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Abstract: Self-adaptive systems have the ability to autonomously reconfigure their
structure in order to meet specific goals. Such systems often include a planning
component, computing plans of reconfiguration steps. However, despite the fact that
reconfigurations take time in reality, most planning approaches for self-adaptive systems
are non-temporal.

In this paper, we present a model-based approach to the generation of temporal
reconfiguration plans. Besides allowing for durative reconfigurations, our technique
also neatly solves concurrency issues arising in such a temporal setting. This provides
the modeller with a clear and easy-to-use basis for modelling while at the same time
giving an automatic method for plan construction.

1 Introduction

The development of self-adaptive systems belongs to the most complex tasks in software

engineering today and requires a rigorous model-driven approach. Self-adaptive systems

possess the ability to accommodate to changes in their environment at runtime. Such

changes may include the failure of system components, the activities of other agents in the

environment, or changing user demands.

Self-adapting to a resulting new situation, calls for a number of reconfigurations that have

to be executed. In general, such reconfigurations do not have to be restricted to components’

internal states, but may include changes of the system’s architecture like the creation and

deletion of software component instances or communication links between them.

Systems that decide when and how to adapt their architecture, are said to have a self-

organizing [GMK02] or self-managing [BCDW04] architecture. Kramer and Magee

[KM07] defined a reference architectural model with three layers for the development

of such systems. It consists of a goal management, a change management, and a component

control layer. The goal management layer accomplishes time-consuming tasks, like the

computation of reconfiguration plans for given goal specifications. The resulting reconfig-

uration plans state how to adapt to the environment, i.e. which reconfigurations to apply,

∗This work was developed in the course of the Collaborative Research Centre 614 “Self-optimizing Concepts
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271



and when to execute them. The second layer, the change management layer, provides the

capabilities to adapt the system’s architecture. The component control layer is the bottom

layer and accomplishes the basic tasks of the system by providing the implementation of

primitive features. In this paper, we are specifically concerned with the top layer, i.e. with

the creation of reconfiguration plans.

We employ a model-based approach to the design of self-adaptive systems. Reconfigurations

concern the architecture of the system. System models are given in MECHATRONICUML

[BBB+12], a UML profile for the development of self-adaptive mechatronic systems. Here,

(initial as well as other) system architectures are modelled as graphs, and reconfigurations as

story patterns [FNTZ98], a formalism based on graph transformations, which schematically

define how an architecture configuration can be transformed into a new one. Graph

transformations are frequently used for specifying the reconfigurations of self-adaptive

systems, e.g. [LM98, WF02], and enable verification techniques to be applied [BBG+06,

SWW11]. However, only few apply planning techniques on these models, e.g. [EW11], to

actually generate reconfiguration plans that achieve the system’s goals. However, this is

needed for the entire reconfiguration process to happen autonomously, cf. [BCDW04].

The reconfigurations of a system architecture consume time and might be carried out in

parallel. In fact, in some application domains it might be counterintuitive to execute the

reconfigurations sequentially, because they refer to highly independent components (or

even different agents in multi-agent systems). However, most current planning approaches

to architectural reconfiguration, do not support time, and consequently only generate non-

temporal plans. The only one that does, is [TK11], an approach that also builds on graph

transformation rules for modelling reconfigurations. However, their approach to assign

annotations like «at_start» and «at_end» as stereotypes to the elements of rules is

cumbersome from a modelling perspective: possible interferences force the rules to be

precisely formulated.

The approach we follow here is an extension of [TK11]. We solve planning tasks by

translating (parts of) our models into the Planning Domain Definition Language (PDDL)

and feeding them into an off-the-shelf planning system, like SGPlan6 [CWH06]. However,

our solution renounces from assigning start and end annotations. Instead, we apply a

locking mechanism that is based on the idea of restricting read or write access to elements,

when they are in use by a reconfiguration. This is similar to the concurrency control

methods implemented by database management systems. Unintended interferences, e.g.

the deinstantiation and use of a software component at the same time, are thus avoided,

without the need for a modeller to specify this. Apart from a model-based approach for

planning time-consuming architectural reconfigurations, our approach can also be seen as a

knowledge engineering contribution to the PDDL community.

2 Application Scenario

Our running example is based on the RailCab project that is developed at the University

of Paderborn. The RailCab project consists of autonomous, driverless shuttles, called
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RailCabs, that operate on a railway system. Each RailCab has an individual goal, e.g.

transporting passengers or goods to a specified target station. An important feature of the

project is the RailCabs’ ability to drive in convoy mode, i.e. RailCabs can minimize the

air gap between each other to safe energy. To safely operate in a convoy, acceleration and

braking has to be coordinated and managed between convoy members. The instantiation

and deinstantiation of software components for the communication and coordination of

RailCabs is one example for the high dynamics of the system’s communication structure.

For the purpose of this paper, we keep the application example small and do not cover every

aspect of the system’s communication structure.

:Track

:RailCab

:Convoy

2..*

1

1..*

member on

next

Figure 1: Class diagram of our (simplified) RailCab scenario

We begin with the specification of the system in MECHATRONICUML by first modelling its

structure as a class diagram (see Figure 1). The railway system consists of track segments

that are connected to each other via next links. A RailCab that operates in the system can

occupy such a track segment. Furthermore, RailCabs can coordinate with other RailCabs

to form a convoy. Such an active convoy operation is represented by an instance of the

Convoy type. A Convoy instance has a member link to each participating RailCab.

In MECHATRONICUML, the behaviour of components – more precisely their roles – is

modelled with real-time state charts, which allow the definition of communication and

timing constraints. Structural reconfigurations, e.g. the instantiation of a convoy, are

modelled with story patterns, an extension of UML object diagrams. Since our contribution

deals with modelling the structural reconfiguration of self-adaptive systems, the internal

behaviour of components is not considered here.

To model reconfiguration actions of our example system, we use story patterns that are

typed over the class diagram shown in Figure 1. Story patterns have a formal semantics1

based on (typed) graph transformation systems [EHK+97]. A graph transformation system

consists of a graph representing the initial configuration of the system and a set of rules.

Each rule consists of a pair of graphs, called left-hand side (LHS) and right-hand side

(RHS), that schematically define how the graph representing the system’s configuration

can be transformed into new configurations. Elements that are specified in both graphs are

preserved, other elements are deleted (if specified in the LHS only) or created (if specified

in the RHS only). Syntactically, a story pattern represents such a rule by integrating the

LHS and RHS into one graph and using stereotypes to indicate elements that are only

present in the LHS or in the RHS [FNTZ98]. The graph-like representation allows not only

for an intuitive modelling but also harmonizes with modern approaches for the development

of self-optimizing mechatronical systems, e.g. [THHO08].

Figure 2 provides an example of a reconfiguration which takes 4 time units: a RailCab

1Story patterns follow the single pushout approach to graph transformation.
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duration = 4
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Figure 2: Story pattern joinConvoy

duration = 3
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Figure 3: Story pattern breakConvoy

joining a convoy of RailCabs. Objects and links that are being created or deleted by the

application of the story pattern are labelled with the stereotypes «++» and «--», respectively.

The story pattern specifies the creation of a member link representing the RailCab’s partici-

pation in the convoy operation simultaneously with its movement to the next track segment.

The story pattern can be executed to transform the state graph into a new configuration if it

contains a subgraph that matches the LHS of the story pattern.

Our modelling formalism also allows to express that certain objects or links are not permitted

to appear in the current state graph. See for example the story pattern given in Figure 3.

The crossed out RailCab object and the link connecting it to the Convoy object are not

allowed to appear in the state graph. Such a restriction to the applicability of a story pattern

is called a negative application condition (NAC).

The locking mechanism we developed is restricted to specific kinds of NACs. We use the

terms forbidden link and forbidden pair to refer to these kinds of NACs. A forbidden link

denotes a NAC that consists of a single link only. A forbidden pair denotes a NAC that

consists of a single object and a link connecting this object to the LHS (as in Figure 3). A

connecting object denotes an object within a LHS that is connected to a forbidden pair (e.g.

the Convoy object in Figure 3).

In addition to the story patterns that define possible transformations, we need an initial

configuration and a goal specification to feed the planning system with. A goal specification

is a partly specified configuration that can be modelled as an ordinary object graph. Goal

specifications are either generated from user input or predefined by the system designer.

When the self-adapting system is in operation, initial configurations for the planning

subsystem are generated from actual runtime states of the system.

3 Concurrent Execution

If we allow only sequential execution of reconfigurations, a plan is a sequence of graph

transformations (or – in terms of PDDL – a sequence of ground actions). Considering

reconfigurations as durative does not change this as long as we do not allow a concurrent

execution of two reconfigurations. If we allow concurrency, the application intervals of two

graph transformations can overlap and a plan thus is a set of tuples of points in time and
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graph transformations. The questions that arise are: does the concurrent execution of two

graph transformations result in any conflicts, and how can such a concurrent execution be

avoided? An intuitive approach is to assume that the applicability check happens (in zero

time) at the beginning of the reconfiguration and the actual change at its end. This is also

assumed as default, i.e. when no further annotation is specified, in [TK11].

match of joinConvoy match of breakConvoy

t3:Track

r3:RailCab

t1:Track

r1:RailCab

t4:Track t5:Track

c:Convoy

r2:RailCab

t2:Track

member

on

next

on

member

nextnext next

on

Figure 4: Configuration of the system in which two story patterns can be applied

Unfortunately, such an approach is not suitable for many situations. Consider for instance

the state graph given in Figure 4 and the application of the story patterns joinConvoy

and breakConvoy given in Figure 2 and 3. Each of the rules has only one match in the

state graph. In Figure 4 they are highlighted by a dashed box. Let us assume that one

of the reconfigurations, e.g. breakConvoy, is currently being applied. This means, its

condition has already been checked but the alteration of the configuration has not yet been

executed. The execution of a reconfiguration of RailCab r1 joining the convoy makes no

sense in this situation and should not be allowed because the convoy will be deinstantiated

by breakConvoy. The problem is that the configuration is in the process of being changed,

but this is not reflected in the intermediate state graph. Checking the applicability at the

beginning of a reconfiguration and executing the alteration at its end is ineligible as a

general solution. To solve this problem, we add information about the execution of the

story patterns into the configuration. This can be seen as locking access to the elements of

the state graph. Whether a second reconfiguration is allowed to be applied concurrently,

can thus be checked by testing for the locks.

There are four cases of concurrency between two reconfigurations that might lead to

conflicts. In all of them, an element is concurrently being read (required or forbidden) by

a reconfiguration and being written (deleted or created) by another reconfiguration. They

differ only in their beginning and ending times.

A schematic overview of the four conflict cases for the story patterns joinConvoy and

breakConvoy is shown in Figure 5. The aforementioned example, in which the execution

of breakConvoy begun before the joinConvoy was applied, corresponds to cases a and

b. The reconfiguration removes the connection of RailCab r2 to the convoy which is

required by joinConvoy. In case a, breakConvoy ends first causing the convoy to be

deinstantiated and the alteration of joinConvoy not to work anymore. In case b, the

execution of joinConvoy ends first and the alteration of breakConvoy is still possible

on the new state graph created by executing joinConvoy. However, such a concurrent
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write lock

time
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read lock

time

breakConvoy (writing)

joinConvoy (reading)

read lock

time

a) b)

c) d)

Figure 5: Four conflict cases that have to be solved by locking

execution of joinConvoy and breakConvoy is not intuitive: although r1 joined a convoy

and was not involved in the breakConvoy reconfiguration, there is no convoy that r1

can be member of after the execution of both reconfigurations. From the perspective

of breakConvoy, joinConvoy did not take the pending alteration of breakConvoy into

account. Our solution to this problem encodes information about the deinstantiation of

the convoy into the configuration by acquiring a write lock of the Convoy object when the

breakConvoy reconfiguration starts and releasing the lock when the reconfiguration ends.

Although conflict cases c and d differ in their ordering of the reconfigurations’ starting

points, they are essentially caused by the same reason: either the alteration of breakConvoy

causes the convoy to be deinstantiated while r1 joins the convoy (case c) or joinConvoy

does not take the pending alteration of breakConvoy into account (case d). These situations,

however, require a different solution due to their different ordering of starting points. Since

joinConvoy starts first, it cannot check the information about the deinstantiation of the

convoy that breakConvoy is going to encode into the configuration by acquiring a write

lock. Therefore, joinConvoy itself encodes into the configuration that it requires the

Convoy object by acquiring a read lock of the Convoy object. Our solution approach

essentially uses write locks on parts of the system’s configuration to cope with cases a and

b and read locks to cope with cases c and d.

4 Translation into PDDL

The planning technique we employ on our application scenario translates the story patterns

into PDDL and uses an off-the-shelf planner to compute a reconfiguration plan that trans-

forms a given initial configuration into a target configuration. We incorporated the locking

mechanism explained in the last section directly into the translation, thus allowing for the

computation of parallel plans that are guaranteed to be free of conflicts. The parallel plans
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contain precise timing information for the application of the reconfigurations.

Since version 2.1 of PDDL [FL03] it is possible to specify durative actions that allow for

concurrent execution. While PDDL’s semantics already gives precise timing information

for a resulting plan, its semantics regarding concurrent execution is too liberal from the

perspective of our model. PDDL’s semantics does not sufficiently constrain what kind

of concurrent execution is allowed, thus burdening the designer of the planning domain

with the complicated and error-prone definition of additional predicates to safely control

whether a concurrent execution is allowed. Our translation scheme implements a suitable

concurrency control by generating locking predicates in accordance with the locking

mechanism we outline in the last section.

In PDDL, a planning task consists of a domain and a problem file. The domain defines

action schemata, as well as types and predicates that can be used within action schemata.

An action schema consists of a list of parameters, a precondition, and an effect. In the

precondition, a list of literals that are required for applying the action can be specified.

Similarly, the effect of an action specifies a list of literals that are obtained when the action

is applied. An action is instantiated – in the context of PDDL this is called grounding

– by substituting the parameters with objects that are defined in the problem file, thus

transforming the first-order literals into a set of atomic facts that do not contain any free

variables. In addition to the objects in the world, the problem file also defines the initial

state and a goal specification, both in terms of a set of atomic facts.

Durative actions split the literals used in their precondition and effect into different sets

according to their time of evaluation. Literals can be asserted at_start, over_all, and

at_end when used in the precondition and be effective at_start and at_end when used

in the effect. While at_start and at_end refer to the starting and ending timestamp of an

action, over_all refers to the (open) interval during the action’s execution.

The translation schema we describe here explains the construction of a PDDL domain file

out of a given MECHATRONICUML model, i.e. a class diagram and a set of story patterns.

Roughly spoken, the class diagram yields the declarations (of types and predicates) in the

domain file and each story pattern yields an action schema. In doing so, the LHS of a story

pattern constitutes the precondition of the action and the RHS its effect.

Class diagram. The translation process begins with the declaration of types, predicates,

and functions. All declarations can be deduced from the class diagram. Listing 1 shows the

generated declarations for our application scenario. Each type in the class diagram gives

rise to a type in the type declaration section :types. Every type is a subtype of Object,

the root of the type hierarchy. We use a predicate active for the supertype Object stating

whether a given object exists, because PDDL does not allow for object creation or deletion.

Each link in the class diagram is translated into a predicate that is parameterized by its

source and target type. In PDDL, parameters are denoted by variable names followed by

their types, e.g. ?track - Track.

For now, we skip the declaration of the locks. We first cover the translation of story patterns

by the example of joinConvoy without addressing the locking functionality, then give an

overview of the modifications to realize the locks, and then stepwise extend the translation.
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Listing 1: Generated declaration of types, predicates, and functions

1 (:types Convoy - Object RailCab - Object Track - Object)

2 (:predicates

3 (active ?object - Object)

4 (member_Convoy_RailCab ?convoy - Convoy ?railcab - RailCab)

5 (on_RailCab_Track ?railcab - RailCab ?track - Track)

6 (next_Track_Track ?track1 - Track ?track2 - Track)

7 )

Story patterns. Listing 2 shows the translation of the story pattern joinConvoy. All the

conditions have to hold at_start, i.e. at the beginning of the story pattern’s execution. The

changes, i.e. the creation and deletion of objects or links, happen at the end of its execution.

Listing 2: Generated durative action joinConvoy

1 (:durative-action joinConvoy

2 :parameters (?c - Convoy ?r1 - RailCab ?r2 - RailCab ?t1 - Track

3 ?t2 - Track ?t3 - Track)

4 :duration (= ?duration 4)

5 :condition

6 (at start (and

7 (not (= ?r1 ?r2)) (not (= ?t1 ?t2)) (not (= ?t1 ?t3))

8 (not (= ?t2 ?t3))

9 (member_Convoy_RailCab ?c ?r2)

10 (on_RailCab_Track ?r1 ?t1) (on_RailCab_Track ?r2 ?t3)

11 (next_Track_Track ?t1 ?t2) (next_Track_Track ?t2 ?t3)

12 ... % checking for locks

13 ))

14 :effect (and

15 (at start (and

16 ... % locking

17 ))

18 (at end (and

19 (not (on_RailCab_Track ?r1 ?t1))

20 (member_Convoy_RailCab ?c ?r1)

21 (on_RailCab_Track ?r1 ?t2)

22 ... % unlocking

23 ))

24 )

25 )

Every object in the story pattern – irrespective of whether an unchanged object or an

object that is going to be created or deleted – is mapped to a parameter of the action.

These parameters are checked for inequality in lines 7 and 8 because we employ injective

matching in the graph transformation system.

Required links, i.e. unchanged links and links that are going to be deleted, cause the

remaining literals in the condition of Listing 2. If there were forbidden links in the story

pattern, they would have been translated into negative literals. The negative literal in the

effect (line 19) is caused by the on link that is to be deleted and the two positive literals
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(lines 20 and 21) by the member and on links that are to be created.

The translation of joinConvoy does not cover the case of a forbidden pair. While a

forbidden link can simply be mapped into a negative literal, a forbidden pair, e.g. the NAC

in the story pattern breakConvoy, has to be mapped into a negative existential quantification

over the conjunction of object type and adjacent link that connects the object to the LHS.

An isolated forbidden object, i.e. when no connecting object exists, can simply be mapped

into a negative existential quantification involving only the active predicate. In both cases,

inequality conditions are added if the object type has already been matched as a parameter,

to be in accordance with employing injective matching. A more elaborate explanation of

the mapping from non-durative graph transformation rules to PDDL action schemata that

also covers attribute expressions is given in [TK11].

Locking functionality. Now we turn to the extensions of our translation scheme to

integrate the locking mechanism we outlined in Section 3. First, the declaration of predicates

and functions has to be extended to include the declaration of locks. Listing 3 shows the

generated predicate and function declarations for the locks. For clarity, only declarations

for the link between Convoy and RailCab are shown. The first six lines specify the read

and write locks for ordinary objects and links. There is one pair of locks (read and write

lock) for each object (lines 2 and 5) and one pair of locks for each link in the class diagram

(lines 3 and 6). Write locks on objects and links are realized as predicates (exclusive lock,

true means locked) because an object or link may not be accessed in any way if it is being

deleted at the moment (or created in case of a forbidden link). As long as a reconfiguration

does not manipulate an object or a link, a concurrent access is allowed. Therefore, read

locks are realized as functions (shared lock, greater than 0 means locked).

Listing 3: Generated declaration of locks

1 % declaration of write locks for objects and links (in :predicates)

2 (writeNode_active ?object - Object)

3 (writeEdge_member_Convoy_RailCab ?convoy - Convoy ?railcab - RailCab)

4 % declaration of read locks for objects and links (in :functions)

5 (readNode_active ?object - Object)

6 (readEdge_member_Convoy_RailCab ?convoy - Convoy ?railCab - RailCab)

7 % declaration of read locks for forbidden pairs (in :functions)

8 (readAdjacentToSource_member_Convoy_RailCab ?convoy - Convoy)

9 (readAdjacentToTarget_member_Convoy_RailCab ?railcab - RailCab)

10 % declaration of write locks for forbidden pairs (in :functions)

11 (writeAdjacentToSource_member_Convoy_RailCab ?convoy - Convoy)

12 (writeAdjacentToTarget_member_Convoy_RailCab ?railcab - RailCab)

The idea of the remaining locking predicates (lines 7–12) is more subtle. Objects within

NACs cannot be locked via any of the aforementioned locking predicates (lines 1–6)

because these objects do not exist in the current configuration, i.e. there is no explicit

object in PDDL’s propositional state that represents the object in the NAC. Instead, locking

information is added to the objects they are connected to. This, of course, restricts our

approach to specific kinds of NACs, namely forbidden links and forbidden pairs.
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Locking of forbidden links (and links that are being created) is already supported via the

locking predicates for links. Locking of forbidden pairs is supported by the functions in

lines 8 and 9 which – pictorially speaking – add locking information to the connecting

object. For each link predicate, there is a pair of locking predicates: the first (second)

predicate is used to prevent the creation of a target (source) object that is connected to

the source (target) object via a link of the same type and direction than the link within

the forbidden pair. Objects that are being added are locked in a similar fashion via the

functions in lines 11 and 12. However, for objects that are being added by a rule, locking

information is attached to all object that the new objects are going to be connected to, i.e.

for every appearing link that is connected to the appearing object a write lock for the pair of

object and link is acquired. If there is no such object, then there is no need to lock anything

since isolated objects do not interfere with any other object or link. Note, that the write

locks are realized as functions instead of predicates because it is possible to apply more

than one reconfiguration creating object connected to the same existing object concurrently.

Also note, that while we support only two specific kinds of NACs, i.e. forbidden links and

forbidden pairs, we support any kind of RHS.

Listing 4: Locking literals of joinConvoy to support (required) objects

1 % checking for locks (in :condition)

2 (not (writeNode_active ?c)) (not (writeNode_active ?r1))

3 (not (writeNode_active ?r2)) (not (writeNode_active ?t1))

4 (not (writeNode_active ?t2)) (not (writeNode_active ?t3))

5 % locking (in :effect, at start)

6 (increase (readNode_active ?c) 1) (increase (readNode_active ?r1) 1)

7 (increase (readNode_active ?r2) 1) (increase (readNode_active ?t1) 1)

8 (increase (readNode_active ?t2) 1) (increase (readNode_active ?t3) 1)

9 % unlocking (in :effect, at end)

10 (decrease (readNode_active ?c) 1) (decrease (readNode_active ?r1) 1)

11 (decrease (readNode_active ?r2) 1) (decrease (readNode_active ?t1) 1)

12 (decrease (readNode_active ?t2) 1) (decrease (readNode_active ?t3) 1)

We will now treat the generation of locking literals for the conditions and effects of action

schemata and turn to the example of joinConvoy again. Listing 4 shows the locking

literals generated to support the locking of required objects. For every positive literal that

represents the existence of an object, a negative locking literal is added to the condition

of the durative action (lines 2–4). As a result, the action is applicable only if none of the

required objects (including objects being deleted) has been locked for writing. A shared

read lock is acquired when the action is scheduled to begin (lines 6–8) and released when

it ends (lines 10–12). The locking literals of required, i.e. unchanged and deleted, links

are realized similarly. The same holds for forbidden links since they are translated into the

same, yet negative literals as required links.

Although the story pattern joinConvoy does not contain forbidden pairs itself, it generates

locking literals for the support of forbidden pairs. This is necessary to avoid conflicts

between forbidden pairs and the creation of links: a forbidden pair might interfere with

creating a link because the link could be adjacent to an object of the same type as the

object in the forbidden pair. To avoid this, further locking literals are generated for every
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Listing 5: Locking literals of joinConvoy to support forbidden pairs

1 % checking for locks (in :condition)

2 (= (readAdjacentToSource_member_Convoy_RailCab ?c) 0) % link is being created

3 (= (readAdjacentToTarget_member_Convoy_RailCab ?r1) 0) % link is being created

4 (= (readAdjacentToSource_on_RailCab_Track ?r1) 0) % link is being created

5 (= (readAdjacentToTarget_on_RailCab_Track ?t2) 0) % link is being created

6 % locking (in :effect, at start)

7 (increase (writeAdjacentToSource_member_Convoy_RailCab ?c)) % link is b. created

8 (increase (writeAdjacentToTarget_member_Convoy_RailCab ?r1)) % link is b. created

9 (increase (writeAdjacentToSource_on_RailCab_Track ?r1)) % link is b. created

10 (increase (writeAdjacentToTarget_on_RailCab_Track ?t2)) % link is b. created

11 % unlocking (in :effect, at end)

12 ... % analogue

appearing link. Listing 5 shows these locking literals. The locking literals in lines 2–5

state that no forbidden pair lock may be acquired for any of the objects that are adjacent

to the appearing links. Such a lock will only be acquired if the story pattern of another

reconfiguration that is applied concurrently has a forbidden pair connected to one of these

objects. The locking literals in the effect (lines 7–10) itself acquire write locks of forbidden

pairs to guarantee that no concurrent reconfiguration with a forbidden pair connected to

one of these objects will be applied concurrently. Reconfigurations with forbidden pairs

check for these write locks in their condition.

Implementation and application. The proposed translation scheme was implemented

for the FUJABA TOOL SUITE using Xpand, a code generation language for EMF models.

Running the translator on a given model, i.e. a class diagram and a set of story patterns,

generates the corresponding PDDL planning domain.

Our application scenario includes reconfigurations to move RailCabs or convoys of RailCabs

and reconfigurations related to convoy de-/instantiation and membership change. All these

reconfigurations are available in the generated planning domain. The planning problems

associated with the generated domain consist of 30 track segments, 2–4 RailCabs, a few

junctions and specify initial and target track segments for the RailCabs. Such problems can

be solved by SGPlan6 within a few seconds: our planning tasks took approx. 1.4, 3.8, and

10.1 seconds (involving 2, 3, or 4 RailCabs, resp.) on an Intel Core i7-2640M running at

2.8GHz with 8GB RAM. The generated reconfiguration plans take advantage of parallel

execution of actions when possible, while guaranteeing that concurrently executed actions

do not interfere with each other. With regard to the application scenario, this means that

RailCabs operate in parallel if they are sufficiently apart from each other, but wait for the

execution of other RailCabs’ reconfigurations if necessary, e.g. to clear a common track

segment.

Listing 6 shows an excerpt of a resulting plan for the problem instance involving 4 RailCabs.

During the interval [60–64], railcab2 and railcab3 operate in convoy mode. From

64 to 68, they break up the convoy operation because the underlying domain specifies

a Y junction between track19, track20, and track25, and they need to move along
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different routes to arrive at their target locations. To do so, railcab2 has to fall back, i.e.

it still occupies track19 at 68. Concurrently, i.e. during the interval [60–68], railcab0

moves from track16 to track18 but waits from 68 to 72 to not crash into railcab2.

Listing 6: Excerpt of a resulting plan for 4 RailCabs

1 60.041: (MOVE railcab0 track16 track17) [4.0000]

2 60.042: (MOVECONVOY convoy0 railcab2 railcab3 track18 track19 track20) [4.0000]

3 64.043: (BREAKCONVOY convoy0 railcab2 railcab3 track19 track20 track21) [4.0000]

4 64.044: (MOVE railcab0 track17 track18) [4.0000]

5 68.045: (MOVE railcab3 track21 track22) [4.0000]

6 68.046: (CREATECONVOY convoy0 railcab2 railcab1 track19 track25 track26) [4.0000]

7 72.047: (MOVE railcab3 track22 track23) [4.0000]

8 72.048: (MOVECONVOY convoy0 railcab2 railcab1 track25 track26 track27) [4.0000]

9 72.049: (MOVE railcab0 track18 track19) [4.0000]

5 Related Work

While planning and scheduling is a discipline in artificial intelligence research that has

made many advances in the last decades, only few moves have been made to tie planning

techniques with the software engineering domain, e.g. [VSF+09] and [SKM07]. The most

promising approaches rely on graph transformation systems as an underlying formalism to

specify the planning tasks because of their intuitive representation and close association

to model-based software engineering. An early attempt into this direction came from

Edelkamp and Rensink [ER07]. They showed manual translations from planning tasks

specified with graph transformation rules into PDDL and identified some advantages of

planning directly on graph transformation systems: the possibility to reduce the state

space by representing isomorphic graphs only once and the support for dynamic object

creation and deletion. These advantages gave reason for techniques that directly use

graph transformation systems for planning, like [RW10] and [EW11]. In [RW10] the

planning task is solved by transforming it into a model checking problem, in [EW11]

by using heuristic search techniques. None of these approaches support time-consuming

reconfigurations.

Tichy and Klöpper [TK11] were first to present an automatic translation of graph transfor-

mation rules into PDDL actions. The support for time-consuming reconfigurations was

addressed in terms of stereotypes; concurrency issues were not treated. Meijer [Mei12] also

provides a translation between graph transformations and PDDL but does not cover time

or durative actions. The developed translator works in both directions, i.e. planning tasks

formulated in PDDL can also be translated back into a graph transformation system. As

opposed to our technique, the main focus of [Mei12] lies on the backward direction. The

employed graph transformation tool, however, needs to support existential quantification

on edges to match the semantics of PDDL2.

2In PDDL, a literal that is going to be deleted by an action does not have to be present if it is not required in

the precondition. In such a case the action is still applicable but does not change the literal.
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6 Conclusion and Future Work

We presented a model-based approach for planning time-consuming architectural reconfigu-

rations for self-adaptive systems. Our technique solves planning tasks for graph transforma-

tion systems by translating them into an input for efficient off-the-shelf planning systems.

It computes temporal plans where each reconfiguration step has its own associated duration

and reconfiguration steps can be carried out in parallel. Unintended interferences, e.g. the

deinstantiation and use of a software component at the same time, are avoided thanks to the

locking mechanism that we integrated into the translation scheme.

Currently, we investigate the use of domain-independent heuristics for planning techniques

that are applied directly on graph transformation systems as an alternative approach. We

plan to do a detailed evaluation comparing the efficiency of planning directly on graph

transformation systems with the efficiency of running off-the-shelf planning systems on

corresponding PDDL models generated by our translator.

As for our modelling approach and its locking mechanism, we plan to extend our approach

with required concurrency, cf. [CKMW07]: we should be able to specify a reconfiguration

that explicitly requires the concurrent application of another reconfiguration. Currently,

locks set by a reconfiguration can only restrict other reconfigurations from being applicable

(which is why we called them locks), instead of enabling their applicability (like a window

of opportunity for another reconfiguration).
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