategies. Eval-
uation strategies are an abstraction layer on top of the Eval monad. They allow to separate
the algorithm from its evaluation. The function parList e.g. represents a strategy that
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evaluates all elements of a list in parallel. For more information on evaluation strategies
we refer to [MML™T10].

For the parallelization part of the DPLL algorithm we use the Eval monad as follows:

runkEval $ do x ¢ rpar negativePath
return (case positivePath of
[1 = x
XS — XS)

The negative path is annotated to be evaluated in parallel, and the program continues by
first evaluating the positive path. Note that we do not need to use the strategy rdeepseq,
which ensures that the normal form of an expression is evaluated. If we inspect the DPLL
algorithm more closely, we can see that negativePath is always evaluated to normal
form by rpar, because at the point where we know if the result list is empty or not (i. e. if
a model exists or not), the expression has already been fully evaluated.

This implementation is subsequently called EvalT. As sparks are more lightweight than
threads because they are just references to the respective expressions, we also implemented
a variant with unbound parallelization depth, which we call Eval.

3.1.2 Implementations using Concurrent Haskell

Concurrent Haskell [PGF96, PeyO1, PS09] extends Haskell’s I0 monad with concurrent
threads. These can be spawned by the primitive forkI0, and they can be killed by us-
ing killThread. Concurrent Haskell provides so-called MVars for synchronization of
and communication between threads. An MVar is either empty or filled. The primitive
newMVar creates a new (filled) MVar. The operation putMVar tries to fill an empty MVar.
If the MVar is already filled, the calling thread is blocked until some other thread empties
the MVar. Reading the content of an MVar is done with takeMVar which reads the con-
tent and empties the MVar. Similar to putMVar, it blocks the reading thread if the MVar
is already empty and waits until it gets filled. Threads that are blocked on an otherwise
inaccessible M Var are automatically garbage collected by GHC’s garbage collector.

Using Concurrent Haskell, we implemented several variants. The first few use the above
mentioned “sequential and” for parallelization, so the alternative path is only checked for
a solution after the main one has finished computing. With these implementations we also
compare the use of implicit vs. explicit futures as explained below. The “parallel and”,
where the result of the faster path is taken first, is implemented in one variant.

The program frame for the implementations using Concurrent Haskell differs slightly from
Figure 4 because they return their result in the I0 monad.

3.1.2.1 Concurrent Futures A future [BH77, Hal85] is a variable whose value is ini-
tially not known, but becomes available in the future. The value of a concurrent future is
computed by a concurrent thread (in Haskell by a monadic computation in the I0 monad,
[SSS11]). Note that for computing the value of a pure expression, inside such a future,
a monadic action which evaluates the expression must be created, for instance by using
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the primitive evaluate. Like lazy evaluation, other threads using the future can con-
tinue evaluation until there is some data dependency forcing the value of the future. One
distinguishes between explicit and implicit futures. Explicit futures require a force com-
mand to request the value of a future, while for implicit futures this request is performed
automatically by the underlying runtime system.

Explicit futures are easy to implement using Concurrent Haskell: The future is represented
by an MVar, and the concurrent thread writes its result into this MVar. The force command
simply reads the content of the MVar. Hence, explicit futures can be implemented as
follows, where we additionally return the ThreadId of the thread created:

type EFuture a = Mvar a

efuture 1 I0 a — I0 (ThreadId, EFuture a)

efuture act = do ack < newEmptyMvVar
tid < forkIO (act >=putMvar ack)
return (tid,ack)

force : EFuture a — IO a

force x = readMVar x

Implicit futures are not implementable in Concurrent Haskell, but they can be imple-
mented by using the primitive unsafeInterleaveI0', which delays the computation
of a monadic action. The implementation in Haskell is:

future @ I0 a — IO (ThreadId, a)

future act = do ack < newEmptyMvVar
tid ¢ forkIO (act >=putMVar ack)
result < unsafelnterleavelO (takeMVar ack)
return (tid,result)

Analogous to explicit futures, an MVar is used to store the result of the concurrent com-
putation, but the code for creation of the future already contains the code for reading
and returning the whole result. However, this second part of the code is delayed by
unsafeInterleaveI0, which means that only if some other thread demands the value
of the future, the code is executed.

Although this implementation makes use of the unsafe operation unsafeInterleaveIO,
in [SSS12] it was shown that this specific use is safe since this extension of Haskell (i. e.

Concurrent Haskell with implicit futures) is a conservative extension?.

Our implementations for a concurrent DPLL algorithm with explicit and implicit futures
are ConE and Con respectively. The parallelization in ConE is implemented as follows:

do (tid, npvar) < efuture negativePath
pp ¢ positivePath
case pp of
[1] — force npvar >=return
xs — killThread tid > return xs

which is not part of the Haskell standard, but available in all major implementations of Haskell
2The result in [SSS12] does not include killing of the thread, but should be extensible to this situation
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Con, using an implicit future, looks very similar, but the result does not need to be explic-
itly forced, it can directly be used:

do (tid, np) < future negativePath
pp < positivePath
case pp of
[l — return np
xs — killThread tid > return xs

While implementing Con, we also implemented a variant where the order of the first two
lines is switched, which resulted in the variant called Con’:

do pp ¢ positivePath
(tid, np) < future negativePath
case pp of
[] — return np
xs — killThread tid > return xs

Even though one might expect that this variant sequentializes the whole search, this is not
true as our results will show. Through the use of the implicit future, the evaluation of the
negative path is not forced with return np, but on the last branching point before, with
case pp of. Thus, after nested recursive execution, the action pp <positivePath
is not strictly executed before the future for the negative path is created. In other words,
as soon as the positive path is seen to have no result, a “pointer” to the negative-path
computation is returned (return np). At the last branching point before, the negative
path can now be forked off before the results of the positive path are completely forced
with case pp of. In summary, the execution of the variant Con’ is like first walking
sequentially along the leftmost path of the decision tree, and then forking bottom-up so
that the negative paths of different levels in the search tree are computed in parallel.

3.1.2.2 Checking the faster path first Using the mechanics of MVars, we can check
the results of the paths in the order their computation finishes by letting them both write
to the same MVar. The slower thread is blocked until the result of the faster one is read
and taken out of the MVar. Then it can write to the MVar, and we can get its result with a
second read on the MVar. If the first one already returned a solution, we kill both threads —
one of the two killThread operations simply does nothing.

do pvar < newEmptyMvar
tidp < forkIO (positivePath>>>=putMvVar pvar)
tidn <= forkIO (negativePath>=putMvar pvar)
first < takeMvar pvar
case first of
[] — takeMVar pvar >=return
xs — killThread tidp > killThread tidn > return xs

We call this implementation Amb (since it models McCarthy’s amb [McC63]). Depending
on which path (thread) finishes first, the resulting model (if one exists) may be different.
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3.1.3 The Par Monad

As stated earlier, we did consider the Par monad, but excluded our implementation using it
from the tests. The decision was made because the Par monad does not support speculative
parallelism. It allows to create concurrent threads, and organizes communication between
them with variables of the type IVar, which works similar to Concurrent Haskell’s MVar.
But there is no way to cancel an ongoing concurrent computation, and unreachable threads
are not garbage collected like in Concurrent Haskell. An implementation using the Par
monad would only be useful for (nearly) completely unsatisfiable formulas. There is a
modification of the Par monad — found in the blog entry [Pet11] — that enables cancellation
of threads, but we did not investigate an implementation using this modified Par monad.

4 Experimental Results

We tested several parallel implementations of the DPLL algorithm together with the se-
quential one using the Criterion package [Cril2]. The set of input formulas is part of the
SATLIB project [HS00], which provides randomly generated 3-SAT formulas. The tested
clause sets consist of 125 or 150 propositional variables and 538 or 645 clauses. The
clause sets are divided into satisfiable and unsatisfiable sets (these are named to make the
parameters explicit: the names are either uuf-xxx-yyy or uf-xxx-yyy where uuf means un-
satisfiable formula, and uf means satisfiable formula; xxx is the number of variables, and
yyy is the number of clauses). For the satisfiable formulas we tested 20 formulas of each
set, and for the unsatisfiable formulas we tested 10 formulas of each set.

All tests were performed on a system with two quad-core processors of type AMD Opteron
2356 and 16 GB main memory. Every test was repeated 20 times to obtain the average ex-
ecution time. The code was compiled with GHC version 7.4.2, and all variants apart from
the sequential one were run with the parallel garbage collection switched on (which is
the default); disabling the parallel garbage collection reduced performance for all parallel
variants, only the sequential one ran faster without. Like the parallel variants, the sequen-
tial variant was compiled with threading support switched on but the runtime system was
restricted to one core on execution.

The time we compare all runtimes to is the runtime of the sequential variant, which we
call Seq. Subsequently, all runtimes are displayed as relative numbers; the runtime of
the sequential variant is defined as 1.0 for every tested formula. Thus, for the sequential
variant, we omit the relative numbers, but display the absolute runtimes for orientation.

The complete set of results — together with the source code — can be found at
http://www-stud.cs.uni-frankfurt.de/~tilber/davis-putnam.

Some of our results are shown in Figures 5 and 6. We also measured the space usage (by
GHC’s statistic output). Figure 7 shows some of these results.
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Implementation Threshold 1 2 8 2 8 3 12 24
# Cores 2 4 8

uf125-538

Seq Mean 1.17 sec.

Amb Mean 075 1.49 447 105 243 1.03 1.78 199
Median 095 137 177 086 097 0.59 069 0.74

Con Mean 1.19 195 459 114 248 128 1.86 2.02
Median .19 169 196 101 111 1.04 071 0.74

Con’ Mean .11 1.05 097 1.12 0.72 1.08 0.62 0.56
Median 1.09 1.09 087 1.12 0.64 1.11 049 044

EvalT Mean 1.02 098 1.07 092 087 091 0.82 0.83
Median 1.08 1.07 1.07 1.02 090 0.88 0.58 0.57

Eval Mean 1.01 0.87 0.82
Median 1.07 0.89 0.61

uf150-645

Seq Mean 5.27 sec.

Amb Mean 051 249 1033 131 557 128 4.62 577
Median 041 078 159 043 086 035 0.64 0.77

Con Mean .10 1.89 1035 1.03 590 126 477 5.65
Median 1.10 1.15 1.64 091 089 0.77 0.65 0.78

Con’ Mean 1.10 1.09 086 1.13 0.69 1.02 055 048
Median 1.10 1.09 074 1.11 059 1.05 045 0.37

EvalT Mean 1.00 1.08 096 0.89 0.78 095 074 0.73
Median 1.07 1.03 098 080 0.69 0.68 048 0.46

Eval Mean 0.94 0.78 0.77
Median 0.98 0.63 0.47

Figure 5: Test results for satifisiable formulas (runtimes relative to Seq)

Implicit and Explicit Futures We did not include runtimes for the implementation with
explicit futures (ConE) since they are almost the same as the runtimes for the implicit-
future variant (Con). The reason is that the force command in the variant with explicit
futures is almost exactly at the point where the result is needed. The only difference is that
in the implicit-future variant, the negative path computation does not need to be evaluated
before it is handed to the parent branching point. This difference is only essential for
Con’ where the negative path is forked off before the evaluation of the positive path is
completely forced with case pp of.

Parallelization Depth for the Implementations using the Eval Monad Our results
show that for using the Eval monad, the implementation with a depth bound (EvalT)
performs not as good as the implementation without any bound (Eval). The numbers
which are slightly higher for Eval can be attributed to measuring inaccuracy. In general,
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Implementation Threshold 1 2 8 2 8 3 12 24

# Cores 2 4 8
uuf125-538
Seq Mean 3.52 sec.
Amb Mean 075 0.70 057 059 033 047 021 0.21
Median 072 0.69 057 059 033 045 021 0.21
Con Mean 075 0.79 0.60 058 034 048 022 0.22
Median 075 0.77 060 0.57 034 047 022 0.22
Con’ Mean 1.28 1.03 063 1.11 051 1.01 041 0.36
Median 1.29 105 0.62 1.15 048 099 039 0.34
EvalT Mean 0.68 0.66 055 051 031 041 0.19 0.19
Median 0.66 0.61 054 050 031 041 0.19 0.18
Eval Mean 0.54 0.30 0.19
Median 0.54 0.30 0.18
uuf150-645
Seq Mean 10.80 sec.
Amb Mean 083 0.74 057 0.65 032 041 020 0.21
Median 073 0.72 057 0.62 032 041 020 0.21
Con Mean 087 0.82 059 0.69 033 043 0.20 0.21
Median 079 0.78 059 0.70 033 042 0.20 0.21
Con’ Mean 1.31 098 060 1.07 044 097 032 0.27
Median 1.34 091 059 098 044 096 031 0.26
EvalT Mean 071 0.65 055 054 030 036 0.18 0.17
Median 0.66 0.65 054 054 030 036 0.18 0.17
Eval Mean 0.54 0.29 0.18
Median 0.54 0.29 0.18

Figure 6: Test results for unsatisfiable formulas (runtimes relative to Seq)

the higher the threshold for EvalT, the shorter the runtime. Only in some cases a small
threshold is faster, but overall, Eval has the best mean behavior. For unsatisfiable formulas
the advantage of Eval is even clearer. A smaller partitioning of the search space seems to
speed up the search more than the overhead for managing more sparks slows it down.

Comparison of Eval and Con As variants Eval and Con share the same parallelization
approach — although the first uses parallelism, the latter concurrency —, one might expect
them to perform similar. But Con is noticeably more fragile regarding the parallelization
depth than EvalT. The reason is that the overhead of creating many threads in Concurrent
Haskell is too high compared to the overhead that managing sparks in the Eval monad cre-
ates. Measuring the space behavior of both variants, we can see that Con consumes much
more space than Eval, and consequently requires also more time for garbage collection.
A relatively small threshold seems thus to yield the best results. But even considering that,
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Implementation Threshold 1 2 4 8 16 32 100

uf125-538

Seq Mean 4.01 MB

Amb Mean 12 15 26 4 69 7 7
Con Mean 12 1.5 25 45 73 72 73
Con’ Mean 1 1.1 1.2 13 15 15 1.5
EvalT Mean 12 16 16 16 16 1.6 1.6
Eval Mean 1.6

uf150-645

Seq Mean 4.77 MB

Amb Mean 12 16 34 78 17 178 184
Con Mean 12 1.6 33 92 19 19 193
Con’ Mean 1 1.1 12 15 16 1.7 1.7
EvalT Mean 1.3 1.7 17 17 1.7 1.7 1.7
Eval Mean 1.7

Figure 7: Space behavior for satisfiable formulas on four cores (relative to Seq)

Eval performs consistently better as it does not have such extreme outliers as Con (which
result in the very high average runtimes for higher thresholds).

Parallelization Depth for Con’ The implementation Con’ also performs almost consis-
tently better than Con for satisfiable formulas; but in another way than Eval. A noticeable
difference is that for Con’ the parallelization depth needs to be relatively high until mea-
surable parallelization resulting in speedup happens. This is because of the parallelization
being executed bottom-up. Like for EvalT, the higher the threshold, the faster the execu-
tion. Besides, a threshold of 100 is enough to completely parallelize the algorithm for all
tested formulas — the maximum branching depth lies at about 50.

This also holds for unsatisfiable formulas. For these, Con’ (with high threshold) is a bit
slower than Con — but only on eight cores. This also indicates that parallelization happens
later. As stated before, the positive path is evaluated only partly until a thread for the
negative path is forked.

Inspecting the space behavior shows that Con consumes much more space than Con’ for
satisfiable formulas. As a consequence Con consumes more time for garbage collection
than Con’. The reason might be that Con’ creates a fewer number of threads, and the
created threads are often necessary for the result of the computation.

Parallelization Depth for Amb The most ambiguous variant is Amb. It is even more
fragile than Con regarding the parallelization depth. For satisfiable formulas a small depth
is in most cases best so that the number of threads created equals the number of processor
cores used. The mean is always worse for a higher threshold — meaning that there are
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some extreme outliers that get worse the higher the threshold is. But as the median shows,
a higher threshold yields a better runtime for some formulas. There are some extremely
fast runtimes — only about 5 % of the sequential runtime — but that only happens on two
cores with minimal threshold. Using more cores, the best single runtimes lie at about
18 %, and they are fewer. With a higher threshold, the time needed for garbage collection
gets too high in most cases because of the high number of threads created. The increasing
space usage can be seen in Figure 7.

For unsatisfiable formulas the almost reverse holds: Here, a threshold as high as possible
is preferable. Though in some cases if it gets too high, the runtime slightly increases again.
In this case, the thread-managing overhead seems to outweigh the better partitioning of the
search space.

Comparing all Implementations Regarding unsatisfiable formulas, Eval performs
best. But all parallel variants yield a noticeable advantage over the sequential one in this
case. The relatively simple implementations perform very well when the whole decision
tree needs to be traversed, and no speculative parallelism is actually performed.

For the satisfiable formulas, results are mixed. Amb is the fastest in some single cases where
the advantage that it first checks the faster of both paths, translates to a very short runtime.
But in many other cases the runtimes are extremely bad. This can be seen from the harsh
difference between mean and median values for Amb. In these cases, the parallelization
overhead seems to be too high. This is probably due to the fact that even more threads than
with Con are created, which is also indicated by the fact that a high depth bound increases
the runtimes even more than for Con. Eval is more stable but also has some outliers,
which are less extreme. Its average results are thus looking better but, considering the
number of cores utilized, not very well with only about 75 % of the sequential runtime for
the medium sized formulas. In the average, Con’ performs best for satisfiable formulas.
Compared to the other two variants, runtimes are very stable resulting in mean values that
are only slightly larger than the medians.

For Eval, the runtime variations were more noticeable with eight cores. Using less cores,
the mean values are only a bit higher, whereas the median values improve with more cores.
This suggests that the coordination costs get much higher in some cases when using more
cores. Although the results for unsatisfiable formulas suggest that sparks behave indeed
very cheap and that spark handling of the threaded GHC runtime system performs well,
the results for satisfiable formulas show that there are cases where spark handling creates
a noticeable overhead (though less much so than concurrent threads).

The depth bound approach is probably problematic if the search tree of a particular formula
is very unbalanced. In that case the depth may in the worst case either be too big so that we
do not stop parallelizing soon enough in the faster to solve path. This way, we lose time
because of management overhead. Or it may be too low so that we lose parallelization
potential in one path.
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5 Conclusion

Concluding, our results show that the GHC runtime system performs very well when par-
allelizing sequential algorithms without speculative parallelism — in our case when un-
satisfiable formulas are tested. Here, the most implicit approach, the Eval monad, yields
the best results due to very little overhead. In case speculative parallelism is actually uti-
lized when testing satisfiable formulas, our depth bound approach seems to be too simple
though Con’ performs surprisingly well compared to the other variants. For better results
on satisfiable formulas, other techniques for bounding the parallelization depth — like try-
ing to estimate the workload for a (partly reduced) formula — could be applied in further
research. Furthermore, it might be interesting to see if a bottom-up forking like it happens
with Con’ is still advantageous in a more space-optimized implementation.
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